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Square Wave and Pulse Testing 
I 

of Linear 
N arbitrary input wave, when transmitted A through even an ideally linear system, can 

be altered in a number of ways. Such a wave 
can be altered, for example, in size, shape, and 
time of occurrence. There is, however, one class 
of waves or functions - the sinusoids - that a 
linear system can alter in only two ways. The 
response of any linear system to a sine wave is 
‘another sine wave differing from the original 
at most in amplitude and phase. This cardinal 
fact gives sine waves their unique position in 
communication theory and further gives physi- 
cal significance to Fourier analysis and to the 
whole concept of frequency spectra. Since any 
input can be represented as the sum of a num- 
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Diagrammatic representation of steps necessary to calcu- 
late how a time function is modified by a linear system’s fre- 
quency characteristic. Direct calculation involves fewer steps 
but is often more difficult. 
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Systems 
ber of sinusoids, the output from a linear sys- 
tem will consist of these same sinusoids modi- 

transmitted by the system as if it alone were 
present (superposition). The simple sum of the 
output sinusoids will be the output wave. 

The way that the system modifies sine waves 
of all frequencies (the system amplitude and 
phase characteristic) thus constitutes a com- 
plete description of the system in that it enables 
the output to be computed for any input. The 
procedure for such a comp’utation can be rep- 
resented graphically as shown at left. 

If not already known, the spectrum of the 
input wave is found by evaluating the Fourier 
transform (A to B in the diagram). The system 
multiplies the input spectrum by the transmis- 
sion (amplitude and phase) characteristic $(m) 

to give the spectrum of the output (B to C). 
The inverse Fourier transform of the output 
spectrum is the output time function (C to D). 

Although the above method of computing is 
an indirect method, it is often actually easier 
than the direct method. The direct method in- 
volves evaluation of the convolution integral 
(often called the superposition or duHamel’s 

h( t )  =Jf(T) ( p ( t - T ) d T .  (11 

$ ( T )  is the impulse response of the system. 
d4t-7) is therefore this same function reversed 
left to right and displaced by an amount t .  
What (1) says is that, to find the output, the 
product of the input and this reversed, dis- 
placed impulse response must be integrated. 
The result will be a function of the displace- 
ment, t .  In other words, the input wave must 

fied only in amplitude and phase. Each will be 1 

integral) : - 
-_ 
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be scanned with the reversed im- 
pulse response. 

Equation (1) is easy to derive by 
considering the successive ordinates 
of f (t) to be a succession of impulses 
and applying the superposition theo- 
rem. Equation ( 1) is also easy to eval- 
uate on occasion, but more often it is 
difficult. By contrast, rather com- 
plete tables of transforms exist, so 
that getting from A to B and from 
C to D of ten involves merely using a 
table. The intermediate step from 
B to C is accomplished merely by 
multiplying the input spectrum F(u) 
by the system’s transmission charac- 
teristic +(w). The situation is analo- 
gous to the use of logarithms when 
raising a number to a power. To 
compute 7 ~ ,  for example, involves 
looking up the logarithm of 7(A to 
B), multiplying by x (B to C), and 
looking up the antilog for the an- 
swer (C to D). 

Even more impressive is the case 
where f(t) and h(t) are known and 
the system frequency characteristic 
and impulse response are desired. 
The direct solution involves solving 
(1) as an integral equation. But by 
the indirect transform method the 
answer is simply 

$(t) is then the inverse transform 

The above has shown how a 
knowledge of the steady state (sine 
wave) characteristic of a system en- 
ables the output waveform to be 
computed for any known input 
waveform. Even if the exact input 
waveform is not known, however, a 
knowledge of the steady state per- 
formance of the system enables a 
picture to be gained of how the sys- 
tem will transmit the input wave. 
All that may be known, for example, 
is that the input may contain all fre- 
quencies over a certain band (e.g., 
speech or music) and that the system 
must be able to transmit this whole 
class of inputs without distortion. 
This requires that the output be a 
replica of the input except for pos- 
sible changes of size and delay; 

of 9(u). 

h ( t )  = K f ( t - t , ,  
where K is a constant and to is a per- 
missible delay. In the frequency do- 
main this requires that the output 
spectrum be the input spectrum 
modified only by a constant ampli- 
tude factor K, and a linear phase 
shift, = -ut,; that is 

The system frequency characteristic 
must therefore be flat, with linear 
phase over the band of frequencies 
to be transmitted: 

H(w) = K F(w) ciwta .,<w<w, 

+(.) I K e- iwto  w,<w <w2 

RESPONSE OF LINEAR 
SYSTEMS TO IMPULSES 

While steady state measurements 
are very useful for the reasons dis- 
cussed above, they are also quite 
time consuming to make. For many 
purposes the transient response of 
the system to certain particular types 
of input waves may provide all the 
information necessary. In fact, if the 
input wave is properly chosen, such 
a transient measurement provides 
exactly the same information as a 
steady state measurement but pro- 
vides it in a different form. 

Consider, for example, the case 
where the input, f(t), is an impulse 
of negligible duration and, say, unit 
area. The spectrum of such an im- 
pulse contains all frequencies. The 
frequencies all have the same ampli- 
tude and are all in phase in the sense 
that they all add at t = 0. In other 
words the spectrum of such an im- 
pulse is a constant F(w) = 1. 

Now from the superposition theo- 
rem, it makes no difference whether 
all frequencies are introduced one 
after another, as in steady state test- 
ing, or simultaneously by applying 
an impulse. In either case any fre- 
quency will be modified in the same 
way by the linear system. Impulse 
testing thus might be said to be 
equiva len t  t o  an instantaneous 
steady state test. They both give the 
same information, but the results 
must be interpreted in either case. 
When the input is an impulse, the 
input spectrum is F(w) = 1 and the 
output spectrum is H(w) = +(w). In 

other words, the response of a l kear  
network to an impulse is a pulse 
whose spectrum is the amplitude and 
phase characteristic of the network. 

Obviously, the interpretation of 
impulse tests involves a familiarity 
with the spectra associated with a 
wide variety of time functions and 
vice versa. A Table of Transforms 
published* in these pages some time 
agoillustratedanumberof time func- 
tions with their associated spectra. 

Impulse testing has advantages, 
but it also has two severe disadvan- 
tages. First, the impulse must be 
short compared with the duration 
of the finest detail of the output 
transient which is to be reproduced 
accurately. In other words the spec- 
trum of the impulse must be flat over 
the entire frequency range of the 
device under test. To get appreciable 
response, then, often requires that 
the impulse be so large in amplitude 
that the device under test is driven 
out of its range of linear operation. 

The second disadvantage is that, 
when testing wide band devices, the 
low frequency effects are hard to ob- 
serve. Thisisbecauseonlyan insignif- 
icant amount of the wide input spec- 
trum is deleted by the low frequency 
cutoff of the device under test. 

RESPONSE OF LINEAR SYSTEMS 
TO STEP FUNCTIONS 

The disadvantages of impulse test- 
ing are avoided by using step func- 
tions. With a step the rise time can 
be as short as desired without a re- 
sulting increase in amplitude. Since 
the spectrum of a unit step is F(u) = 
l/ju, more energy is concentrated at 
the low end of the spectrum. Low 
frequency effects are thus placed on a 
more nearly equal footing with high 
frequency effects. 

A unit step is the integral of a unit 
impulse. The step function response 
of a system might thus be obtained 
in any of the three ways indicated 
in the diagram. Part (a) of the dia- 
gram shows a straightforward test 
with a step function generator. In 
(b) the step generator is replaced by - 
*B. M. Oliver. “Table of Imporrant Trans- 

forms,” Hewlett-Packard Journal, Vol. 5, No. 
3-4, Nov.-Dec., 1953. 
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Three possible test arrangements for obtaining a system's step-furtction response. 

SCOPE 

a combination of an impulse genera- 
tor and an integrator. In (c) the in- 
tegrator has been interchanged with 
the system under test. Since both are 
linear systems the output is unaf- 
fected.* (c) illustrates the important 
fact that the step fumctiom respomse 
of a lhear system is the ktegral of 
the impulse respome, Further, the 
spectram of the step functiort re- 
spomse i s  I / j m  times the steady state 
amplitude and phase characteristic 
of the system. 

Conversely, the impulse response 
is the derivative of the step response. 

The accompanying table (I) shows 
the step function responses for some 
typical common networks. If the 
condition stated below is met, these 
responses will also be the response to 
the (positive) step of a square wave, 
because a square wave can be consid- 
ered to be a succession of alternate 
positive and negative steps. The 
table includes a few explanatory re- 
marks with each response. 

In order for the response to each 
step of the square wave to be identi- 
cal with a system's step function re- 
sponse, the square wave frequency 
must be low enough so that the in- 
dividual transients do not overlap. 
In other words the square wave fre- 
quency must be less than 1 / 2 t ,  where 
t is the time required for the step 
response to reach a constant value 
within the desired accuracy. Cases 

SQUARE WAVE TESTING 

__ 
*Assuming either a match at all junctions 01 

frequency insensitive mismatch. 

where long duration square waves 
should be used are where sharp ir- 
regularities exist in the frequency 
characteristic. Typical cases of sharp 
irregularities are low end cutoffs or 
sharp resonances anywhere in the 
pass band. 

If high-end cutoffs are being ob- 
served, a relatively high repetition 
frequency with its widely-spaced 
spectral lines is usually permissible. 
The reason for this is that high-end 
cutoffs are relatively broad frequency 
effects (consume only a short time 
in the time domain). 

Sharp mid-band effects may be ex- 
plored even with high repetition 
frequencies if the repetition fre- 

quency is variable. Sweeping the 
repetition frequency will always 
cause some harmonic of the square 
wave to coincide with a sharp mid- 
band effect and thus produce an ob- 
servable transient. In fact, long dur- 
ation resonances that are scarcely 
visible in the step function response 
because of their low amplitude will 
become quite prominent when the 
proper frequency square wave is 
used. The reason for this is that the 
proper frequency square wave will 
cause the successive excitations of 
the resonance to reinforce preceding 
excitations with the result that a 
much larger amplitude oscillation is 
produced. 

The complete step function re- 
sponse of a system having a low fre- 
quency cutoff is only displayed if the 
repetition frequency is much less 
than the frequency of the cutoff. 
Since it is often inconvenient to use 
such a low frequency, it is customary 
to use a frequency such that the tran- 
sients from the successive positive 
and negative steps do not vanish 
completely but rather overlap con- 
siderably. In such cases the square 
wave response needs to be inter- 
preted. Table I1 shows some typical 
overlapped low frequency responses. 

-B. M. OL~UIY 

TABLE II 
EFFECTS OF TYPICAL LOW END DISTORTIONS ON SQUARE WAVE 

( A )  
LOW FREOUENCY PHASE LEADING 

(B)  
LOW FREOUENCY PHASE LAGGING 

(C) 
LOW FREOUENCY AMPLITUDE UP 

( D )  
LOW FREOUENCY AMPLITUDE DOWN 

(E) 
LOW END SIMPLE RC CUTOFF (ABD) 

(F) 
RESULT OF PHASE COMPENSATING E 
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