

HEW LETTPACKAR D

An Introduction to Hewlett-Packard's AI Workstation Technology, by Martin R. 4 Cagan The HP AI Workstation is a collective term for a number of symbolic programming
software development efforts and -so far-one product.

7 HP's Universfty AI Program

A Toolset for Object-Oriented Programming in C, by Gregory D. Burroughs The 19 tools support object-with-methods data structuring.

i

I
process is being subjected to intense scrutiny

and a lot of fine

conferences are full of creative engineering and mod Meas. Taken tugether,
they show that HP's software laboratories are investing an impressive portion
of their resources in efforts to improve every aspect of the process of software
development, an indication that the importance of software is being recog-

nizea as never More.
The original versions of the on pages 4 through 36 of

measurement tools and methods. On page 4, Marty Cagan of HP Laboratories presents a su
of HPs artificial intelligence workstation research efforts, which have so far produced one p
a Common Lisp development environment for the HP 9000 Series 300 workstation famil

artiffiial intelligence and symbolic programming. The cover photo s h m the HP F l i M Planned
Flight Simulator, an application developed using HP AI workstgtion technology. The Flight Planner/
Flight Simulator is described on page 13.

On page 4% you'll find a short atticle about the design of et new plug-in ROM package for the
HP-716 Handheld Computer. The package makes it easier to program the HP-718 to mnW the
MP 34216 Data Acquisition/Control Unit for low-cost, battery-powered, portable data acquisition
and control applications.

-R.P. &&I

i

Scheduled for March are six articles on the design details of the HP 54100ND and HP 541 10D
Digitizing Oscilloscopes. These general-purpose oscilloscopes are especially useful for digitial
design and high-speed data communications applications. Also in the issue is an article on a
software package designed to teach the fundamentals of digital microwave radio. i

4 1
\ 1
4

The HPJwrnal encourages technical discussion of tb toprcspresented in recent erticlasand will publish letters expected to be of interest toour readers Letterstnust be brief andmwbp@
to editmg Letters should be addressed to Edltoz Hewlett-Packard Journal, 3ooo Hanover Streat. Paio Alto, CA 94304, U S A

An Introduction to Hewlett-Packard’s AI
Workstation Technology
Here is an overview of HP artificial intelligence workstation
research efforts and their relationship to HP’s first AI
product, a Common Lisp Development Environment.

by Martin R. Cagan

H EWLETT-PACKARD RECENTLY ENTERED the
artificial intelligence (AI) arena with the announce-
ment of its first symbolic programming product, the

Hewlett-Packard Development Environment for Common
Lisp. The technology underlying HP’s initial product entry
is the result of more than five years of research and develop-
ment on what has evolved into the Hewlett-Packard AI
Workstation. This article provides an overview of the AI
Workstation technology.

The Hewlett-Packard AI Workstation represents the
aggregate of the major symbolic programming software de-
velopment efforts at Hewlett-Packard. (Previously, this re-
search effort was internally referred to as the Prism pro-
gram.) The term AI Workstation refers to the company-wide
internal research and development program in AI, rather
than to a particular product. In addition to the many Hp
divisions whose efforts have contributed key system com-
ponents, many important concepts are based on research
from the Massachusetts Institute of Technology (MI”), the
University of California at Berkeley, and the Xerox Palo
Alto Research Center (PARC). The University of Utah, in
particular, has contributed significantly. Currently, HP’s
AI Workstation is actively used by well over two hundred
people at various HP divisions, as well as by students and
professors at major research universities across the United
States. HP recently announced a $50 million grant of hard-
ware and software which will provide Hewlett-Packard AI
Workstations tb selected major computer science univer-
sities (see box, page 7).

The AI Workstation technology is both portable and scal-
able, and can run on a variety of processors and operating
systems, including the new HP 9000 Series 300 workstation
family under the HP-UX operating system. The first and
primary product that is an offspring Bf the M Workstation
technblogy is the Hewlett-Packard Development Environ-
ment for Common Lisp, announced at the 1985 Interna-
tional Joint Conference on Artificial Intelligence. Much of
the technology described in this article is experimental and
the reader should not assume the software discussed here
can be purchased. Those components that are part of the
Hewlett-Packard Development Environment for Common
Lisp or other products will be noted.

There has been a great deal written in the press recently
regarding symbolic programming technology and AI. The
transition from numeric programming to symbolic pro-
gramming is analogous to the “algebraization” of mathemat-
ics that occurred a century ago. The axiomatic, abstract

algebraic viewpoint that was needed to simplify and clarify
so many puzzles then is likened to the need for symbolic
programming techniques to help solve today’s difficult
computational problems. AI applications such as natural
language understanding, theorem proving, and artificial
vision all rely on symbolic programming techniques for
their flexibility and power in manipulating symbols, ma-
nipulating relationships between symbols, and representing
large and complex data structures. The AI Workstation is
a software system designed to solve problems using sym-
bolic programming techniques. This article explores the
AI Workstation by describing it from four perspectives: the
market, the technology, the environment, and the applica-
tions.

The Market
There are many opinions concerning the future direction

of the software market, but most agree that software is
steadily becoming more complicated, powerful, and intel-
ligent. Hewlett-Packard’s AI Workstation provides the tech-
nology for developing and executing intelligent and sophis-
ticated applications.

At Hewlett-Packard, AI techniques are viewed as an en-
abling technology. The AI Workstation provides tools and
facilities that enable the programmer to create applications
that were previously considered infeasible. These applica-
tions include expert systems, artificial vision, natural lan-
guage interfaces, robotics, and voice recognition systems.
Development and execution of these AI applications often
require capabilities not available or feasible in conven-
tional computer systems. For example, consider an expert
tax advisor application. Such a system would need to em-
body the relevant knowledge and reasoning strategies of
human tax advkm. M-trased techniques provide the
necessary mechanisms for this knowledge representation
and reasoning.

The AI Workstation’s use need not be restricted to prob-
lems requiring the direct employment of AI technology,
however. It has also been designed to foster improvements
in the conventional software development market. For
example, a typical tax accounting application may not need
AI techniques for its implementation, yet can be im-
plemented and maintained more productively by employ-
ing AI-based software development tools, such as tools that
intelligently help locate and diagnose errors in the program
code.

The AI Workstation is used by the software developer

I ‘

4 WLETT-PACKARO J W W MARCH 1986

WWW. H PARCHIVE.COM

ons, and by end users to

environment tailored for the rapid dev
systems. The languages provided are

motivate the use of

' -a that a particular application can run with a minimum of
resources and therefore keep the delivery vehicle's cost as
low as possible. This is a major feature €or many AI Work-
station users who wish to both develop and distribute ap-
plications using the AI Workstation. To these users, provid-
ing a low-cost delivery vehicle is a major concern.

I .

from their environments. This was necessary to manage

TheTeohnokgy

station began with a jo
tones and the Univer
was to create a portabl
of a modern Lisp s

along with the interactive and incremental
velopment and debugging environment of Lis

T ~ ~ ~ ~ . ~ I ~ ~ ror case I:

Sslact m y visual c01-r problems seen.

FAIRLY LRRGE SPOTS OF COLOR

Is the image poorer I n the color spots?

YES

Uatng [thlcknsss-ruls-SI:

Srnce the rafer shams color r p o t a but the Inage 1s poorer in thaoc
spots. tho resist thtckneso Is n o t unlrom due to dripping developer.

Run t e s t wafer through developer t o varlry the dripplng
problem. Does ths drlpplng developer problem stlll srlst?

YES

Uolng [v c r l r r c d - d e v s l o p s r - d r l p p l ~ g - ~ ~ ~ ~ ~ ~ ~ ~ - ~ " l ~ ~ :

Orlpplng developer 1s the moat lrkslq E W S I E or the observed symptoms.
Shov the w a r m t o malniananca. mho should lncreaae tho exhaust OIV
f l a and I-r the spray pvsasurs fo r slthcr the developer DI the r l n s d

norepad ror case I:

Fig. 1. IC P h O f O ~ i t h ~ f ~ h y Ad-
visor screen showing symptoms,
analvsis. and recommended treat-
ment.
Page

(see
12.)

"Diagnostic Systems,"

MARCH 1986 K€WLETT-PACMD JOURNAL s

to enjoy high performance nom LISP, special-purpose, ex-
pensive hardware was required. A major contribution of
the resulting underlying Lisp technology is that it is effi-
cient even on conventional, low-cost hardware.
Lisp. Lisp is the dominant programming language for arti-
ficial intelligence research in the United States. But why
Lisp? From a historical standpoint, Lisp is second in endur-
ance and longevity only to Fortran, The modern Lisp sys-
tems, such as Hewlett-Packard’s implementation of Com-
mon Lisp,2 feature less cryptic alternatives to the basic Lisp
commands, as well as many of the control structures and
data types that have proven useful in conventional lan-
guages.* Although Lisp has evolved from its original form,
it is for the most part as it was designed in 1958 by John
McCarthy. Unlike Fortran, however, Lisp is attracting new
converts daily, and is more popular today than it has ever
been in its 28-year history. Unfortunately, many program-
mers in the industry today have not yet had the opportunity
to work with Lisp as a production language, thus making
it difficult to compare Lisp with C, Pascal, Fortran, or
COBOL, A discussion of the primary features of Lisp fol-
lows, so that programmers of conventional languages can

Lisp manages memory automaticliy ror me program-
mer. Memory management and reclamation are taken
care of automatically in a Lisp environment. With con-
ventional languages, memory management often ac-
counts for a significant portion of the programmer’s code.
In Lisp systems, however, Lisp itself tracks memory use
and reclaims unneeded storage automatically. This ser-
vice allows the programmer to concentrate on the prob-
lem at hand, without having to manage the resources
needed to implement the problem’s solution.
Lisp programs can easily create or manipulate other Lisp
programs. Lisp is unique among major languages in that
Lisp programs and data are represented with the same
data structure. The benefits that result from this charac-
teristic are many and have proven to be among the major
contributions to the power of Lisp. This characteristic,
for example, makes it is easj tu write Lisp programs that
create other Lisp programs, as well as to write Lisp pro-
grams that can understand other Lisp programs. Pro-
grams can be manipulated as data, and can be im-
mediately executed or transferred to another Lisp

.Z r machine for execution.*
get an idea ofwhat it is like to develop in a Lisp en
ment.

Lisp programs can run with a mix of compiled and inter-
preted code. The AI Workstation provides both a Lisp
compiler and a Lisp interpreter. For development, the Lisp supports incremental development. In convent - - -

languages, when trying to build a program incrementally,
the programmer must perform a number of time-consum-
ing tasks, such as writing procedure stubs, including
declarations, and constructing or simulating data. Each
iteration requires an ediffcompileflinldtest cycle. In con-
trast, the Lisp programmer can simply write a function
in terms of other functions that may or may not have
been written yet and build either in a top-down fashion
or in a bottom-up fashion, creating and testing continu-
ously. The function can be executed as soon as it has
been typed in.
Lisp programs don’t need declarations. Unlike C, Pascal,
COBOL and most other conventional languages in which
the programmer must specify the data structures and
variables before using them, Lisp allocates the right
amount of storage, when it is needed, automatically. This
allows the programmer to develop functions truly “on
the fly,” without maintaining and propagating declara-
tions throughout the program. Once a program has
stabilized, the programmer can add declarations to im-
prove the efficiency.
Lisp provides excellent debugging. The Lisp environ-
ment supports an attitude towards error digFosis that
is quite different from that induced by conventional pro-
gramming languages. When a bug is encountered during
development of a Lisp program, the Lisp environment
invites the programmer to explore the environment in
which the exception was detected. The full power of
Lisp itself is available to the programmer when debug-
ging. Data structures can be analyzed and functions re-
defined. In fact, the programmer can even construct new
Lisp functions on the fly to help diagnose the problem.
In Lisp, a program error is less an error and more a break-
point where the programmer can examine the system.

‘Common Lisp, wcth the support of the U S Depamnent of Defense. has emerged as the
industry-standard Lisp dialect

interpreter allows enhanced debugging and quick incre-
mental design. Once a program is ready to be put into
use, it can be compiled to increase its performance and
reduce its code size. During development, however, the
programmer often needs to run with a mix of compiled
and interpreted code. The AI Workstation’s Lisp has the
feature of allowing an arbitrary combination of compiled
and interpreted code. It is not unusual for a programmm
to redefine compiled functions at run time to examine
and explore the behavior of the application.
Lisp is comfortable with symbols. In conventional lan-
guages, arbitrary symbols are treated as unstructured
data. The programmer coerces them into a character array
and analyzes the array byte by byte until some sense can
be made out of them in terms of the data types understood
by the language. Lisp, however, is a symbolic program-
ming language. Arbitrary symbols are first-class objects,
and can be manipulated as symbols rather than by trying
to treat them as elements in an array. The programmer,
in turn, can give symbols properties and manipulate re-
lationships between symbols.
Lisp is easy to extend. Functions defined by the program-
me-- same m y aspsystem-defined
tions. When implementing complex systems, it is
useful to develop a specific vocabulary of fundions €or
conversing in a particular problem domain. With Lisp,
these specific, problem-oriented languages can be de-
veloped easily and quickly.
Because of its longevity and its many useful features, the

reader may wonder why conventional programmers have
not been using Lisp for years. There are three major reasons
for this. First, until very recently, the Lisp environments
described above were available only on large and expensive
machines, and even on these machines, Lisp was using
more than its share of resources. Only now, with the avail-
“‘One person’s data IS another person’s program “ 4 u y L Steele, Jr

6 HEWLEIT-PACKARD JOURNAL MARCH 1986

the AI Workstatins for
above confiiuratins

fully configured to

rola 68020 processor

omance workstations and

a
routines. This has importctnt ramifications for HP and its

customers. It is not necessary to discard existing code and
data libraries to enjoy the benefits of Lisp. For example,
an intelligent front end that accesses Fortran code libraries
for instrument control can be written in Lisp. (The exten-
sions to Common Lisp for foreign function calling are part
of the HewIett-Packard Development Environmeat for Com-
mon Lisp product.) AI Worbtationbsed applications am
often blends of Lisp and conventional language compo-
nents.
Object-Oriented Programming. The AI Workstation pro-
vides two higher-level languages, themselves implemented
in Lisp, which support alternative paradigms for software
development. The first of these language extensions sup-
ports object-oriented programming while the second sup-
ports rule-based programming.
HP provides a Lisp-based object-oriented programming

language. (The extensions to Common Lisp for object-
oriented programming are part of the Hewlett-Packard De-

;g
WWW.HPARCHIVE.COM

MARCH 1986 HEWLETT-PACKARD JOURNAL 7

..
- . -

velopment Environment for Common Lisp product.) Most
of the AI Workstation’s environment itself is written using
this technology. Object-oriented programming is very
much on the rise throughout the entire industry, and for
good reason. Object-oriented programming brings to the
programmer a productive and powerful paradigm for soft-
ware development. It is a paradigm that addresses head-on
the serious problems of code reusability and software
maintainability by employing powerful techniques such as
inheritance, data abstraction, encapsulation, and generic
 operation^.^

Unlike most conventional languages, object-oriented
Lisp is a language designed to support a particular program-
ming methodology. The methodology, with support from
the language, provides explicit facilities for code reusabil-
ity, software maintainability, program extensibility, and
rapid development.

The essential idea in oqecr-oriented programming is to
represent data by a collection of objects and to manipulate
data by performing operations on those objects. Each object
defines the operations that it can ~ e r f o r m . ~

The first facility I will describe is the notion of data
abstraction. Using the object-oriented style of program-
ming, each object is regarded as an abstract entity, or “black
box,” whose behavior is strictly determined by the opera-
tions that can be performed on it. In other words, the only
way an object is accessed or modified is by performing the
operations explicitly defined on that object. In particular,
the internal data structure used to represent the object is
private, and is directly accessed only by the operations
defined on the object. Operations are invoked by sending
messages to the object.

One advantage of the object-oriented style of program-
ming is that it encapsulates in the implementation of an
object the knowledge of how the object is represented. The
behavior of an object is determined by its external interface,
which is the set of operations defined on the object. If the
designer changes the representation of an object, and the
externally visible behavior of the operations is unchanged,
then no source code that uses the object need be changed.
For example, suppose we wish to define a type dog. Using

the object-oriented extensions to Common Lisp, our defini-
tion might be:

(define-type dog
(:var name)
(:var age)
(:vaf owner)
1

This says that we are defining a new type of object dog,
with an internal representation consisting of a name, an age,
and an owner. For example:

(setf fido (make-instance ’dog :name “Fido”))
This sets the variable f i d ~ to an instance of the type dog,

with the name “Fido.” If we wished, we could create one
hundred instances of the type dog, each unique, whether
or not they have the same name (just as there are many
dogs, with more than one named “Fido”). Note that exter-
nally, nothing knows of our internal representation of the
type dog. We could be implementing the dog’s internal
representation any number of ways.

We define operations on type dog by specifying the type
and the operation, any parameters required by the opera-
tion, and the implementation of the operation. For example,

(setf owner new-owner)
1

Note that the implementation of the operation is the only
place where the internals of type dog are referenced. The
value of this encapsulation is that if we decide to change
the implementation of type dog, then it is only the type
definition and the operations defined on that type that
need to be modified.

We can access and manipulate the object by sending
messages to it requesting it to perform specific operations.
For example, to change Fido’s owner to “Mandy”:

This statement reads, “Send the message to fido :give-new-
owner ‘Mandy’.” Typically, we would define a number of
operations for the type dog, such as sit, stay, come, and speak.
These could then be invoked:

(-. fido :give-new-owner “Mandy”)

-
- 1

a
Fig. 2 Flight simulator screens. Also see cover photo. See text on pay, ,3 for u,:ails.

c
._I

WWW.HPARCHIVE.COM 1 -

To create an imatance

(+ roby :-I
(-. rsby -1

. (-.-roby:SPw
(+ roby :makecoffee $me 0700)

implementations of these operations
ification and the external pro-

t a id i l i ty , program extensibility, and code reusability. Ob-
ject-oriented programming has been used to implement
operating systems, window managers, market simulations,
word processors, program editors, instrument
and games, to name just a few of its appli
paradigm has proven productive, powerful, and e& to
learn and use.
Rule-Based Programming. The second of the alternative
paradigms provided in the AI Workstation is the Hewiett-
Packard Representation Lan

de expertsyrttems, are
knowledge base of information and attempt to make deduc-
tions and draw conclusions using the rules of logical infer-
ence. A knowledge base is a data base that embodies the
knowledge and problem-solving strategies of human ex-
perts. In an expert system, there is rarely a procedural
description defined in advance for solving a problem. The
system must search the knowledge base and make infer-
ences by using the p les and strategies defined by the de-
veloper. Current knowledge-based software systems in-
clude applications such as medical consultation systems,
integrated circuit diagnostic systems, tax advisors, and nat-
ural language understanding systems.

The key to knowledge-based systems lies in representing
the vast amounts of knowledge in an organized and man-
ageable structure. Without such organization, problems
quickly become intractable. An intractable problem is one
that cannot be solved in a reasonable amount of computa-
tion time. HP-RL provides data structures and control struc-
tures specifically for knowledge representation, knowledge
organization, and reasoning about that knowledge.

HP-RL allows knowledge to be represented as frames. A

which inherits the data and operations from the t
In addition to the inherited attributes, we define gotden-re-
triever’s to maintain the attribute number-of-tennis-balls-retrieved.
Note that when using an object, one cannot observe whether
or not that object’s type was defined using inheritance.

We create an instance of the new type golden-retriever:
(setf mac (make-instance ‘golden-retriever :name “Mac”))
For this new type of dog, we wouId have our own im-

plementation of the :speak operation, one that produces a
deeper bark than the inherited version. We would also have
some additional operations defined which are appropriate
only to objects of the type golden-retriever. For example, we

r)

I-. mac :sWak)
(4 mac fetch)
(-. mac :make-coffee %me 0700)
Note that we could have made further use of inheritance

by first defining a type retriever that inherited from type dog,
and then defining the new types golden-retriever and labrador-
retriever which inherit from the type retriever,

Another facility provided by object-oriented Lisp is the
support of a powerful form of generic operations known
as polymorphism. When one performs an operation on an
object, one is not concerned with what kind of object it is,
but rather that an operation is defined on the object with
the specified name and the intended behavior. This ability
is lacking in languages like Pascal, where each procedure
can accept only arguments of the exact types that are de-
clared in the procedure header. As an example of the value
of generic operations, suppose one day we attempt to re-
place Man’s Best Friend with a robot, presumably one
domesticated to the same extent as a dog is. We could
implement the new type robot as follows:

MARCH 1988 HEWLElTACKARD JOURNAL 9

frame is a data structure that groups together arbitrary
amounts of information that are d a t e d ema antic ally.^ Typ-
ically, a frame is used to store information specific to, or
about, a particular entity. HP-RL allows knowledge to be
organized into frames of related information. Like object-
oriented programming, HP-RL provides the ability for
frames to inherit information from other frames. For exam-
ple, a frame that describes a specific entity such as a person,
Jane, might inherit characteristics from related entities such
as scientist and female. Therefore, the entity Jane automat-
ically inherits all of the attributes of females and scientists.
Attributes specific to Jane can then be specified to differen-
tiate Jane from other female scientists.

Frames can be grouped into domains of knowledge. This
sort of partitioning reduces problem complexity, and can
also improve the efficiency of searches through the knowl-
edge base by helping the program avoid searching through
irrelevant knowledge. Searching through the knowledge
base is a sophisticated process performed by the H P - a
inference engine. The inference engine is the facility that
scans the knowledge base trying to satisfy rules. Rules in
HP-RL are frames composed of a set of premises and con-
clusions, similar to an if-then construct in conventional
languages. HP-RL provides both forward chaining and
backward chaining rules. The inference engine applies for-
ward chaining, or data driven, rules to infer conclusions
given verified premises. The inference engine applies back-
ward chaining, or goal driven, rules to find verifiable prem-
ises, given a desired conclusion.

As an example, consider a rule that says: If a dog is a golden
retriever, then the dog likes tennis balls. If we define the rule to
be a forward chaining rule, then when the ipference engine
is searching the knowledge base, if the current data sup-
ports the assertion that the dog is a golden retriever, then
we can-infer that the dog likes tennis balls. If we define

the rule to be a backward chaining rule, then when the
inference engine is searching the knowledge base, if the
desired goal is to find a dog that likes tennis balls, then
the inference engine will check to see if the current data
supports the assertion that the dog is a golden retriever.

One of the primary differences between rule-based ap-
proaches and conventional programming is that in rule-
based programs, the program's flow of control is not explicit
in the program. The process of deciding what to do next
is consciously separated from data organization and man-
agement. The programmer can help direct searches by using
heuristics. A heuristic is a rule that guides us in our navi-
gation and search through a knowledge base. Managing
searches through the knowledge base is a major research
topic, since an intelligent and selective search of a knowl-
edge base can make the difference between a usable system
and an unusable system. Searching the knowledge base is
where most of the computing resources are spent when
using a knowledge-based system. To help with this prob-
lem, HP-RL provides for the incorporation of heuristics
about dealing with other heuristics, which can be used to
govern the strategy of the program and therefore conduct
searches more intelligently.

HP-RL currently contains a number of experimental
facilities which are being studied and tested to discover
more effective mechanisms for performing the difficult task
of capturing and using knowledge.

The Environment
One of the primary differences between programming

with Lisp and programming with other languages is the
environment provided for the programmer. The AI Work-
station provides access to all data and execution via an
integrated environment. The user environment is unusu-
ally flexible and powerful. It contains a large and powerful

I

A

7:
N:113 V I 3 A /y3q

N: 40 WHO-1 BE-1-3RDSG DET:6
- I_
THE-E N:7 PP: 38

II

Fig 3. Natural language under-
standing system screen, showing
an Engtish query, a parse tree
showing how the system inter-
preted the sentence, and the re-
sults of the query.

10 HEWLETT-PACKARD JOURNAL MARCH 1986

WWW.HPARCHIVE.COM

uiipdation functfons and data struc-
tures useful in cons user interfaces, text and
graphics editors, and s. The following sections
explore them various components of the AI Workstatian
usep envirmment.

The AI Workstation environment contains a ver-
sion of EMACS, an editor originally developed by Richard
Stallman at MI'". Hewlett-Packard's object-oriented Lisp
implementation of EMACS, like the original MIT EMACS,
is a mstomizable, extensible, self-documenting, sereen-

rs can mold the AI Worksta-

tions and extensions to the AI Workstation EMACS. New
editing commands can be added or old ones changed to fit

AI Workstation

reason to modify the behavior of an existing function, then
the user is able to make the modification quickly and easily.

Self-documenting means that the AI Workstetion EMACS
provides powerful interactive self-documentation facilities
so that the user can make effective and efficient use of the
copious supply of features.

Screen-oriented means that the user edits in two dimen-
sions, so the page on the screen is like a page in a book,
and the user has the ability to scroll forward or backward
at will through the book As
screen is updated imme
Just as many books on
once, with the AI Workstation
be visible and active simultaneously. In fact, one of W s
extensions to MIT's EMACS is the ability not only to have
multiple screens active on a single physical display, but
also to have multiple screens on multiple physical displays.
(The EMACS-based editing environment described here is
part of the Hewlett-Packard Development Environment for
Common Lisp product.)
Browsing. Another feature of the AI Workstation user en-
vironment is a large library of tools known as browsers.
Browsers are more than an integral component of the user
environment; they are a metaphor for using the environ-
ment. A browser is a simple tool for the convenient perusal
and manipulation of a particular set of items? Experimental
browsers in the AI Workstation environment include
documentation browsers, file browsers, mail browsers,
source code browsers, and application browsers. These
browsers range from simple to very complex. Users can
list all the mail messages sent by a particular person regard-
ing a particular subject, or can instantly retrieve the defini-
tion of a particular Lisp function. The user can conduct
automated searches of the documentation, or can browse

Browsem provide a simple, intuitive, integrated interface
that is useful for handling (P wide range of problems. The
environment provides a li mwser construction
tools and functions to all te their own brows-
em for th& parti~ular
Prop- On the AI development machine, a large
portion of the user environment is tuned to support the
prog&ig task, which includes activities such as pro-
gram editing, debugging, testing, version and configuration
management, and documentation. The AI Workstation sup-
ports development in Lisp, C, Pascal, and Fortran. In addi-
tion, a toolkit is provided to let users customize the envi-
ronment for other AI Workstation provides
an integrated and of multilingual software
development.

One of the major features of the AI Workstation user
environment is the interface to the underlying Lisp system.
Lisp programmers enjoy direct access to the Lisp compiler
and interpreter without having to leave the environment.
This means that a program can be edited, tested, debugged,
and documented haenentally and interactively as the
program is developed. Tbe editing is assisted by an editor
that understands the syntax of Lisp. Testing is assisted by
Lisp interface commaads, which pass the text from the
program editor to the underlying Lisp system and return
the results back to the environment. Debugging is assisted
by an interactive debugger, function stepper, and data in-
spector available directly from the environment. Prog~am
documentation is assisted by documentation tools de-
signed for the programmer which generate much of the
formatting details automatically.

Using the foreign function calling facilities of the AI
Workstation described earlier, non-Lisp programmers can
also enjoy many of the benefits of interactive, incremental
development. For example, the AI Workstation contains

ing system.) While these operations am C routines, all are
directly accessible from the Lisp environment. Typically,
C programmm must iterate through the edit /compileW
test cycle as they develop a graphics application. In con-
trast, using the AI Workstation, C programmers can step
through the development of their graphics applications
statement by statement, and enjoy immediate feedback sim-
ply by observing the results on the screen. Once the pro-
gram is functionally correct, the programmer can convert
the statements into a formal C program, and compile it
with the standard C compiler.
Managing. The AI Workstation user environment contains
a variety of optional service applications to support the
programmer in dealing with office and management func-
tions. Experimental applications developed with th is tech-
nology include electronic mail, project management, docu-
mentation preparation, slide editing, calendar, spreadsheet,
information management, and telephone services. Each of
these applications, once the user chooses to include it, be-
comes an integral part of the environment. Because all of
these applications are written using the the AI Workstation
environment facilities, they are customizable, extensible,

and accessible from anywhere in the environment. For exem-
ple, the user can move from creating a slide to reading a mail
message to testing Lisp code and back to creating the slide.
Interfacing. The AI Workstation's user environment con-
tains tools that greatly simplify the incorporation of new
input and output devices such as tablets, touchscreens, or
voice synthesizers. In addition to supporting standard
keyboard and mouse input, experimental versions of the
AI Workstation environment also support joystick, tablet,
touchscreen, videodisc, voice input and output, and
touchtonetelephone input. The user environment also sup-
ports many user interface models, and provides a library
of environment functions to help users define their own
user interface model. Existing user interface models in-
clude pop-up menus, softkeys, English commands, and
CONTROL-META key sequences.

The AI Workstation does not impose a particular inter-
face model on the user. Default interfaces exist, but the
user is free to modify or add any user interface desired.
Delivery applications written to run under the AI Worksta-
tion environment can choose to use one or more of the
supplied user interfaces, or the designer can define a new
interface.

The Applications
.This section examines some of the primary types of ap-

plications the AI Workstation technology was designed to
develop and run. Note that unless specified otherwise,
these applications are experimental and not available for
purchase.
Diagnostic Systems. Diagnostic systems are good examples
of expert system applications. Diagnostic systems retrieve
as much data as possible from instruments andlor users,
and attempt to determine the cause of the problem andlor
the remedy. Diagnostic system applications inchde medi-

cal diagnostic systems, instrument diagnostic systems, and
intelligent computer-assisted instruction applications.

At HP Laboratories, we are experimenting with an IC
photolithography diagnosis system (see Fig. 1, page 5). This
system, called the Photolithography Advisor, is an expert
system used to diagnose failures in the negative photolithog-
raphy resist stage of IC fabrication.*O

Within Hew€ett-Packard's computer support organiza-
tion, a number of diagnostic expert systems are employed.
The Schooner expert system diagnoses and corrects data
communication problems between a terminal and an HP
3000. The ADA expert system provides an efficient tool
for analyzing HP 3000 core dump files. The Interactive Periph-
eral Troubleshooter system diagnoses disc drive failures.
Instrument Control. A growing class of expert systems
deals with the intelligent control, monitoring, and testing
of instruments, as well as the interpretation of the data
gathered by these instruments. Instrument control and in-
terpretation applications include network analysis, factory
floor monitoring, process control, and many robotics appli-
cations.

At Hewlett-Packard, one experimental application helps
with the interpretation and classification of data collected
by a mass spectrometer. Another application analyzes data
from a patient monitoring system. Within the AI industry,
a number of intelligent instrument and process control ap-
plications are being developed, such as a system that
monitors the operations of an oil refinery."
Simulations. Many complex software systems fall into the
category of simulations and modeling. Simulations play
major roles in nearly every aspect of a business. The object-
oriented programming facilities discussed earlier enable
engineers to program simulations rapidly. Simulation ap-
plications include econometric modeling, flight sbu la -
tion, chemical interqction modeling, and circuit simula-

12 HEWLETT-PACKARD JOURNAL MARCH 1986

WWW.HPARCHIVE.COM

Ftg. 4. Unified programming en-
vironment screen shows multilin-
gual support with simultaneous
development in C and lisp, inte-
grated mail, and dynamic data in-
spection.

tions.
At HP Laboratories, for example, we have implemented

VLSI logic simulators, which enable an engineer to design,
debug, test, and evaluate circuit designs before incurring
any actual manufacturing expen~e .~

The HP Flight PlannerlPlight Simulator (see Fig. 2 and
cover) is an application designed by HP Laborataries to
illustrate a number of important features of the AI Worksta-
tion technology: namely, that multilingual applications are
desirable and simple to develop, that complex applications
can be developed rapidly, that Lisp applications can be
designed to run wjthout the interruption of garbage collec-
tions, and that Lisp applications can run on conventional
hardware and operating systems at very high performance.

The Flight Planner module is a constraint-driven expert
system for planning a flight. The system presents a detailed
map of California stretching from San Francisco to Los
Angeles. The pilot is asked for an originating airport, a
final destination, and any intermediate stops desired. The
pilot then is allowed to specify specific constraints, such
as “Avoid oceans and mountain ranges,” “Ensure no longer

tween stops,” or “Plan a lunch stop in Sanb

the airports, the terrain, and the s

specified, the Flight Planner attempts to find a viable flight
plan that satisfies the constraints specified by the pilot, as
well as the constraints implied by the limitations 6f the
terrain and aircraft.

Once a flight plan has been generated, the Flight Planner
passes the flight plan off to the Flight Simulator module,
which then flies the plan as specified. The flight plan
specifies the destination, route, and cruise altitude for each
leg of the flight. The flight simulator’s autopilot module,
using these directions as well as the specific airport and

of tl Cessna 172

airplane data f‘rom the knowledge base, performs the
off, €lies the plane using ground-based navigational
and executes an instrument landing. In addition to flying
predetermined flight plans via the autopilot, the Flight
Simulator can be flown manually. The pilot uses an HP-HIL
joystick, a 9-knob box, and a 32-b

The Flight Planner is implem
Flight Simulator is implemented
object-oriented extensions to Common Lisp. The graphical
transformations are performed by C routines accessed from
Lisp, using the 3D graphics facilities of the HP-UX operat-
ing system. The model of flight, the autopilot component,
and the scene management are all written using the object-
oriented extensions to Common Lisp.

The Flight Simulator r e q u i d two months for two people
to develop, while the Flight Planner required a month for
three people.
Natural Language. With the computational and reasoning
capabilities of systems such as the AI Workstation, compu-
tational linguists are making headway into the difficult
field of natural language understanding. At Hp Laboratories,
computational linguists have been using the AI Workstation

rules to create derived lexical items,
and a small set of context-free phrase structure rules as the
data structures used in parsing English sentences and ques-
tions. Interpretations of these sentences are the result of
the meanings of the individual words together with the
semantic rules that are associated with each of the dozen
or so phrase structure rules. What the natural language
system produces is a set of unambiguous application inde-
pendent expressions in first-order logic, each expression
corresponding to one possible interpretation of the original

Fig. 5. A screen from Micro-
Scope, a knowledge-based pro-
gram analysis tool, showing a call
graph monitoring program execu-
tion, the source code of the high-
lighted module, evaluation history
browser, and system resource

MARCH 1986 HfWLElT-PACKAAD JOURNAL 13

Vvvvw HPARCHIVF CnM

sentence. In test applications, these expressions are trans-
duced into either data base queries or messages to objects,
making use of the domain-specific knowledge in each ap-
plication to make precise those relations or pronoun bind-
ings that were underspecified in the sentence it~elf.’~*~~,’*
Software Engineering. While environments such as the AI
Workstation can significantly improve software productiv-
ity, we are just beginning to reap the benefits of applying
AI to the software development process itself. There are a
number of projects throughout the industry working in this
area.

At HP Laboratories, we are working on intelligent pro-
gramming environments that help the user assess the im-
pact of potential modifications, determine which scenarios
could have caused a particular bug, systematically test an
application, coordinate development among teams of pro-
grammers, and support multilingual development in a uni-
form manner (see Fig. 4).15 Other significant software en-
gineering applications include automatic programming,
syntax-directed editors, automatic program testing, and in-
telligent language-based help facilities.

Applying AI to the software development process is a
major research topic.I6 There is tremendous potential for
improving the productivity of the programmer, the quality
of the resulting code, and the ability to maintain and en-
hance applications. One of HP’s first projects of this type
is Microscope, a tool to help software engineers understand
the structure and behavior of complex software systems
(see Fig. 5).

Conclusion
the AI Workstation from the point of

view of the software market, the underlying technology,
the user environment, and the AI-based applications. Hav-
ing studied the AI Workstation from each of these perspec-
tives, we hope that the reader will assimilate this into a
coherent and accurate view of the HP AI Workstation tech-
nology. Over the coming years, HP engineers and our part-
ner universities will be using the AI Workstation as a plat-
form for exploring increasingly intelligent and powerful
applications and technologies.

We have di

Acknowledgments
Since the AI Workstation is defined to be the aggregate

of HP’s research in the AI area, the efforts of well over 100
people at Hewlett-Packard divisions and universities
around the United States are represented. Major contribu-

- ~LQ.Q& c a m e h ~ w t W and h i s S n € W ~ ~ T d ~ -
Laboratory, the Knowledge Technology Laboratory, the In-
terface Technology Laboratory, and the director of Np
Laboratories’ Distributed Computing Center, Ira Goldstein.
The Fort Collins Systems Division, with teams led by Roger
Ison and John Nairn, provided an existence proof to the
computer industry of a high-performance, quality imple-
mentation of Common Lisp on conventional hardware.
The Computer Languages Laboratory developed the ex-
tensions to the AI Workstation for conventional languages.
The faculty and students of the University of Utah, Pro-
fessor Robert Kessler in particular, contributed greatly
to the fundamental capabilities of the AI Workstation. A
number of consultants from Stanford University, the Uni-

14 HEWLET-PACKARD JOURNAL MARCH 1986

versity of Utah,
of California at
our technology.

the Rand Corporation, and the University
Santa Cruz continue to help us improve
This article has benefited from the insights

of Ralph Hyver, Seth Fearey, Martin Griss, and Alan Snyder
of HP Laboratories, and Mike Bacco and Bill Follis of Fort
Collins. The author also thanks Cynthia Miller for her long
hours of editing.

ReterenCeS
1. M.L. Griss, E. Benson, and G.Q. Maquire, “PSL A Portable

LISP System,” 1982 ACM Symposium on LISP and Functional
Programming, August 1982.

2. G.L. Steele, Common Lisp: T h e h g u a g e , Digital Press, 1984.
3. J.S. Birnbaum, “Toward the Domestication of Microelec-

tronics,’’ Communications of the ACM, November 1985.
4. M. Stefik and D.G. Bobrow, “Object-Oriented Programming:

Themes and Variations,” The AI Magazine, January 1986.
5. A. Snyder, Object-Oriented Progmmming for Common Lisp,

HP Laboratories Technical Report ATC-85-1, February 1985.
6. S. Rosenberg, “HP-RL: A Language for Building Expert Sys-

tems,” Proceedings of the Eighth International Joint Conference
on Artificial Intelligence, August 1983.

7. R. Fikes and T. Kehler, “The Role of Frame-Based Represen-
tation in Reasoning,” Communications of the ACM, September
1985.

8. R.M. Stallman, “EMACS: The Extensible, Customizable, Self-
Documenting Display Editor,” in Barstow, Shrobe, and Sandewall,
Interactive Programming Environments, McGraw-Hill,l984.

9. A. Kay, “Computer Software,” Scientific American, Vol. 251,
no. 3, September 1984.
10. T. Cline, W. Fong, and S. Rosenberg, “An Expert Advisor for
Photolithography,” Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, August 1985.
11. R.L. Moore, L.B. Hawkinson, C.G. Knickerbocker, and L.M.
Churchman, “A Real-Time Expert System for Process Control,”
Proceedings of the 1984 Conference on Artificial Intelligence Ap-
plications, December 1984.
12. C.J. Pollard and L.G. Creary, “A Computational Semantics for
Natural Language,” Proceedings of the Association for Computa-
tional Linguistics, July 1985.
13. D. Proudian, and C. Pollard, “Parsing Head-Driven Phrase
Structure Grammar,” Proceedings ofthe Association for Computa-
tional Linguistics, July 1985.
14. D. Flickenger, C. Pollard, and T. Wasow, “Structure-Sharing
in Lexical Representation,” Proceedings of the Association for
Computational Linguistics, July 1985.
15. M.L. Griss and T.C. Miller, UPE: A Unified Progmmming
Environment, HP Laboratories Technical Repor4 STL-85-07,
December 1985.
16. D.R. Barstow and H.E. Shrobe, “From Interactive to Intelligent
Programming Environments,” in Barstow, Shrobe, and Sandewall,
JRteraotivt+PregmnmiRg -Environmentt+, McGmw-HiH, &%4.

WWW.HPARCHIVE.COM
~~

A Defect Tracking System for the UNIX
Environment
Created in response to a lack of effective defect tracking
and analysis tools for software development, DTS is now
used by 24 HP Divisions.

by Steven R. Blair

TS IS A DISTRIBUTED defect tracking system that
simplifies the, process of reporting, collecting, and D summarizing software defect data. It provides

utilities for submitting, receiving, resolving, and archiving
defect reports, and for generating detailed and summary
report listings.

DTS was designed to serve the defect tracking and met-
r i c ~ collection needs of prerelease software development.
It is available only in HP software development laboratories.
It rum under versions of ATikT Bell Laboratories' UNIX"
operating system on networks of HP 9000 and Digital Equip
ment Corporation VAX" computers.

DTS was created in response to a lack of defect tracking
and analysis tools in software development environments.
For example, when a defect report was submitted, it often
didn't describe the problem adequately or contain the infor-
mation necessary to reproduce the problem. There was also
no easy way to tell if the defect report got to the person
who had to research and fix the problem, and it was a
difficult and tedious task for a manager to get an accurate
count of defects for a lab, a project, or a particular engineer.
Finally, data that managers needed for development pro-
cess metrics wasn't always collected.

DTS solves these problems in a way that is easy to learn
and use. This paper presents the DTS solution first from
the project management perspective and then in terms of
user interaction. It describes the system's operational envi-
ronment and shows the current status of DTS use at HP.

Managing Software Development with DTS
DTS supports software development management by col-

lecting and organizing defect data, and by automating the
tracking of submitted and resolved defects. DTS collects
data that both lab and project managers can use to answer
questions about their software development processes.
Examples of this data are the submitter's name, the name
of the responsible project, the module that is defective, the
date the defect was found, the symptoms caused by the
defect, and the severity of the defect. See the Appendix for
a complete list of the data items kept for each defect. This
information can be grouped, summarized, and used for
evaluating a product's development.

Several graphical examples of summarized DTS data are
given in Figs. 1 through 4. Although DTS does not currently
generate graphs, it does provide the defect data that other
tools can use to generate graphs.

DTS provides defect information at the lab and program
level. Data from DTS general summary reports can be used
to generate a mean time between failures (MTBF) graph
(Fig. 1) and a defect arrival rate graph (Fig. 2) for either a
single project or a group of projects.

For project managers, DTS provides summaries and
synopses of project-level defect information. This data can
be used to generate a defect resolution rate graph (Fig. 3)
and a defect backlog graph (Fig. 4).

DTS also provides project and engineer summary defect

Average Time Between Failures (Days)
2-

Aug &pt Okt Nov DeC

Month

Number of Defects

lo T

Week

Fig. 2. Defect arrival rate graph, showing total number of
defects reported each week. Fig. 1. Mean time between failures graph.

MARCH 1986 HEWLET?'-PACKAfiQ KIURNAL 15

'OiYmba Of -

4
a 4 211 1 211 8 2125 314 311 1

Week

Fig. 3. Defect resolution rate graph, showing defects re-
solved as a function of time.

lists. These lists give a two-line synopsis for each resolved,
open, or unreceived (submitted to, but not yet accepted by
a project) defect. These synopses can be organized either
by project or by engineer assigned to fix the defect. Fig. 5
is an example of a project summary report for project dts.

Managers will probably want to view other defect data
relationships in addition to the examples shown above.
The DTS report generator, DTS administrator utilities, and
UNIX tools can be used to extract, organize, and summarize
defect data from the ASCII-text defect reports (see Appen-
dix). This summarized data can then be formatted as de-
sired for textual or graphical display.

submitting Defects
FQW DTS utilities allow a user to submit, receive, resolve,

and summarize defect reports. A common user interface
for all utilities makes DTS easy to learn and operate.

When a defect is found in a piece of software, the user
submits a defect report by using the dtssub command at the
user's workstation. DTS will then prompt the user for the
data necessary to create a defect report. This includes:
I The submitter's name, phone number, electronic mail

m The date the defect was found
The name and version of the defective software
The severity and urgency of the defect

m A one-line descriDtion of the Droblem

address, and project name

I

are examined with the dtsrec command. The data for each
unreceived defect is displayed, and the user is able to either
(1) receive the defect report and accept responsibility for
fixing it, (2) forward the defect repmt to another responsible
project, or (3) push it back into the unreceived"queue for ,

later viewing. If the defect report is received, DTS prompts
the user for:
rn The priority assigned to the defect report
a The name of the engineer responsible for fixing it
m An estimated fix date.

After the defect is received, an acknowledgment is sent
back to the submitter, and the defect report is incorporated
into the DTS defect data base on the receiver's machine.

(

Updating and Marking Defects as Resolved
After a defect has been researched and resolved, dtsupd

is used to update and mark the defect report as resolved.
At that time the user needs to provide:

The type of resolution (e.g., code change, design change]
rn The name of the module that was fixed (when applicable)

The amount of engineering time it took to fixthe defect
The development cycle phase in which the error was
introduced, found, and fixed.
DTS notifies the submitter by electronic mail when the

defect is resolved, and sends a copy of the defect report to
the machine designated as the DTS archive for the site.

Outstanding Defects
(Severity of Defects)

Low Medium High.
(0-3) (4-6) (7-9)

Summarizing via DTS Reports
The dtsrep command generates any of five different re-

ports, each giving different levels of detail, and each aimed
at different types of users. They are:

General summary. Shows global totals for unreceived,
o n, resolved, and urgent defects for selected groups
0% ojects. One likely grouping of projects might be a
lab summary, listing totals for all the projects that make
up a particular lab.
Manager summary. Shows a two-line description for
each of the defects belonging to a particular project,

a

_he-activitywsedinfinding &e &ct -

The project responsible for fixing the defect.
The user may also attach up to twenty-six rela

files to describe the problem further, present a work
document a fix, or provide other information.

through the network to the machine that the responsible
project has chosen to have its DTS defects sent to. When
the incoming defect report arrives, DTS sends an electronic
mail notification to the manager and engineers responsible
for the project.

Receiving Defects

After a defect report has been submitted, DTS mo

New (unreceived) defects that have arrived for a project Fig. 4. Defect backlog plot

16 HEWLETT-PACKARD JOURNAL MARCH 1986

WWW.HPARCHIVE.COM

Total Showstoppar Defects: 0
Total Unreceived Defects: 0

Total Resolved Defects: 312
Total Defects: 414

Total Open Defects: 102

Engineer Defect Information:

Steven Blair

CLLab00160 Submit Num: 00034DSDsa OPEN S:3 P:6 Recvd: 841 008
Dsc: I type control-D at “finding activity” and dtssub quits on me

CLLab00165 Submit Num: 00031DSDsa OPEN S:2 P:6 Recvd: 841008
Dsc: Hitting * D as response to resp-proj prompt in forwarding unchanges ui

DSDsa00032 Submit Num: OOWSELbb OPEN S:2 P:4 Recvd: 841029
Dsc: “dtssub q another” does only one defect and quits without asking

sorted by responsible engineer.
Engineer summary. Shows a two-line description for
each of the defects assigned to a particular engineer to fix.
I Unreceiveds

e available infcrrpaation

to a file or printer to capture data for later analysis.

User Interface
Each of the four DTS utilities uses a common user inter-

face that provides on-line help, three different modes for
novice, intermediate, and expert users, and easy-to-define
user default values.

The user interface makes DTS easy to learn and use. For
example, when a DTS utility is being run, two forms of
help are always available. One is a description of the field
the user is prompted for, and the other is what data is

e responding to a prompt,
ain the field dmxiption.

types CTRL 0. These help
descriptions can be tailored for any specific site.

Since users vary in their familiarity with DTS from first-
time to accomplished users, and therefore vary in how
much detail they want in DTS prompts, there are three
levels of prompting detail that can be selected: verbose
[maximum information at each prompt), terse (minimum
information at each prompt), and medium verbosity [which
lies somewhere in between). All prompts in DTS are site
configurable.

Finally, any data field DTS prompts the user for can be
preset to a default value. For example, the user’s name,
phone number, and electronic mail address can be de-
faulted for the defect submission [dtssub) utility. This re-
lieves the user of having to retype these items each time a
defect is submitted. More subtly, default values allow DTS
commands such as dtssub to be integrated into automated
test suites. This can provide reporting of defects discovered
during testing, without direct human intervention.

fl& 8. An example of a project
manager summary report.

DTS Operatio~l Envlronment
DTS is currently supported on HP 9000 Series 500 and

200 Computers running the HP-UX operating system, and
Computers running the 4.2 BSD operating

ich are clusters

network topology fits in with the network that has evolved
at HP consisting of machines running versions of the UNIX
operating system. A DTS site typically corresponds to a
divisional site in this network.

There are three kinds of information that flo
DTS machines. The first kind is the defect report
through the network as it moves from the
machine to the receiving project’s machine. Next, project
summary data is collected from each machine’s local defect

er DTS machines.
s are sent via elec-
r ep r t changes (e.g.,
ed, or is resolved).
ssion problems and
, or there are network

oesn’t know where to

Site 2

Site 1

Represents a machine running DTS sottware

+..+ Shows the flow of

-Summary Data
-Transaction Acknowledgment

-Defect Reports

Fig. 6. DTS network layout.

MARCH 1986 HEWCETT-PACKARD J W A L 17

. r

send a defect report. In these cases u l b moves me aata
into a holding area and sends an electronic mail message
describing the problem to the DTS site administrator.

The DTS site administrator is a person who has been
identified as the DTS support person for a site. This person
defines the DTS intrasite network topology, handles DTS
installation, keeps DTS configuration files current, and
coordinates local site customizations to DTS. After the ini-
tial setup time, the administrator can expect to spend 2 to
10 hours per month maintaining DTS.

The initial disc space required for DTS is three mega-
bytes. This number will grow during use as defects are
submitted and received. For example, people submitting
and receiving five defect reports per day for two projects
on a machine can expect DTS disc space requirements to
grow an additional megabyte per month (assuming an av-
erage defect report length of 4000 bytes). Off-line data ar-
chiving can be used to cut this number in half.

DTS Today
DTS was released internally November 1, 1984 to soft-

ware developers in three Hp Divisions. Since then DTS
has spread to other €IF' Divisions that develop software in
the UNIX environment. Its user community has grown from
25 to over 200 users located at more than 24 HP Divisions.
Because of this growing level of acceptance, Corporate En-
gineering's Software Engineering Laboratory has identified
DTS as an important software development and manage-
ment tool, and has committed resources to its support,
promotion, and evolution.

Acknowledgments
Seven people from three different divisions made up the

initial DTS product team. Dave Decot did a tremendous
job developing an extensible user interface for DTS and
writing the defect packet manipulation library. Steve Banks
wrote the dtssub, dtsupd, and dtsrep user utilities and served
as technical project lead. The author developed the packet
transport software and the dtsrec user utility. Julie Banks
worked very closely with the DTS development engineers
and was key in keeping the fast-track DTS project on track.
Debra Martin, Bob Grady, and William Woo also contrib-
uted management support. Thanks to Barbara Scott, Debbie
Caswell, and Jack Cooley for their contributions to the DTS
product design. Thanks also to Craig Fuget for his diligence
in product testing.

18 HEWLRT-PACW\RD JOURNAL MARCH 1986

Appendix
Contents of a Defect Report

-
i This table ccmtains the length in bytes, name, and description of each data field in

DTS defect report.

ength

10
1
10
20
20
20
20
20
6
20

10
1

1

72
2
4

20

20
8
1
6

40
10
6
1

w

Name

Oefect Number
Defect Status
Submitter Number
Submitter Name
Submmer Phone
Submitter Address
Test System
Submitter Project
Date Found
Software

Version
*rW

Showstopper

Description
Activity Used
Fixing Time

Responsible Project

Oescription

Assigned when a defect is received
New, open, or resolved
Assigned when the defect is submitted
Nameofthepersonwhosubmittedthedefect
The submitter's phonenumber
The submitter's electronic mail address
Themachinethedef~wasfoundon
Nameof thesubmitter's prqect
Date the defect was found
The nameof the software that is suspected of
being defective
Verslon ofthe suspect software
Thesubmmer'sestimatcmfttmdefecl
severity
"y" if this defect is keepmg a project from
meetingacriticalchpoint
Seventy--character defect description
Howthesubmifterfwnd the defect
How long it took to isdate, fix. unit test, and
documentthedefect fix
The projectthat is responsible forfixing
thedefect

Responsible Engineer The engineer assigned to fix the defect
Resolution
Priority
Resolve Date

Fixed Module
Related Defect
Date Recewed
Phase Introduced

Phase Found

PhaseFixed

Times Reported
Symptoms
Workaround
Filecount

RaseNed
Unused

Related Files

Howthedefectreportwasresdvsd
This detect's fix prionty
Eshmateddateofresoluhon,ordatathe
defect was rasolved
the module^ documentation changed
Thenwnbarofaduplicateor relateddefect
The date the defect report was received
The software development lifecycle phase in
wtuch the defect was introduced
The software development lifecycle phase in
which thedefect was bund
The software devebpment lifecycle phase
inwhichthedetectwasfixed
Thenumberofduplicatesofthis defect
The symptoms of the problem
"y"ifaworkaround tothedefect exists
Thenumber of related filesattached tothis
defect report
Data space reserved for DTS
Additional detaspace available for sites
to me
Up to26 related files may beattachedtoany
defect report

I

WWW.HPARCHIVE.COM

t-Oriented
Programming in C
Object-oriented programming seeks to encapsulate entities
in a program into objects, methods, and messages. It is
useful for writing highly dynamic software that is well-
structured and easily maintainable. This paper presents a
set of tools that support object-with-methods data
structuring.

by Gregory D. Burroughs
b

r,
TA STRUCTURES of a program are often com-

For example, in de-
e city as one class of

s of objects: redden
ildings, and so on.

e on the map, it would
a city into a structure

ing about the details of the structure’s im-
One notation might be:

’

Adtyis{
Name
A Group “street” of streets
A Group “widents” of persons
A Group “natives” of persons
...

I

Apersonis{
Social Security Number
Grouped by city of residence
G,rouped by clty of drth

1

As the design of algorithms progresses, appropriate data
structures for implementing the groupings can be deter-
mined. If reports that list a city’s residents and natives
sorted by Social Security Number are required, some vari-
ety of tree might be used to implement the resident and
native relationships. A convenient notation might be:

A city is {
Name
Tree “residents” of persons
Tree “natives” of persons
...

I

A person is {
Social Security Number
Node “residents” in a tree of persons
Node “natives” in a tree of persons

I

with the concepts of grouping and grouped in implicit in
the notations Tree and Node. By this point in the design,

above, and presents results of its use.

O b m
In an object-oriented program, data is organized into

classes. A class contains its members, called objects, and
operations for manipulating its members, called methods.
Objects can be thought of as the data record for the class
and methods as the functions €hat act on the data records.
Cities and persons are among the classes known to the
above example. Oakland is likely to be an object in the city
class, and city-add-new-resident is likely to be a method for
objects in the city class.

One advantage of object-oriented programming is the
ability of each class to hide its data representation from
other classes. Such se is supported through the
concept of me . In traditional programming lan-
guages, objects nicate by passing data structures to
functions. This allows and even encourages methods of
one object to use the structure of objects they reference. In
a message-based system, objects communicate by passing
messages to other objects, with the recipient object deter-
mining which method is appropriate for performing the
requested action. One envisions the dynamics of a well-
coordinated, properly staffed and trained team; each
member performs assigned tasks, requesting assistance
from other team members when necessary, but not med-
dling in the tasks of others.

Another advantage of object-oriented programming
comes from the independence of representation and action.
An object can ask for an action without worrying about the
particular type of the object that will do the action. Since
it is the recipient that determines how to respond to a
message, the requester can use the same message and the
same transmission mechanism to request a particular ac-
tion (for example, print yourself) from objects of different
classes.

MAf4CH 1988 HEWLETT-PACKARO JOURNAL 4 $

Finally, objects can be trained. Actions appropriate at
one stage in a program's execution might not be the same
actions that were appropriate at an earlier stage. An object
can change the method it will use for a given message to
reflect its current state. The object-method-message
paradigm has been found to be effective not only within
an individual program, but also between concurrent,
cooperating programs.'.'

In particular, the method paradigm is appropriate for
abstract data structures. Often, application programs find
that their jobs consist of creating and traversing data struc-
tures. Most standard texts present data structures and their
methods (e.g., additions, deletions, merges, traversals) in-
dependently of any particular source of data.3*4p5 That is,
most operations on a data structure can be viewed as a
method that manipulates just the structure and sends mes-
sages to the objects grouped in the structure when applica-
tion specific information or actions are required. For exam-
ple, the report that lists all residents of Oakland could be
generated by the tree-traverse method walking the persons
tree for the Oakland object and sending print messages to each
person object it encounters.

When data groupings are viewed in this object-methods-
message framework, program generation can proceed au-
tomatically from data structure design. In the example,
once a tree has been selected to implement a grouping, the
actions appropriate to creating and traversing the tree are
also known and, in an ideal environment, should require
little or no time or programming effort to implement.

Implementation
cribe a toolset for automati-

cally generating data records and methods from a descrip-
tion at the grouping level as described above. An implemen-
tation of the above example is used to explain the use of
the package. The resulting C program source appears in
the Appendix. Fig. 1 diagrams the use of the toolset.

The toolset is built on top of the C programming language
using C-preprocessor macros and UNIX'" utilities. There

The following secti

UNlX IS a trademark of AT&T Bell Laboratories

are two types of macros: macros that generate data structure
entries in a data record and macros that generate functions
to manipulate the data structures. The UNIX utility make(1)
is used to generate a template and rudimentary methods
for each data class. In the examples that follow, C program
syntax is loosely followed. The reader is directed to the
bibliography for references on C and the UNIX operating
~ys tem.~* ' ,~

A dispatch table is the mechanism that allows an object
to map a message to the appropriate method. When a mes-
sage is received, the object receiving the message extracts
a method selector from the message, then uses the selector
as a key into the dispatch table to determine which method
to invoke. A dispatch table can support dynamism in three
places. First, the method returned for a given selector can
vary over the life of the object. Second, the number of
selectors and methods in the table can vary. Third, the
table can support various levels of indirection in the lookup
mechanism. The dispatch table for the toolset of this paper
supports the first level of dynamism by providing a static
number of run-time-modifiable selector-to-method map-
pings for all classes of objects. Methods provided for each
object include self-identification, self-printing, and com-
parison with another object in the same class. The object
class has two methods, object-new and object-free, for allocat-
ing and deallocating objects in the class. The structure used
to implement an object's dispatch table is a record:

struct methods {
int *(*newlo;

(*free)O; int

int (*print)();
int (*compare)O;

in< (*keY)O;

} ;
#define METHODS struct methods *methods

Each object class is represented by a structure. The macro
METHODS provides each object in the class with a direct
link to its associated methods:

struct <object> {
METHODS;
/* object specific slots */

user provides C Program
deslred object

classes.
1 ;

acros MESSAGE and MESSAGE2 are used to send a
to an object:

MESSAGE (sally, print)

print method associated with sally and provides sally
as the argument to print, while

Fig. 1. This figure diagrams the use of the oblect-oriented
programming toolset. First, the user interactively defines the
oblect classes desired The skeletal oblect generator gener-
ates skeletal objects and methods. These consist of class
inltla/iZatiOn, object allocation, skeletalmanipulation methods,
and skeletal structure definitions The user then adds appro-
pnate manipulation and structure macros to the manipulation <object>.h <object>.c
methods and structure macros The resulting source is pre-
sented to the C compiler

MESSAGE2 (sally, compare, joe)

calls sally's compare method with sally and joe as arguments.
Each class is represented by a pair of files:

The .h file contains the structure specification for the

20 HEWLETT-PACKARD JOURNAL MARCH 1986

a

WWW.HPARCHJVE.COM

ob$

well-defined specification. A script make-object creates a .h
file containing a skeletal structure description and a .c file
containing rudimentary methods. For each class, make-object
generates a function that initializes the method table and
a function that calls the initializers for all of the classes.

ik the .c file contains its me&
Pseudoautomatic class generation is p

Data Structure Macros
Data structures consist of two parts. The first part de-

scribes features required in the records making up the struc-
ture. The second part consists of actions appropriate to the
data structure (insert, delete, traverse, union, ...). This toolset
addresses both aspects of data structure implementation.

of a data structure linking one data recard to
s a skeleton. Typically, the skeleton consists
of pointers: the head of the structure and

members of the structure. Skeletons are of two forms, en-
dogenous and exogenous.4 Endogenous skeletons link ob-
jects through fields inside the object's data record, while

structure which points
~ O U S &eletons tend to

ning several data types, since the data type need not know
the types with which it is grouped. In this case, methods
must be associated with the objects. The greater flexibility
of exoskeletal structures comes at a price of more declara-
tions and somewhat larger data storage requirements. In
the example, while methods remain associated with the
objects, endoskeletal structures are used to reduce the
number of declarations.

s used to create data structures reside in files

M a structure>.s.h

where the suffix .s.h stands for structural header. As an
example, the macros for creating an AVL tree' are:

I* macro to generate an AVL tree root */
#define AVLROOT(roottype, treeneadslot)

struct {

1 tree-headslot
struct roottype *root;

I* macro to generate an AVL tree node */
#define AVLNODE(tree-type, tw-thread-slot)

struct tree-type *Ichild; *rchild;
int balance;

struct {

1 tree-thread-slot

#define BALANCED 0
#define BALANCEDJEFT - 1
#define BALANCED-RIGHT 1

an exoskeletal or an endaskeleta1 data structure. The decla-
rations:

struct

1

city-m
M E T D S ;
string name;
AVLROOT(personJype, nativesAead);
AVLROOT(perm-type, residentsbead);

...

would generate an endoskeletal AVL tree structure. Note
that the class declarations are not cluttered with the details
of the record structure needed to implement the tree.

Macros used to create methads reside in files named:

<data struchlre>.m.h

where the suffix .mh stands for manipulation header. Some
of these macros manipulate the record structure required
by the data strwture-for example, the macro to initialize
a node before insertion in an AVL tree:

#define AVLNoDEJNIT(node-obj, tw-thread)
node&jjtree-thread.lchild=NUU;
nodesbj+tree-thcead.rchiId= NUU;
node-obf+tree-thread.balance=BALANCED

When information specific to the objects inthe data struc-
ture is needed, the macros use the methods associated with
the objects. For example, the following macro checks
.whether a node is already present in an endoskeletal AVL
tree:

#define AVLCHECK
(tree-rootobj, treemot,
found-obj, foundobitype, tree-thread,
found-flag)

struct foundobj-type *marker:
I*
* here should be checks to insure that the tree
* root exists and the like
*I
foundflag = false;
marker = tree-rootobj+treeJoot.root;
while (marker EXISTS) {

switch (MESSAGE2 (found-obj,
compare, marker)) {

case EQUAL:
foundflag = true;
marker = NULL; I* please exit *I
break;

case LEFT: In the example, these macros could be used to create either

MARCH 1986 HEWLETT-PACKARD JOURNAL 21

marker = marker --f

break;
case RIGHT

marker = marker 4

tree-threadkhild;

tree-thread.rchild;
break;

FAULT;
default:

In the example, the function city-has-resident? could be
generated as follows:

int city-has-msident (city, person)
struct city-type *city;
struct person_type *person;

int found;
AVLCHECK (city, residents-head,

person, person-type, residents-thread,
found);

return (found);

Consistent programming style relieves some of the clutter
resulting from inclusion of type names in the parameter
list, as does use of meaningful type and slot names. - - -

Conclusio
The toolset provides a variety of data structures, most

having their origin in a particular application ,where the
toolset was used. Among the structures are basic data struc-
tures (singly and doubly linked lists with methods for
stacks, queues, dequeues, and insertion sorted lists, binary
trees with traversals, iterators), height-balanced trees (AVL
trees),g self-adjusting trees (splaytrees)," and k-d trees."
New structures can often be created by modifying existing
ones.

Three programs represent the types of software developed
using the toolset. TEST-BED is a test bed for the investigation
of digital network traversal algorithm. VFORMAT is a dis-
crete-event simulation time queue. EXPANDER is a hierar-
chical electrical circuit expansion program. Experience
suggests that the tools are most useful in programs where

_ _ _ _ _ - - ~ - - - - the software author can naturally cast the application into
the object paradigm and where data organization and tra-
versal account for most of the programming task.

TEST-BED was written as an environment for exploring
structural test generation algoritbs for combinational cir-
cuits." Initial object and data structure design required
two engineering days. Input data formats were borrowed
from the interactive logic simulator, ILS,I3 and a naive
input reader. Rank ordering and signal propagation al-
gorithms were quickly implemented. When it was realized
that the initial data structures would not support all the
traversals desired by some of the test generation algorithms,
new structures were easy to add to the skeleton. Use of
this toolset allowed implementation to proceed quickly

22 HEWLETT-PACKARD JOURNAL MARCH 196$

www .H
-

and directly from data organization with the benefit that
more investigation time was available to concentrate on
algorithm and data structure design and subsequent al-
gorithm performance analysis.

VFORhlAT was written as a specific niche design tool
for a specific Hewlett-Packard logic design team. With such
a narrow scope, the design goals of VFORMAT
functionality and speed of implementation rath
formance and enhancability. However, use of the tool&t
allowed data organization design to proceed assuming that
efficient data structures could be developed as readily as
inefficient structures that merely worked. The result was
a quickly developed tool that performed considerably bet-
ter than the minimum expectations.

EXPANDER manages an electrical circuit description
used to communicate information between several prw
grams. Most of EXPANDER'S actions involve a traversal of
a hierarchy of blocks and instances that describe circuit
connectivity and parameters. The object-methods-message
implementation allows traversal Fontrol to be implemented
and debugged entirely independently of traversal actions.
Each traversal of the hierarchy is regarded as an instance
in the class of traversals whose actions are guided by a
control object. Before a traversal starts, a traversal object
is instantiated. This object is provided with a dispatch
table of methods it will use to perform its specific.al-
gorithm. Then, at each potentially interesting location in
the traversal, the control object sends a message to the
traversal object to perform the action appropriate for this
location in the hierarchy (e.g., process-a-child, rehrm-from-pro-
cessing-subtree) or to obtain the next location for processing
(e.g., select-a-child, get-next-sibling).
EXPANDER demonstrates the toolset's utility on large,

complicated programs. There are twenty object classes
known to EXPANDER, some of these group or am grouped
in as many as ten other object classes. Structure-generating
macros make the organization and implementation more
readable. An objects-methods-messages implementation
allowed data, action, and control to be considered, im-
plemented, and debugged separately. This separation eases
the tasks of adding and modifying functionality and in-
creases confidence in the program.

Directions for F
The toolset presented in this paper was started befor

the general availability of commercial preprocessors and
languages that directly su
E E s w b g & R .
implementation of data-structure-intensive programs. While
it achieved its goals, initial writing and debugging of long
macros requires a bit more effort than general C program-
ming. Special makefile entries and the like make the job
bit less demanding, but the existence of commercially avail
able languages whose definitions support objects-methods4
messages (such as Common Lisp) suggest that program df

r:

~

9

!

velopment should proceed in those languages.
This package has proved its usefulness in the rapid'pro%

totyping of data-structure-intensive programs. Howevei
the program designer still needs to determine which struc
tures are appropriate for the application at hand from eithe;?
training or experience. An expert system cogd&&e-

PARCH IVE .c
-

:OM

ons for the data structures could be gen-
erated automatically. ThiB could then be coupled .with a

ject classes, their groupings and the operations.

Acknowledgments
I would like to acknowledge the team that worked on

the Interactive Logic Simulator project where this work
bem-Ravi A@, Antony Fan, G.A. Gordon, Jim Hsu,
Kathy Hsu, Greg Jordan, Mark Millard, Viggy Mokkarala,
and especially Bob Floyd-for their contributions.

i%wen-s
1. T. Baker, “Tutorial in Objects and Modules in HP Pascal,”

Proceedings of the HP Software Productivity Conference, 1984.
2. G. Burroughs, “A Message-Based Methodology for Integrating

CAE Tools,” Proceedings of the HP Software Productivity Confer-
em% 1984.

6.

7. UNIX Programmer’s. Manual, Vol. 2ab, Bell Laboratories,

8. UNIX Programmer’s Manual, VoI. 2c, University of California
at Berkeley, 1979.
9. G. Adelson-Velskii and Y. Landis, “An Algorithm for the Or-

ganization of Information,” DokJady Akademiya Nauk SSSR, Vol.
14% PP. 263-266 (Russian).
10. R. Tarjan, “Amortized Computational Complexity,” S I N
Journal of Algebraic Fr Discrete Methode, Vol. 6; no. 2, 1985, pp.

11. J. Berntley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Communications of the ACM, Vol. 18, no.
9, 1975, pp. 509-517.
12. M. Breuer and A. Friedman, Diagnosis and AeIiabIe Design
of Digital Systems, Computer Science Press, 1976.
13. G. Jordan, et al, “ILS-Interactive Logic Simulator,” Proceed-

I graphical interface for describing and documenting the ob- Prentice-Hall, 1978.

1979.

306-318.

MARCH 1986 HEWCETT-PACKARD JOUWAL

Tools For Automating Software Test
Package Execution
Developed by one HP Division and now used by others,
these two tools reduce the time it takes to develop test
packages and make it easy to reuse test packages in
regression testing.

by Craig D. Fuget and Barbara J. Scott

WO SOFTWARE TESTING TOOLS in use at HP’s
Data Systems Division are the Virtual Terminal and T the Scaffold Test Package Automation Tool and Test

Package Standard.
The Virtual Terminal tool runs on the HP 125 Computer

and is used to automate interactive testing of HP 1000
Computers. It simulates keyboard input to the host system
and saves the input and output for comparison with master
result files. It is also useful for testing non-forms-mode
programs on HP 3000 Computers (the HP 125 hardware
doesn’t support block mode).

The Scaffold Test Package Automation Tool and Test
Package Standard are used to create and run test packages.
The Scaffold provides tools for test package creation and
setup, and for running the tests and verifying the results.
The Test Package Standard consists of documentation stan-
dards for test plans, test packages, and individual tests.
The Scaffold was originally developed using the HP-UX
operating system and has been ported to the HP 1000.

Virtual Terminal
The Virtual Terminal tool (VT) was created to allow au-

tomated regression testing of the interactive features of HP
1000 Computers. It has been used in cases where normal

test automation is impossible (e.g., screen-oriented interac-
tive programs). We have found that this improves regres-
sion test accuracy because each replay of the test causes
exactly the same data to be entered. We have also found
this to be a great productivity aid because the test engineer
only needs to type the test data once.

Since all of the system’s output is saved each time the
program is run, it is simple to track changes in the system
by using file comparison tools, thus automating result ver-
ification. This improves test accuracy.

Test automation is broken into two parts: the initial run
where the engineer instructs the tool on how to test the
system, and succeeding runs where the tool repeats what
it was told. The two tasks are handled by the programs
XMS and XVT, respectively.

Before the initial run, the interactive tests are carefully
planned to ensure that all of the functions of the system
under test (SUT) are covered. Once this is done, the SUT
is prepared with the latest revision of the software to be
tested.

To set up for the run, the engineer attaches the HP 125
to the test system, and then runs XMS. Because XMS is
transparent to both the user and the SUT, the tests can be

P

USer

3UI S NI

Fig. 1. XMS data flow. Fig. 2. XVT data flow

24 HEWLETT-PACKARD JOURNAL MARCH 1986

r

typed as if they were entered from a normal terminal. How-
ever, all of the activities that occur are recorded (see Fig. 1).

As the test progresses, the engineer manually verifies the
responses. In the event that there are no defects, or that
any defects that exist are minor enough to allow completion
of the tests, the entire set is executed, and the engineer
presses the softkey LOCAL OP SYS on the HP 125 to signal
completion. In the event thatthe tests cannot be completed,
the software is sent back for correction and testing is begun
again with X M S .

The XVT portion of the virtual terminal is generally used
when a new software revision is introduced to the test
phase, when a new software release (e.g., a product change
order) occurs, or when specific test should be rerun sev-
eral times until it is passed. When such a need for regression
testing arises, the engineer simply reconnects the HP 125
to the system under test, finds the files created by the XMS
program, and invokes XVT.

XVT enters the keystrokes typed by the user in the initial
run to the system under test. All of the system's responses
(including character echoing) are sent both to the screen
and to a second log file (see Fig. 2).

XVT and XMS communicate with each other through a
command file. All of the user's keystrokes, along with ad-
ditional information (e.g., some timing data), are stored in
this file.

All of the test system's responses are stored in log files
on each run, thus creating a history of the system's perfor-
mance (see Fig. 3).

As stated above, the initial run must be verified manu-
ally. However, this can be done after the test has concluded
(by listing the log file). Subsequent runs can be verified
semiautomaticalIy by comparing the initial log with the
current one. Several programs are commercially available
for this. We have been using DIFF@ by Mark of the Unicorn.

In principle, once a product is ready for release, the tests
should be run one final time to obtain a baseline for com-
parison with any future release.

Besides its use at Data Systems Division for testing HP
000 operating systems, a special version of VT is being
ed by HP's Information Networks Division. It uses both

this tool.

Scaffold Automation Tool and Test Package Standard

dard were developed jointly by soft
ing and the HP-UX" validation p
supported by the Software Engineering Laboratory of HP's
Information Technology Group. The HP 1000 version is
supported by the Data Systems Division. The motivation
behind their development was to provide tools that reduce
the time to develop test packages and the time to reuse
them in regression testing.

The Test Package Standard defines the physical organi-
zation of the test package. This organization is required by
the Scaffold and takes advantage of the hierarchical file
system. It allows many test suites to be stored in one direc-
tory structure and is easily adaptable to varying logical
organizations. The Standard also provides skeletons and
documentation for writing test plans, test programs, and
test package documentation.

The Scaffold provides tools for automating test creation,
and for setup, execution, verification, and archival of mul-
tiple sets of test results. Verification is done by comparison
of the test results with master result files.

The Scaffold requires a physical directory structure as
shown in Fig. 4. The directories are divided into two
groups: 1) Scaffold tools and administration and 2) the
actual test directories.

The contents of the tools and administration directories
are:

ADMlN
DOC

m

with lawercase letters.

structure as shown in Fig. 5. These three levels are
to as group-level, section-leve
tories.

The Scaffold Automation Tool and the Test Package Stan-

3 Scaffold tools
Scaffold documentarion
Record of which tests passed and failed
Output from tests that failed
Output from tests that passed.

irectories are distinguished by names beginning

Each test group directory contains a three-level directory

rn
I I

I File Comparison I

'w

WWW.HPARCHIVE.COM
. ., v . + .

i . *

DOC

B

I

age documentation, and test catalog for all the tests in this
test section directory. Each function level directory con-
tains all the test programs and scripts for a particular func-
tion being tested. The structure of the function level direc-
tory is shown in Fig. 6.

'he only required file in each function level directory
is prog. Optional files are Build, std.out, std.err, std.fil, and std.in.
The purpose of each of these files is as follows:
m p r o g Executable to run all tests

Build Executable to set up test environment
w Std.0ut Master test output

w std.fil

to select any subset of test directories for execution. Thus,
with an appropriate breakdown of the test directories, the
user can separately run any tests that need special re-
sources. This also allows the user to combine all test pack-
ages under a single scaffold structure and selectively run
any combination of the test packages.

Test Package Creation
The first step in creating a test package is to write the

test plan. This file is named TESTPLAN. The test plan should
define all the tests and tools needed, as well as any
hardware and software requirements. The test plan skele-
ton shown in Fig. 7 defines the contents of the test plan
The Standard also provides a skeleton with UNIX nroff docu

std.err Master error output
Master output to additional file
Test input for prog.

c
Fig. 5. Group-level and section-
level directory structure.

indude is an optional directory at both the group level and
the function level; it may contain files common to m y
tests at that level.

The gEoupkectionlfunction directory scheme was origi-
nally chosen to fit the organization of the HP-UX Reference

al. That Is, the group level corresponds to different
HP-UX versions, the section level to sections of the Refer-
ence Manual, and the function level to individual com-
mands and system or libraq calls.

However, this organization easily adapts to various log-
ical groupings. For example, a group-level directory might
contain all the compiler or data base test packages, broken
down into appropriate section and function-level direc-
tories. Similarly, a section directory containing all tests for
a file management package might have separate function
directories for interactive tests, tests that require superuser
caDabilities, tests that rewire a tape drive, error-producing
tests, and other general tests.

The Scaffold tools have an option that allows the user

ment formatting commands.
The next step is to create the tests and tools defined in

the test plan. The Standard defines the header comment
section for each test program [see Fig. 8). The create script
automates this process. This script creates the file an
serts the header comments, leaving the user i
to complete the file.

To insert the header comments, the proper comment
character is determined from the file name and inserted
around the header. create can also be used to create source
files using the UNIX version control utilities SCCS or RCS.

In addition to the test programs, Build, std.out, std.err, std.fil,
and stdh should be created if necessary.

Once all the tests and tools in the package have been
completed, the test package documentation is written. This
file is named README. The purpose of this file is to docu-
ment any special execution requirements or procedures.
The test package documentation skeleton shown in Fig. 9
defines the contents of this document. As with the test

I I I ? I - 1
W

.'t:
R) HEWLElT-PAWRO JOURNAL MARCH 1986

1

r 1. INTRODUCTKlN containing version controlled sources in SCCS formar, op-
1.1 Features tionally specifying the revision level. The default is to get
1.2 Reference Documents the latest revision. gettest creates a copy of the SCCS scaffold

directory structure, copying directly any non-SCCS files
d copying the specified revision of any SCCS files.
uildtest does the actual setup work. Its basic operation is
execute Build in each function-level directory. If BuiM

doesn’t exist in a directory, twitcitest compiles all C source
files in the directory, storing the executable code in prog.

Test execution, verification, and results archival are au-

function directories, redirecting the standard output and
error output to res.out and res.err respectively, and taking
input from std.in if it exists.

After prog completes, res.out and res.err are compared to
the files std.out and std.err. In addition, if prog created res.fil,
it is compared to std.fil. The test is considered to pass if
there are no differences, and to fail otherwise. The tests
will also pass if std.out or sM.err doesn’t exist and the corres-
ponding res.out or res.err is empty. Note that although neither
std.out, sW.err, nor std.fil is required, this is not recommended
since it may be impossible to tell if the test passed, such
as in the case of a program aborting unexpectedly.

is assigned, which is used
to identify the results from this test run, and allows the
results of multiple runs of the same tests to be archived.
runtest creates a file named test-id in the directory RESULTS.
This file contains the names of each function-level test
executed and whether each passed or failed.

For tests that fail, all the output is saved in BAD, identified
by the test ID and the function-level path name,

No output is saved for tests that pass, unless prog created
a directory called savedir in the current directory. savecur is
used for output that requires manual verification. If savdir
exists, its contents will be copied to GOOD, again identified

2. TESTING REQUIREMENTS

2.1 Hardware Requirements
2.2 Software Requirements

3. THETESTS

3.1 (Test Area 1)
3.2 (Test Area 2)

tomated via runtest. runtest executes each prog file in the test

3.n (Test Area n)

4.

4.1 Methods of Automation
4.2 Extent of Automation

AUTOMATION PLANS FOR THE TEST PACKAGE

5. TOOLS

Fig. 7. Test plan skeleton.

plan, a skeleton with UNIX. docum
mands is also provided.

As the tests are being developed, they h ~ l d be Or-
ganized and put into a scaffold structure. The tests should
be grouped at the section level according to the sections
defined in Chapter 3 Of the test Plan. The TESTPLAN and

At the st& of runtest, a test

Test Package Execution
The execution of a test package is broken into four parts:

setup, execution, verification, and results archival. Each
-of these steps is automated by the Scaffold tools.

There are two scripts for test setup: 9M-t and buildtest.
Wmt is used to create a Source scaffold from a scaffold

The name of this tile is <filename>

(c) Copyright Hewlett-Packard Company 1985.
All rights reserved. No part of this program
may be photocopied, reproduced or translated to
another program language without the prior
written consent of Hewlett-Packard Company.

Created on <date> by <author’s name.)

Changes:

This fik:

<include date, name, description and reason.>

<One line description of what file tests or does.)

Calls tested:
<Names of the system cahs or commands which are)
<tested by this program, including the manual ref>

Description of this test:

Input parameters:

<Specify here using as many lines as necessary.>

Expected results:

Sidepffects of this test:

Supporting files and relationship:

<Test-source-code goes here.)

Fig. 8. Test nroaram header skeleton.

I. INTRODUCTION

1.1 Modlflcatlon Log
1.2 Reference Documents
1.3 Management Information

2. ORGANIZATION OF TEST PACKAGE

3. DESCRIPTIONS OF TESTS

3.1 General Instructions

3.1.1 HMT & S/W Requirements
3.1.2 Set Up Instructions
3.1.3 Loading
3.1.4 Running
3.1 .S Verifying the Resutts
3.1.6 What if it doesn’t work?
3.1.7 Side Eftects

3.2 <Test area n>

3.1.1 H/W & SIW Requirements
3.1.2 Set Up Instructions
3.1.3 Loading
3.1.4 Running
3.1.5 Verlfying the Results
3.1.6 What if it doesn’t work?
3.1.7 Side Etfects

.
9. Test package documentation Skeleton.

I. -.
WWW.HPARCHIVE.COM - , , , ‘ * - - -2 . h > A -

_,. ‘ I ,

t
by the test ID and the functiw-level path name,

There are two ways to specify a subset of tests to buildtest
and runtesteither by using a suffix or by specifying the
individual directory names.

A suffix has the form <.suffix> and is used to denote a
classification of tests that spans many different group, sec-
tion, or function directories, such as interactive tests or tests
requiring superuser capabilities. The suffix must be ap-
pended to the names of the files used by buildtest and runtest
(Build, prog, std.{out,en,fil,in}, *.c).

If a suffix is given, buildtest and runtest will.execute only
on directories with files containing that suffix, i.e., Build<
.suffix> or prog<.suffix>. If no suffix is given, only files con-

taining no suffix will be used in execution.
In addition, any number of individual directories can be

selected. If a group-level or section-level directory is
specified, buildtest and runtest will execute on all test sub-
directories in each specified directory.

A suffix and directories can both be used. In this case,
buildtest and runtest will execute on the designated directories
where files with the specified suffix are found.

Acknowledgment

Terminal tool.
Dave Holt originally designed and developed the Virtual

I Using Quality Metrics
Application Software

for Critical

Software metrics have been used to evaluate the quality of
a computer-based medical device produced by a large-
scale software development project.

by William T. Ward

OFTWARE QUALITY is not a precisely defined pa-
rameter. There are several attributes that can be used S to measure the quality of software. A list of these

attributes might include reliability, maintainability, sim-
plicity of use, testability, understandability of the program
code, upgradability, portability, and others.

The nature of the intended application frequently deter-
mines how the quality of software will be judged. For exam-
ple, simplicity of use would probably be a useful software
quality metric for a program designed as a word processor

SQS PROBLEM DESCRIPTION FORM

PRODUCT: QA NUMBER: -
DATE FOUND: MUS1 WANT

REPORTED BY:

PROBLEM D E S c r n

DATE RESOLVED: -
DExwPTloN OF FIX:

Fig. 1. Standard data entry form completed by the test
engineer.

28 HNVLETT-PACKARO JOURNAL MARCH 1986

C
for inexperienced typists. Similarly, maintainability of the
code might be a useful metric for a large program that is
expected to be in use for several years and thus may require
modification by programmers not involved in the original
design effort.

Reliability of operation is a key aspect of software quality
in most applications. The software product discussed in
this article is required to provide continuous, accurate
monitoring of critically ill patients. The software must be
reliable, since unplanned system shutdowns or crashes
could jeopardize patient safety.

This article discusses the generation of several software
quality metrics from data collected during the system inte-
gration stage of the patient monitor software development
cycle. The evaluation of these metrics has provided the
quantified estimates of software quality required for prod-
uct release into a critical application environment.

Development Project Overview
The project under study involved the development of

the software and firmware for a computer-based ECG
monitoring system to be used for continuous cardiac pa-
tient surveillance in a hospital coronary care unit.

Approximately four years transpired from the early proj-
ect design stage to the completion of system testing and
resultant release of the product for customer shipment. A
total of ten to twelve engineers were involved at some point
with the project, and the average staff was seven to eight
at any one time. Approximately 85,000 lines of Pascal

WWW.HPARCHIVE.COM

. .

SYSTEM #4

SYSTEM #5

source code, excluding comment or blank lines, and 50,000
lines of microprocessor assembler code form the software

, and firmware basis of the produci

330 12

330 2

are Testing Overview
e development sequence for this project closely fol-

lowed the model as outlined by Fagan.' There were a design
stage, a coding stage, and a final testing stage. The coding
stage included unit and module testing as well as actual
implementation. The testing stage of the project included
both integration and system testing.

The software testing effort and resultant metrics dis-
cussed in this article refer specifically to this final testing
phase of the product development cycle. Approximately
eight months were required for this effort, using the full-
time services of one test engineer and the part-time services
of other varied personnel. The total software test effort
required approximately 16 person-months.

Black-box functional testing was used extensively in
multiple test environments during the software testing
stage of this project. The functional testing that was per-
formed can be categorized as either specifications testing,
random values testing, or special values testing.
Specifications testing. A free-form prose document, the
product External Specification, was created during the de-
sign phase of the project. This document was maintained
during product development and then passed to the test

oup at the beginning of the system testing stage.
The External Specification contains the operating specifi-

cations for the product software. All functions the product
software is designed to perform are listed in the ES. This
document formed the basis of the majority of the functional
testing performed on the product.

In practice, a checklist of product functionality was gen-
erated from the ES and this checklist was used as a test
script during system testing.
Random values testing. The intent of this testing technique
was to investigate product behavior when the software was
exposed to an unrealistic series of input values. Because
of the critical nature of the intended product application,
the software should respond in a predictable, well-defined
fashion, even when exposed to an undisciplined user assault.

.

SQS WEEKLY STATUS REPORT

PRODUCT:

DATE:

SUMMARY OF WEEKLY STATUS CHANGES:

3 items haw been reported as NEW.
These are: 255 257 258

4 items have been RESOLVED.
These are: 127 133 249 250

TOTALS FOR ITEMS ON PROBLEM LIST:

3 Items are in statua NEW.
0 items ere in status LAB.
4 items are in status QTST.
12 items are in status NREP.
220 items are In status RES.

Fig. 2. One of sever&/ reports generated from the problem
data base.

An example of a random values test is the input of a
series of keystrokes to request a nonconnectd sequence
of system services. Altered, varying-length keystroke se-
quences can form the basis for random values testing. ,
Special values testing. The application of input data that
was considered legal but not probable, or that stressed the
system, was termed special values testing. The intent of
this testing technique was to evaluate the ability of the
product code to respond to maximum-configuration condi-
tions or to poorly defined, ambiguous conditions.

An example of special values testing is the evaluation
of the product in both the minimum and maximum config-
urations. These minimum and maximum values can refer
to either supported hardware configurations or to various
software functions.
Multiple test environments. A major software test method-
ology used in this project was to create and maintain mul-
tiple environments for product testing. Four separate, con-
current in-house test environments and a fully imple-
mented, hospital-based field trial site were used during the
software testing stage of this project.

Each of the test environments was used to evaluate the
product code under different input conditions. For exam-
ple, test environment 1 was used for the majority of the
specifications testing effort, while test environments 4 and
5 were used for special values testing. Test environment 3
was primarily the random values test station, while the
coronary care unit for a hospital served as test environment
2, or the field trial system.

The intent of using multiple test environments is to ex-
pose the product to as wide a variety of input conditions
as possible. Of primary importance was the feedback pro-
vided by the field trial. Failure of a product to perform
well in an actual usex environment indicates that the design
and test efforts preceding the field trial have not been
ndamletn.

Collection and Presentation of Test Data
An Image/1000 data base was created to store information

about problems discovered in the product during the soft-
ware testing effort. The Image utility program KEDIT was
used to enter information into the data base. Several Pascal
programs were created to retrieve the data from the data base
and to present that data in several useful report formats.

Fig. 1 illustrates a standard data entry form. When a

' S E 3 f J L T s * M u l m % E r n ~

OF # OF I TESTHOURS I ERRORSFOUND

SYST€M#l I 3840 I 261 I

Fig. 3. Results of the five separate, concurrent test environ-

MARCH 1986 HMILETT-PACICARD JOURNAL 29

WWW.HPARCHIVE.COM .-
*I

problem was found during product testing, the test engineer
completed the problem description form. This information
was then entered into the data base by means of the KEDlT
utility program.

Weekly meetings between the test group and the develop-
ment group provided a forum for status updates concerning
product testing. Fig. 2 illustrates one of the several reports
generated from the Image data base by the test group. This
particular report indicates which problem items have
changed status since the last weekly status meeting. The
information in the Image/1000 data base was used to gen-
erate each of the software quality metrics.

Software Quality Metrics
Fig. 3 illustrates the results of the five separate, concur- -

rent test environm
based on this data
1. Specifications testing was c

...

ing methodology, yielding an average of 14.73 test hours
to find a problem with the code.

2. The field trial results were somewhat surprising, with
y a single unique problem discovered after 2350

ours of clinical product use. The implication here i s
in-house test environments together creeted a
of the iaput conditions encountered at the field

ugh the random values testing was not very pro-
ductive in terms of errors found per test hour, the prob-
lems discovered in this environment tended to be se-
vere, frequently causing system crashes or hangs.

Fig. 4 lists the additional software quality metrics gener-
ated for this product at the time of customer release. These
values refer specifically to test environment 1, the specifi-
cations testing environment. These metrics have been de-
fined as follows:
Test hours logged. 3840 test hours were logged during the
software testing effort. This value includes only those times
during which active testing was in progress and input data
was present for the system.
Count of reported errors. 261 specific problems were found
in the product during the software testing effort. Of these
reported problems, a full 90% (234) required code changes
to fix. The remaining 27 items were classified as not repro-
ducible (13) or as documentation issues needing clarifica-
tioh (12) or as requests for enhancements in a future release

SUMMARY OF SOFTWARE QUALITY METRICS

1) 3840 TEST HOURS LOGGED

2) 261 REPORTED ERRORS

3) 135,000 NONCOMMENT SOURCE LINES OF CODE

4) 1.93 DETECTED ERRORS PER 1000 LINES OF CODE

5) 14.73 TEST HOURS PER DETECTED ERROR

6) 28.4 TEST HOURS PER 1000 LINES OF CODE

7) 4.3 WEEKS REPAIR TIME PER ERROR

8) PREDICTED POSTRELEASE FIELD FAILURES =
1 ERROR PER 6.67 MONTHS

Fig. 4. Quahty metrics generated for the patient monitor soft-
ware product at the time of customer release.

of the product (2).
Number of lines of some code. The product software/
firmware line count was 135,000. The software consisted
of 85,000 noncomment, nonblank lines of Pascal source
code. The firmware consisted of 50,000 lines of noncom-
ment microprocessor assembler source code.
Detected errors per 1000 lines of code. With 261 reported
errors and 135,000 lines of source code, a ratio of 1.93
errors per 1000 lines of code can be derived. This value
compares favorably with typical values reported across the
industry for similar software/firmware application^.'*^*^
Test hours per error and test hours per 1000 lines of code.
14.73 test hours were required, on the average, to find each
of the 261 reported problems. 28.4 test hours, on the aver-
age, were spent on each 1000 lines of source code. These
values are difficult to interpret, but are useful in planning
the amount of time required for software testing of similar
products.
Repair time per error. During the software testing phase,
each error discovered required approximately 4.3 weeks
to repair and retest. The mechanism for reporting newly
discovered problems was a weekly status meeting between
the test group and the development group, and not all
reported problems were solved immediately. These factors
tended to inflate this value of 4.3 weeks/error for repair
and retest time.

This MTTR (mean time to repair) metric can be benefi-
cially applied to the postrelease life of the product. For
example, an estimation of the support group requirements
after product release should be influenced by this metric.
A high MTTR value might be indicative of a complex prod-
uct, requiring nontrivial and time-consuming repair efforts.
Conversely, a low MTTR could suggest that all the neces-
sary support tools for the product are in place and that
future repair efforts will be uncomplicated.
Predicted postrelease field failures. The value of this met-
ric was calculated from the test data using a modified ver-
sion of a model developed by S i m k i n ~ . ~ The key inputs to
the model are the number and rat
the testing phase of the project a

Combined ''
Errors Errors Only ---

I

Weekly Error Count

25 T

Number of Twt Weeks

Fig. 5. Rate of error detection during the software testin
phase. . "

ness of the test environment relative to the field environ-
ment. The predicted value for this metric of 1 error per
6.67 months of field exposure refers specifically to prob-
lems of a serious nature that would impair the proper func-
tioning of the system.
Rate of error detection. Fig. 5 illustrates the rate of error
detection experienced during the software testing phase.
Assuming a fairly constant testing effort, the graph of Fig.
5 indicates that further testing of the software in an un-
changed environment would probably yield little produc-
tive return.

Conclusions
Various techniques and metrics can be employed to as-

sure and quantify the high level of quality required of crit-
ical application software before release to customer use.
Several conclusions concerning these techniques and met-
rics can be drawn, based on the product discussed in this
article.

Specifications testing can be very productive in terms of
problems discovered per test hour. The key requirement
for the successful application of specifications testing is
an accurate statement of product functionality-a docu-
ment similar to the External Specification discussed in this
paper. This document can be the basis for the specifications
test script.

Multiple test environments can be used to good advan-
tage during software testing activities. The greater the diver-
sity of the input data applied to a product under test, the
higher the probability that problem areas of the code will
be discovered. Another potential advantage of multiple test
environments is that the use of different hardware sets to
coincide with each test environment can highlight possible
hardwarelsoftware interaction problems not readily appar-
ept with a single hardware test set.

It is particularly important that the product be exposed
to a environment that closely approximates the intended
use environment before release of the product. A properly
implemented field trial is one method for achieving this
type of product exposure. Substantial testing must be per-
formed on the product before its introduction to a live field
trial environment. This is necessary to ensure that unex-
pected, severe problems in the code at the field trial do

pardize the critical-application use of the product.
e release of software destined for a critical application

be contingent on product metrics that satisfy a pre-
defined range of values. For example, one of the

& a s f o r product B l e w might.be.the requirement that
a specific number of continuous test hours elapse without
the discovery of a problem in the code. One of the require- -: 3 ments €or the product discussed in this paper was a week-
long interval of test time without the appearance of any
serious problems.

A logical expression that relates the various release re-
quirements for a software product based on metrics might
be as follows:

’ .I

Product Release State : = S1 AND S2 AND S3 AND S4 AND S5

where S1 through ~5 represent test state conditions defined ’

Sl = Test hours >25 per 1000 lines of code
$2 = Errors per 1000 lines of code in range of 0.5 to 10
S3 = Rate of error detection decreasing for two weeks
S4 = No serious errors found in last week of testing -
s5 = Field trial hours >% tot

References

est hou

1. M.E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” JBM Systems Journal, Vol. 15, no. 3, 1976,

2. V.R. Basili and B.T. Perricone, “Software Errors and Complex:
ity: An Empirical Investigation,” Communications of the ACM,
Vol. 27, no. 1, January 1984.
3. P.N. Misra, “Software Reliability Analysis,” IBM Systems Jour-
nal, Vol. 22, no. 3, 1983, pp. 262-270.
4. M.L. Shooman, Software Engineering DesigdReIiabiIity Man-
agement, McGraw-Hill, 1983, pp. 226, 326, 350-384, and 432.
5. D.J. Simkins, “Software Performance Modeling and Manage-
ment,” IEEE Transactions on ReliabiIity, Vol. R-32, no. 3, August

pp. 182-211.

1983, pp. 293-297.

CORRECTION

In the February 1986 ! w e . the shaded area In Fig 3 cn page 12 was shown
incorrectly The correct figure IS shown belov

Upper Sideband
Harmonic = N+l

- - - - - - -__
Lowar Sideband
Harmonic = N+l

”-: sideband
Hafmonk=N

--
Lower Sideband
qarmonic = N

fLo+Af
Local Oscillator Frequency

MARCH 1988 HEWLElT-PACKARD JOURNAL 3

WWW.HPARCHIVE.COM
- - ,

P-PODS enforces formal software design, allows designs
to be maintained on-line, and produces output suitable for
design walkthroughs.

by Robert W. Dea and Vincent J. D’Angelo

-PODS (Pictorial Procedure Oriented Design Sys-
tem] is an interactive graphical software design and P documentation tool. Available for internal Hewlett-

Packard users only, its target users are software R&D en-
gineers. As a design tool, P-PODS is used during the design
phase of a project to replace the pseudocoding or flowchart-
ing of detailed logic structure that would normally be done.
The resulting diagrams supplement information available
in the finished code. As a documentation tool, P-PODS is
used to document existing code.

-PODS, m engineer interactively creates a design
These diagrams are kept on-line and are easily
Hard-copy output of these diagrams can be pro-

uced for formal design reviews or for internal mainte-
ance purposes. Once the designs for the project have been
nalized, code templates can be generated to assist the
oftware engineer with the start of the coding phase.
The design phase is a critical point for eliminating de-

s. Finding and correcting defects in the design phase
sults in a much lower cost compared to finding and cor-
cting them during the testing phase. Finding elements of

omplex design at an early point leads to better program

-PODS is a prototype product to address some of these
es. It was created partly to obtain feedback for future

ign tools. This feedback is being incorporated into fu-
ure R&D efforts in the Software Engineering Laboratory of

’s Corporate Engineering Department.

Fig. 2. Example of a P-PODS design eqwvdent to Fig.

Code scanners to bring existing code into the design
system
Limited design analysis.
Calculation of complexity metrics.
It was decided that a phased release approach was appro-

structure and reduced long-term maintenance costs.

was the minimum core subset of Eunctionality. The second
phase enhanced this version, adding partial code gmera-
tion capability. The third phase was a port of the phase
two release to the HP-UX operating system, with automatic
calculation of design complexity. The proposed fourth
through sixth phases were to add the remaining features
(the hierarchical editor, etc.) to the HP-UX version.

hased Release
Originally, P-PODS was intended to be a design tool that

had the following features:
Hierarchical graphical editor (to create charts similar t r
the one shown in Fig. 4).

& Logic structure graphical editor
Ability to handle data variables
Partial code generation

’ .a* -”‘#

student records remain to process

retrieve student record

computer science major? <
case CS option

add 1 to non-CS count

systems application
Fig. 1. A Nassi-Shn
son examnle.

JOURNAL MARCH 1986

P-PODS Development Terminals e

Fig. 3. The P-PODSl3OOO environ-
ment

W r '
P-PODS Diagrams and Featur@t%$-=a

P-PODS provides an interactive tool for structured flow-
charting. The design diagrams created are combinations of
individual design constructs. These design constructs are
similar to Nassi-Shneiderman structure flowcharting con-
structs.' An example of a Nassi-Shneiderman diagram is
shown in Fig. 1.

Although P-PODS design constructs are based on the
Nassi-Shneiderman representations, alterations were made
to avoid the subdividing of the diagram into narrow vertical
columns for decision representations. These alterations
allow the terminal's screen space to be used more effec-
tively. Fig. 2 shows the P-PODS equivalent of the example
shown in Fig. 1.

P-PODS provides the following structured design con-
structs: SIMPLE, WHILE, FOR, PROCEDURE CALL, IF, ELSE, CASE,
CASE ELEMENT, DO UNTIL.

P-PODS prevents the user from producing incorrect de-
sign structures. It rejects any attempt to combine sequences
of incompatible structures. For example, the user would
not be allowed to add a second ELSE construct to an IF
construct.

s

.

*.

. ,

Multiuser Environment
P-PODS is designed to be used by a project team. Each

. ,

project member's designs are stored in a single shared P-
PODS data base containing all of the designs for the whole
project. Each person on the team can interrogate the data
base at any time to view its contents. Fig. 3 shows the
P-PODS environment on the HP 3000 Computer.

The current underlying design data base is an Image data
base, and all Image-related support tools are available for
maintaining it.

In P-PODS, designs within a project are partitioned into
subgroups called modules. Modules are logical groupings
of P-PODS design diagrams. For example, a project team
might decide to define a module to contain graphics related
routines, while another module might contain user inter-
face related routines, and so on. A module in P-PODS is a
lockable entity, preventing two project members from
changing the same design at the same time.

P-PODS can translate its designs into either Pascal or C
code templates. The user can then edit the generated file
with any favorite editor to fill in the missing pieces. This
feature relieves the user of the need to match BEGINIENDs,
etc. P-PODS also translates the design construct descrip-
tions into comments, and places these comments in the
appropriate places in the generated code template.

THEN
:q E --- - _ - _ - - -

/&:
- _ _ -- _ _

F
0

H

I

WHlLENotDme

J

C

D

Flg. 5. Example of P-PODS constructs to represent hierarchi-
cal structure, equivalent to Fig. 4.

MARCH 1986 HEWLETT-PACKARD JOURNAL 33

WWW.HPARCHIVE.COM
.A

1 .
' I

~~

representations in designing software. For example, the
software can first be designed in a hierarchical manner.
From there, detailed design can be performed for any of
the components in the hierarchical design. As the detailed
design is progressing, data structures can be defined using
the data structure representation. This type of environment
is shown in Fig. 8. A transfer from one design representa-
tion to another exits back along the same path from which
it was invoked. In this way, three different kinds of design
representations using P-PODS-type constructs can be used
in the design of software. .

efer an enhanced editor to a lower-leve

odules that perform the higher-level functions are closer
the left margin. Lower-level modules are indented, and

equivalent representation using P-PODS-type con-
cts shown in Fig. 5.

Fig. 6. Example of a Warnier-Orr diagram.

-34 HEWLETT-PACKARD JOURNAL MARCH 1986

citr
State

Fig. 7. Example of P-PODS constructs to represmt data
structure, equivalent to Fig. 6.

Concluslon
The design phase is a critical point of a project for pre-

venting defects. Defects introduced during design increase
development costs, extend development schedules, and
frequently create large maintenance costs. The techniques

exploration deal with some of the primary causes of defects,
and will lead to better software products.

c
available through P-PODS and other tools currently under .

Acknowledgments
We would like to give special acknowledgments to Debbie

Caswell for her contributions to P-PODSRJX, and to Bob
Grady for giving us the opportunity to develop P-PODS.

A

Y

1

:"
. . .
, I.

c -

References
1. I. Nassi and B. Shneiderman, “Flowchart Techniques for Struc-
tured Programming,’’ ACM SIGPLAN Notices, Vol. 8, no. 8, August
1973, pp. 12-26.

2. M.A. Jackson, Principles of Program Design, Academic Press,
1975.
3. J. Warder, Logical Constructi
Reinhold Company, 1981, pp. 11-

u.

e

Triggers: f A Software Testing Tool
3%
Triggers as a software testing method focuses on testing
the boundary conditions of the software, and enables the
software tester to be more productive.

by John R. Bugarin

OFTWARE TESTING is in the eyes of the world a
black art. This art contributes to the quality of the
software product and consumes a large amount of

effort in the software development life cycle.
Triggers is a software testing method to increase the pro-

ductivity (efficiency and effectiveness) of testing. It allows
the tester to force the execution of specific paths in the
software by setting specific software conditions.

Software projects consist of several different partitions
called modules. Consider the number of execution paths
between these modules. If we assume ten modules, each
having only one interface, then there are potentially 72
different intermodule entry point paths. However, this
number includes only the number of module entry point
pairs, it does not include different combinations of module
entry point sequences. In most software projects, the
number of different combinations is quite large.

How can the writer of module X test X’s interfaces with
modules A, B, C, and D? How can the writer of module X
increase the testing branch flow coverage of X? Triggers is
the answer.

This method can easily be implemented in most develop-
ment languages. However, I will not address implementa-
tion here. Like all methods, Triggers is better explained
through an example, and I will use the language MODCAL
for the Triggers example that follows.

MODCAL Example
This Triggers implementation is based on the exception

handling (TRY/RECOVER and ESCAPE) mechanism of MOD-
CAL. The grammar of the MODCAL TRY/RECOVER and ES-
CAPE statements is

(statement) :: = TRY (statement list) RECOVER (statement)
::= ESCAPE ((expression))

The ESCAPE statement’s expression is integer-valued. If
during the execution of the (statement Ilst) in the TRY/RECOVER
statement an ESCAPE statement is executed, the program
will continue execution at the (statement) following the RE-

\

COVER. Hence, seve
tentially be aborted. Consider the following example:

PROCEDURE X;
BEGIN

...
statement 1 TRY
statement 2: Y;
statement 3: RECOVER
statement 4: WRITELN(“BINGO!”);

PROCEDURE Y;
BEGIN

END; (* Y *)
statement 1: z;

PROCEDURE 2;
BEGIN

statement 1:
statement 2:

IF ((an error condition))THEN
ESCAPE ((the error condition));

...
END;(*Z*

Upon entry of procedure X, the TRY/RECOVER statement
is entered (statement 1 of x). Procedure Y is called and
immediately procedure is called. At statement 1 in pro-
cedure 2 an error condition is encountered and an ESCAPE
statement is executed (statement 2 of 2). The run-time sys-
tem then searches for the innermost TRYIRECOVER state-
ment (procedure X in this example) and executes the re-
cover statement (statement 4 of x). “BINGO!” is printed.
Execution continues after the TRY/RECOVER statement and
“BANGO!” is printed,

The above example is simplified because no recursion
of the TRY/RECOVER statement exists and no ESCAPE state-
ments are executed in the recover statement. Both TRYIRE-
COVER and ESCAPE recursion are supported in MODCAL.

MARCH 1986 HEWLElT-PACKARD JOURNAL 35

WWW. H PARCHIVE.COM

Is on &e preceding page, add a compilw
procedure call Try-Trigfpr at the begin-

ning of procedure z:

PROCEDURE 2;
BEGIN

$IF TRIGGERON$
Try-Trigger (...);

END
IF ((an error condition)) THEN statement 1:

statement 2: ESCAPE ((the error condition));
...

END; (* 2 *)

Upon entry of 2, Try-Trigger is called. It queries a trigger
data base. If an entry is found,Try-Trigger executes an ESCAPE
statement with the designated escape value. Otherwise,
Try-Trigger is a NO OP. With this mechanism a condition is
triggered; hence the name Triggers.
An instance of a trigger consists of two search keys (a

module name and a trigger number), a reference count

negative values to allow individual testers to use positive
numbers for their own triggers. At every interface, the trig-
ger is placed as follows:

PROCEDURE lo((...);

$IF TRIGGERON$
BEGIN

Try-Trigger (My_Modname, TJOOO;
Try-Trigger (ANYBODY, TXXX 1;

END
...

END (* PROCEDURE XXX *)

nay_hnodname is a function that returns the identifier of the
current module and TXXX is a constant. ANYBODY is a con--
stant modname that denotes any module. The first Try-Trig-
ger call provides a testing interface. Any module can use
this interface to test specific interfaces to procedure X U .
The second Try-Trigger call provides the ability to test the
general interface to procedure m.

With triggers in place at every interface, the writer of
module X can test the interfaces to all client modules. The
module writer identifies the sequence of intermodule in-
teractions that need to be tested and uses triggers to force
the chosen execution paths. This same concept can be
applied to the internal interfaces of the module (intramod-
ule). Furthermore, triggers can be used to increase branch/
path flow coverage.

The implementation of Triggers consists of the data base
(with insertion and deletion operations) of records consist-
ing of the two keys (module name and trigger number), the
reference count, and the escape value. Interactive and pro-
grammatic interfaces for inserting and deleting triggers in
the data base should be implemented.

86 HEIWLETT-PACKARD JOURNAL MARCH 1986

Triggers can be applied to several other testing needs by
using the general model below:

$IF TRIGGERON$
TRY

RECOVER

END

. Try-Trigger (MyNodname, TRIGGERNUMBER);

(special sortware)

If Try-Trigger escapes, the special software will be exe-
cuted. Otherwise, the code is equivalent to a NO OP. This
model can be applied to test module interfaces that consist
of more than just escapes by executing special software to
trigger the software condition needed.

Problems
This trigger example exposes several problems. The Try-

Trigger procedure calls are manually identified and inserted
into the software. Hence, identifying and inserting all the
triggers required is a painful procetw. The module name
concept needs to be implemente

trigger test per modale can be executing at a time.

TrigSOcS --
The key question is “How productive (efficientleffective)

is Triggers?” We have used this MODCAL version of Trig-
gers on a project of 15 modules written by 12 engineers.
We asked the engineers what percentage of defects found
were found using Triggers and their answers ranged from
40 to 80%. Our personal experience was around%%, prob-
ably because of our intimate knowledge of Triggers. During
the last month befare manufacturing release, 31 major de-
fects were found in the first week using specific and general
triggers one

cepted Triggers as an effective testing tool to be used on
future projects.

Even ve d tion has BC-

Ackno-
Triggers was developed during the Hammer Project

(LAN/500) and several people deserve recognition for their
roles. The project members were Tim DeLeon, Bill Mow-
son, Mike Robinson, Mike Shipley, Charlie Solomon, Dean
Thompson, and Mike Wenzel. I am grateful for their pa-
tience during the evolution of the definition of Triggers.
Special thanks to Carl Dierschow for his active role in
Triggers and to the project managers, John Balza and Jim
Willits, for providing the support and environment to allow
the creation of Triggers.

h ,

WWW.HPARCHIVE.COM ,,P

L

Hiera nguage Aids Software
Development
HCL is used by software designers at several Hewlett-
Packard Divisions to speed up the process of generating
hierarchy charts.

by Bruce A. Thompson and David J. Ellis

ODAY, SOFTWARE DESIGNERS are using struc-
tured methods that organize the development pro- T cess from specification through final code into a

sequence of steps. The end of each step is marked by the
creation of part of the overall documentation. This docu-
mentation greatly facilitates communication between de-
signers and improves the maintainability of the product.

One of these pieces of documentation is a hierarchy chart,
which is a graphical representation of the structure of the
software. It depicts the organization of the modules. (A
module is a simple procedure, function, subroutine, or
similar atomic piece of code.) With this chart, engineers
can analyze the proposed design with a view to making
improvements.

A hierarchy chart allows careful examination of the pro-
gram’s binding and coupling before code is written. Bind-
ing is a measure of the functionality of a module. At the
top of the binding scale are modules that do one and only
one task, while modules made of random blocks of code
are at the bottom of the scale. Coupling is a measure of the
traffic between modules. A module that modifies the code
of another has high coupling, whereas two modules that

pass little or no data have low coupling. A further discus-
sion of coupling and binding can be found in references
1, 2, and 3.

This is where the designer can make the best effort to-
wards ensuring program modularity and future reusability.
A program that is designed with high binding and low
coupling will be much easier to modify or repair. It will
also be much easier to reuse modules designed in this way.

Before this analysis can be performed, however, the chart
must be drawn.

Problems with Existing Methods
Traditionally, the software engineer draws hierarchy

charts in one of two ways: by hand or with a generic
graphics editor. There are problems with both methods.
Charts drawn by hand vary widely in style and are very
time-consuming to produce. General-purpose graphics
editors, although powerful, can be difficult to learn and
use. What these editors lack is the specific knowledge of
hierarchy charts needed so that changes can be made
quickly and easily. Both methods continually confront the
engineer with the topology problem-laying out the chart.

MAIN PROGRAM I

Rg. 1. An example of a simple
hierarchy chart showing the differ-
ent types of modules. MAIN PRO-
GRAM,B,C,D,E,F, and H (not called)
are modules. G is a system mod-
de. I is an external module. J is a
hardwaremodule. Kis a datamod-
ule. L is a recursive module. Mod-
ule names can be up to 32 charac-
ters long. HCL draws each module
name on up to 3 lines within a sym-
bol

MARCH 1986 HEWLETT-PACKARD JOURNAL 37

WWW.HPARCHIVE.COM
I \

~

I

caused designers to defend their original designs rathe
than admit that they could be improved.

The solution to these problems is a graphics program,
aimed specifically at generating hierarchy charts, that re-
quires little time to learn or operate. The Hierarchy Chart
Laoguage (HCL) program is primarily a software engineer-
ing tool used within several HP Divisions. It was developed
to facilitate the use of structured software design. HCL grew
out of the need to generate hierarchy charts quickly and
easily so the designers could concentrate on the design
rather than the representation of software. HCL automati-
cally places modules and routes interconnections. This is
the most time-consuming aspect of chart generation for the

3 - As the number of modules on the editors, block-structured languages, hierarchy cha
,s an exponential increase in the difficulty of this pro
The engineer must place the modules to make the
clear and understandable. Even minor modifications
chart can require starting over and
The time required for redrawing charts can
signers feel that they are spending more
charts than designing, and tends to make
reluctant to make modifications. Thi

Language Format
The primary goal

guage was to minimiz
hierarchy chart. This
modules that appear
fit together. This lis
structure.

The input is divided into three sections: options,
rations, and definitions. Most compilers of high-lev
guages divide the input into similar sections
is something that the user is familiar with.

The options section gives the engin
appearance of the hierarchy chart. T
label the chart with a title, the autho
and a legend or key
of HCL, such as the
checking. In addition. this section Drovides control over

I

the operation of the progr
Before a module can be u

engineer to do by hand. This 100% placement and routing
not restrictive, however. The designer is still allowed
e flexibility to alter the appearance of the hierarchy chart
conform to a personal style.
In designing HCL, there were two choices for the input:
text file or interactive graphics. The text file input was

n, mainly because it could look like a block-struc-
language, something that most software engineers are
familiar with. Also, if an engineer wants to make a

rarchy chart for an existing piece of code, it is easier to
if the input to HCL is text. To provide text input, the
r does not have to learn yet another editor, but simply
s any familiar one. By building on the knowledge base

e software engineer probably already has (i.e., text

it must first be declared. This i s similar to the type declar-
ation of variables in many of the high-level languages.
Types and modules can be declared in any order.

HCL provides support for many different module types.
Each type is drawn differently on the chart and has different
uses.

The first module type is the simple module, which rep-
resents common procedures, functiolis, subroutines, etc.
The recursive module is used to represent modules that
call themselves, either directly or indirectly. These mod-
ules are generally more complex than the simple
and are therefore shown differently. The externa
is used to represent modules that are not defi
chart. These modules may be defined on anoth

Fig. 2. A hierarchy chart I
module C IS drawn as

may remain to be designed. An external module is one way
to show possible enhancements to a program on the chart.

The system module is used to represent operating system
calls, such as modules that read the system clock or open
a file. The data module was devised to show access to data
such as variables, data bases, files, etc. During design, it is
important to show which modules access the data so that
the interactions (coupling) of that data can be minimized.

The hardware module was added specifically to show
software interfaces to hardware registers. This allows the
assessment of coupling of not only the software-software
interface but the hardware-software interface as well. A
hardware module looks like the integrated circuit represen-
tation used on schematic diagrams by digital designers.
Hardware interactions with software are especially impor-
tant in microprocessor-based control software.

The invisible module is shown by simply drawing the
name of the module. This module can be used as a generic
module type, making HCL useful for applications other
than software hierarchy charts. Fig. 1 is an example of a
simple chart showing the various module types.

The limit on the length of a modulename is 32 characters.
A name can contain nearly any printable character. To
make the module names easier to read, HCL draws the
name on up to three lines within the module shape. The
underbar character is used as a place for HCL to divide the
name into multiple lines if the name is too long. The under-
bars are not drawn on the chart.

The definition section is where the structure of the hierar-
chy chart is specified. Modules are defined to call other
modules by listing subordinate modules in a Pascal-like
begin-end block. Parameters can be included each time a
module is used. These parameters are divided into two
types: those passed to a module and those returned from
the module. When using a module more than once, the
number of to and from parameters must be the same. How-
ever, the parameter names do not have to match. Nearly
all printable characters can be used as parameters. This
allows the user to customize representations for the param-
eters such as separating control and data parameters. For

c

exapple, the date parameters might be contained in brack-
ets and the control

stlucts are supported.
block to represent tha

Nesting of loops can be done to show nested iterations
on tbe hierarchy chart, However, tryirrg to nest w e or
conditional eaIls will result In an error. This is h u s e
them is no clear way to show this type of nesting on a chat.

The following code i s the very simple textud definition
that produced the chart shown in Fig. 1.

MODULE MAIN PROORAM,B,C,D,E,F,&
SYSTEM 0;
EXTERNAL I;
HARDWARE J;
DATA K;
RECURSIVE L;
MAIN PROGRAM

BEGIN
B(TO2ARM);
C
BEGIN
D
BEGIN
I;
J;
END;
E;
END;

F(/FRONPARM);
'LOOP
BEGIN
G;
K;
END;

'COND L(TO-PARM/FROM-PARM);
END;

A problem arises in drawing a chart when a module is

EXAMPLE OF INTERCONNECT MOOULE USAGE
MODULE A CALLS 25 OTHER MODULES

called mom than onGe, One approach is to use a circle with
a unique letter inside. Whenever the module is called, it
is replaced with its corresponding letter in a circle. The
module is then drawn off by itself with any module calls
it makes drawn underneath.

For a large chart it can become difficult to remember
which letter represents which module. Another approach
is to draw the module near the bottom of the paper and
draw lines to this module for every call. This results in a
chart of many lines and few modules.

When HCL detects a module's being called more than
once, it replaces the call with a circle but inserts the actual
name of the module in the circle. The circle is called a
utiIity module. The module is then drawn by itself as a
subchart along with any modules it may call. In this way,
the structure can be understood easily and the problem of
many lines bisecting the drawing is avoided. The following
code provides an example.

MODULE MAIN PROGRAM,B,C,D,E,F,H;

EXTERNAL I ;
HARDWARE J;
DATA K;
RECURSIVE L;
MAIN PROGRAM

BEGIN
B(T0-PARM);
C

- SYSTEMG;

BEGIN
D
BEGIN
1;
J;
END;

E;
END;

F(/FROM-PARM);
'LOOP
BEGIN
G;
K;
END;

'COND L(T0-PARM/FROM,PARM);
END;

C; {MAKES MODULE C A UTILITY}

Fig. 2 shows the chart produced by this code. In this
example module C was made a utility module by listing it
again at the end of the file as shown. Module C is then
drawn separately as a subchart.

One problem that can occur when defining a hierarchy
chart is a module that eventually calls itself. This is known
as recursion. Sometimes this is desirable, but it can be
disastrous if unintentional. There are two types of recursion
that HCL checks for, direct and indirect. Direct recursion
is a module calling itself from itself. Indirect recursion is
a module calling itself through intermediate modules. Indi-
rect recursion is the most difficult type of recursion to
detect manuallv.

When either type of recursion is identified and the
ule has not been previously declared a recursive type,
warning is generated and the module type is changed to
recursive.

It is often necessary to define separate subcharts on a
single drawing. This is useful for showing functional par-
titioning of the design as well as concurrent processing.
The user may achieve this effect by simply including the
definitions of these charts separately, one after another in
the file. HCL will draw each as a separate subchart on the
drawing.

A common nuisance in many block-structured languages
is the requirement that a symbol be completely defined
before it is used. In Pascal a procedure name must be fully
coded before it can be called. HCL allows a module to be
called anywhere in the file without reference to where the
module is defined. This permits easy reordering of the text
within the file.

A common cause of problems for hierarchy charts is a
module that calls a sequence of many modules. HCL will
draw the module calls all on the same level, creating a very
wide and short chart. The interconnect module can be used
to draw some of these modules at a lower level on the chart
and still maintain the structure. The interconnect module
was added to allow the user to make the chart easfer to
read; it is ignored when €he cross references are generated.
The following code and the resulting chart (Fig. 3) show
an example of the use of the interconnect module.

'TITLE 'EXAMPLE OF INTERCONNECT MODULE USAGE;
*NAME 'MODULE A CALLS 25 OTHER MODULES';
"MODULEDEFAULT;
'NO-WARNING;
INTERCONNECT LlNKl ,LINK2,LINK3,LINK4;
A
BEGIN
B;
C;
D;
E;
LINK4
BEGIN

LlNKl
BEGIN
F;
G;
H;
1;

END;
J;

K;
L;
M;
LINK2
BEGIN
N;
0;
P;
Q;

END;
END:

WWW. H PARC H IVE.COM

R;

T;
s;

U;
LINK3
BEGIN

V;
W;
X;
Y;

END;
2;

END;

*
: -

The Topological Problem
The real power of HCL is its ability to draw any chart

specified by the language automatically. The user does not
have to perform any graphical operations to generate a
chart. The process HCL uses to draw a chart from the text
supplied consists of three steps.

The first step is to make a fiht-pass computation of the
chart. This step makes a rough estimate on how the modules
should be placed. It does not try to put the boxes as close
together as possible nor does it attempt to center the boxes.
It does, however, place the boxes and circles so that they
do not overlap and the associated parameters do not cross.

The second step, compacting, takes all the subcharts and
moves the boxes and circles as close together as possible.
Each module is centered above those that it calls to make
the chart look better.

The third step is to take all of the subcharts and organize
them to fit a specific paper size. All of the subcharts are
arranged in one long row, which is then chopped into
pieces and the pieces arranged to fit the length-width ratio
of the paper. The number of subcharts in each row depends
upon the size of the subcharts. The subcharts are ordered
from left to right and top to bottom, starting with the sub-
chart first defined in the input text. The order then follows
the sequence of the modules in the input text. Any utility
modules are located after all the subcharts.

After this three-step process is performed, the chart is
ready to be drawn. However, this does not limit modifying
the arrangement of the chart. There are several ways to
change the appearance of the chart. One method is to
change the order of the subcharts in the input file. This
will change the order of the subcharts on the drawing. An
alternative me thd is to draw just a portim of the input
text on the drawing. This technique relies on the fact that
comments can be nested in HCL. To draw just some of the
modules contained in the input text, the engineer includes
the modules that won’t be shown in comments. HCL will
ignore the module definitions contained in comments.

A third method is to “pull apart” modules. One problem
that can occur with large charts is that some of the subcharts
may be large compared to other modules. The larger sub-
charts can be divided into multiple subcharts to provide a
better looking drawing. This is done by making a module
called within the larger subchart a utility module. A mod-
ule can be made a utility module simply by listing it more
than once in the input text.

Additional Output from HCL
There are several features of HCL that general-purpose

graphics editors do not provide. These outputs are intended
to help the engineer during the design of the software.

The module call count gives an alphabetic listing of all
the declared modules, their types, and the number of times
each is called. If a module is declared but never called, it
is flagged to bring it to the attention of the engineer, who
may have forgotten to use the module after declaring it. At
the end of the listing is the total count for each type of
module as well as the total number of modules declared.
This output can be used to find the critical modules that
are called often in the designed software. This output may
also be used in the collection of certain software metrics.

The following is an example of a module call count table.

Module Call Count Table

A (M) called 1 time.
................... (M) called 1 time. P

.................. (M) called 1 time.
D (M) called 1 time.
E (M) called 1 time.

Z (R) ******Not called******
F (S) called 3 times.

Module (M) 5
System (S) 1
Recursive (R) 1

Tntal Modules Declared = 7

HCL produces two types of cross reference outputs. The
first is an alphabetic listing of all the modules and the
modules they call (see example below). Included with this
are the parameters that are used in each call, which is
especially helpful if the parameters on the chart become
too small to read.

Module Call Cross Reference

Module Calls Modules

A B (VARI , VAR2)
C
D(NAR3)
E

B F
C
D F

E F

F

Z

Number of modules declared = 7

MARCH 1986 HEWLETT-PACKARD JOURNAL 41

WWW.HPARCHIVE.COM

second cross reference, shown below, is the reverse
first one. It is also alphabetical, but shows all the
es that call a given module. This comes in handy

hen the designer wishes to change the interface of a mod-
le and needs to know which other modules will be af-

Module Called by Cross Reference

Module Called by Modules

D I A

Conclusion

Acknowledgments

References
1. W.P. Stevens, Using Structured Design, John Wiley and Sons,
1981.
2. G.J. Meyers, CompositelStructured Design, Van Nostrand
Reinhold Company, Inc., 1978.
3. H. Yourdon and L.L. Constantine, Structured Design, Prentice-
Hall, 1979.
4. Hewlett-Packard Journal, Vol. 36, no. 3, March 1985.

HCL was designed as
restricted to this use. Other uses include:

le system map. A hierarchical file system such as MS"-
or the HP-UX operating system can be represented.
agement organization chart. A company organiza-
chart can easily be created and maintained.

Process mapping. A process can be decomposed and

e Module Adds Data Logging Capabilities to
the HP=71B Computer
This 64K-byte plug-in ROM offers new BASIC language
keywords for control of a battery-powered data acquisition
and control unit and nine application programs for data
capture, presentation, and transmission to host computers.

by James A. Donnelly

HE COMBINATION OF THE HANDHELD HP-71B
Computer' and the HP 3421A Data Acquisition/Con- T trol Unit' provides a low-cost hardware copfigura-

tion for many engineering or production data acquisition
applications (Fig. 1). The computer and instrument are
connected via the Hewlett-Packard Interface Loop (HP-IL).3
To assist the engineer in performing data acquisition tasks,
a special plug-in ROM module was developed for the HP-
71B Computer. This 64K-byte ROM module, the HP 82479A
Data Acquisition Pac, contains a hybrid of BASIC and as-
sembly language programs. Six general sets of capabilities
are provided:
8 BASIC keywords for instrument control. The keyword

lNlT3421 finds and initializes the specified HP 3421A on
the interface loop. Keywords such as DCVOLTS and RANGE
provide convehient instrument control. Additional

accurate assembly language linearizations for ther-
mocouple, thermistor, and resistance-temperature detec-
tor (RTD) probes.

B Interactive control of the HP 3421A. A BASIC program
and keyboard overlay for the HP-71B create a virtual
front panel for the HP 3421A, which has no front-panel
controls.
Nine-trace stripchart output for the HP ThinkJet P r i n t e ~ ~
A BASIC program configures the system to produce strip
charts with optional data storage.
System monitoring and control. A BASIC program con-
figures the system to monitor functions in a system, per-
form limit tests and controls, and display the system
status on a video interface. An option allows periodic
storage of the system status to a data file.
Long-term data acquisition and control. Two BASIC pro-
grams allow sophisticated data logging and control pro-

Fig. 1. The HP 82479A Data Ac-
quisition Pac for the HP-716 Com-
puter enables the computer to
control the HP 3421 A Data Acqui-
sitionlContro1 Unit via the Hewlett-
Packard Interface Loop, allowing
an engineer to configure low-cost,
battery-powered systems for data
logging or instrument control.

MARCH 1986 HEWLETT-PACKARD JOURNAL 43

WWW.HPARCHIVE.COM

I Data analysis. A BASIC program provides printed
analysis of data collected by the stripchart, system

’
,a

monitor, or logging programs. The data can be printed,
summary statistics can be calculated, or a strip chart can
be generated from stored data. Two additional programs
provide data transmission to MS‘” -DOS-based comput-
ers (via HpLink) or to HP 9000 Series 200 and Series
300 Computers.

New BASIC Keywords
The Data Acquisition Pac’s capabilities are based on a

series of BASIC language keywords that combine conven-
tional instrument control steps into one action. The con-
ventional procedure for reading an instrument in HP BASIC
languages has been to use the OUTPUT statement to send a
command sequence to the instrument and then use an
ENTER statement to receive the data from the instrument.
The keywords provided in the HP 82479A ROM combine
these operations into one, which provides several benefits:

Ease of programming: the engineer is no longer required
to refer to the instrument manual for cryptic commands.
For example, A-DCVOLTS replaces OUTPUT WFlT2”&
ENTER :&A
Enhanced code maintainability: an engineer assigned to
take over responsibility for a test program using these
keywords will experience a shortened learning curve
while reviewing the code.

w Speed enhancement: the combined operations reduce
operating system overhead for the processing of the OUT-
PUT and ENTER statements. The keywords TCOUPLE,
THMSTP, and RTD provide rapid and more accurate con-
versions from voltage or resistance measurements than
equivalent routines written in BASIC. . Device location independence: uvlike the HP-I3 (BEE
488), where the addresses of the instruments must be
set manually, the HP-IL assigns device addresses au
tomatically. The keywords in the Data Acquisition Pac
complement this by not requiring instrument address
information. If more than one HP 3421A is connected
to the HP-IL, a consistent device addressing scheme
makes selection of the first instrument on the loop the
default choice, but permits selection of additional HP
3421As.
The new keywords provided by the ROM do not preclude

h e use of ENTER and OUTPUT statements to control the HP
3421A, creating a possible conflict between commands is-
sued through the new keywords and commands sent with
the OUTPUT statement. This potential for conflict is virtually
eliminated by assigning priority to the commands made
with the new keywords and keeping track of the intended
state of the HP 3421A in an internal buffer in the HP-71B.
The buffer records the current settings for: . The HP 3421A device specifier (address)

The degree mode for temperature conversions (C, F, K,

The gate time for the counter (0.1, 1, or 10 seconds)
The number of digits of resolution (3, 4, or 5)
The range (- 1 through 7) . The autozero status (on or off)

-

or R)

4 HEWLm-PAC)eARO JOURNAL MARCH 1986

tered by an OUTPUT statement in another program.
The HP 3421A can be ordered with various op

configurations, but incorrect for others. To facilitate rapid
error detection, the instrument status is checked after each
command is sent, so that problems such as invalid channel
requests or ranges can be detected immediately. This saves
another check that would need to be done from a BASIC
program using ENTER and OUTPUT statements to talk to the
HI’ 3421A.

for a desktop computer. The BASIC
accurate results, but with a significant

t of round-off errors by using ls-digit

the calculator-like friendliness of the

routines are built into the keywords. The HP-71B has a
variety of system settings, such as OPTION BASE for array
declarations and OPTION ANGLE for trigonometric functions.
The OPTION statement was extended to include OPTION DE-
GREES unit. The available temperature units are Celsius,
Fahrenheit, Kelvin, and Rankine. By declaring OPTION DE-
GREES C, the programmer specifies that the re
temperature conversions will return Celsius

binary subprogram called SCA
t the 30-reading data buffer

ments by replacing the e
structure normally used
into a single binary subprogram call. The subprogram E-
quires a command string that specifies the measurement,
a vector to retain the collected readings, an index that
points into the vector to indicate the starting position for
the readings, and an error parameter.

BASIC Programs
The BASIC programs are designed to take full adv

of the features in the HP-71B operating system, yet ret
the friendly personality of a calculator. To this end,
front panel and data logging programs are designed to work
with or without peripheral devices such as printers or video
interfaces. The user interfaces of the various programs are
designed to be consistent, so that an operator familiar with
one program will feel at home with another. Many complex
operations requiring a number of commands on larger com-
puters are reduced to a single keystroke. Error handling is
designed to reduce the impact of simple entry mistakes ur
requests for impossible measurement or control functions.

WWW.HPARCHIVE.CO

Acquisition Pac can be used to provide monitoring and control
functions in space-critical or budget-critical environments where
a large system simply may not fit. The MONITOR program can
not only monitor a system, but can also control the system using

. limit tests Consider a production photographic laboratory with
a controlled-temperature bath that must be maintained within
one degree of 25°C. Two type-T thermocouples are used to
monitor the temperatures. A room-temperature thermocouple is
connected to channel 3 of the HP 3421A, and a bath-temperature
thermocouple is connected to channel 4 The bath heater is
controlled by a relay, which in turn is controlled by actuator
channel 0 of the HP 3421A. The HP-71 B containing the HP
82479A plug-in ROM is connected to the HP 3421A and to an
80-column video interface and video monitor as shown in Fig 1

In this example, the MONITOR program continuously displays
the room temperature and bath temperature on the video monitor.
In addition, two sets of limit tests are specified. the control limits
and the alarm limits The lower and upper control limits are set
at 24 5 and 25 5°C When the temperature falls below 24 YC,

the actuator channel is closed, turning on the heater by means
of a relay When the temperature rises above 25 5”C, the actuator
channel IS opened, turning the heater off The lower and upper
alarm limits are set at 24 and 26°C. If the control system fails,
one of the alarm limits will be reached and the HP-71 B will beep
Additional alarm limit actions could log the event on a printer or
control additional actuators

Fig 2 illustrates the contents of the video monitor display while
the photographic laboratory monitor is running

Bath Bath

I HP-711

~ L’ .

. . J

:s’ ; . i

-* , . ’2 ‘, ’.< ” Fig. 1. Photographic laboratory
- - - _ ternoerature monitorina svstern

$&ip$&;;
Wherever possible, t he user’s work ing environment i s pre-
served t o protect the va lue of work ing variables, files, and
other data.

U n l i k e larger desktop computers, the HP-71B i s designed
t o w o r k under extremely l o w memory condi t ions w h i l e
managing m u l t i p l e data and program f i les in memory.
Hence, the data logging program opt ions are designed to
w o r k under l o w m e m o r y condi t ions. In the event o f equip-
m e n t failure, data i s always preserved. The f i l e update
procedures to external mass storage devices are designed
t o protect t he integrity of t he f i l e at t he sl ight cost o f pro-
cessing speed. An HP-IL fa i lure during disc access r isks at
most one data scan, leav ing the other records intact. The
data analysis and transfer programs are designed t o accom-
modate data f i les with par t ia l data, such as data f r o m an
exper iment that terminated with an equipment fa i lure or
u p o n receiv ing an abort command f r o m the operator.

The BASIC programs in the Hp 82479A Data Acqu is i t i on &f -4 Pac are described be low:
FRONT program in conjunct ion with a keyboard over-
redefines t h e HP-71B keyboard, m a p p i n g the HP

3421A functions to i nd i v idua l keys. Addi t ional key redef-
in i t ions combine voltage or resistance measurements with

fu speeificatlon, up to five limit tests, and
rage and timing specifications. The LOG program
to execute the data logging setup. Options in the

LOO program include buffered data storage and device
power-down capability for extending the life of battery-
powered peripherals.

m The REPORT program provides printouts of collected data,
summary statistics about the data, and strip charts from
collected data. These options can examine the entire file
or a time segment within the file.
The TRANSFER and MSDOSXFR programs are used to move
collected data to Series 200 and Series 300 Computers
or MS-DOS-based computers such as the HP 150, The
Portable, or the Vectra. Files transferred to the MS-DOS
computers are compatible with 1-2-3”’ from Lotus”.
The STATUS program is used to read the status registers
in the HP 3421A and produce a comprehensive report
listing error conditions, option configurations, and the
current operating status.

Measurement Options
Twenty-one measurement functions are offered among

the three main data acquisition programs. These functions
correspond to the main capabilities offered by the HP
3421A combined with the temperature linearization
keywords. The functions include dc volts, ac volts, direct
current, two- and four-wire resistance, frequency, six ther-
mocouple types, 2-kQ and 5-ka thermistors, RTD, digital
bit, and digital byte. The programs provide two- and four-
wire resistance measurement options for the thermistors
and the RTD.

Clearly, the BASIC programs cannot anticipate all possi-
ble measurement applications involving the HP 3421A. An
additional function is included that permits the user to
write a special BASIC subprogram to perform custom mea-
surement procedures. This hook allows new measurement
procedures to be created that still take advantage of the
user interface and data storage facilities provided by the
programs in the Data Acquisition Pac.

In addition, each function can call a conversion program
for additional processing of a measurement. For instance,
there is no alternating current function in the HP 82479A
ROM. A simple conversion program that divides an ac
voltage by the shunt resistance can provide the equivalent
of an alternating current function.

Limit Tests
The MONITOR and LOG programs can perform limit tests

on data collected by each function. A simple negative feed-
back loop can be created for temperature control by setting
a limit test that turns on a heater if a temperature falls
below a set level, or turns off the heater if the temperature
rises above a certain level. Limit actions include a simple
beep, the printing of a message, switching an actuator, en-
abling or disabling another measurement group (in the case
of the LOG program), or the calling of a user-written pro-

before, the programs cannot antic
actions that might have to take pla

ut-of-limit condition. A hook that all
the user to write a custom limit action program prov
significant flexibility in system design.

Error Recovery
Most of the peripherals that are available on the HP-IL

are battery-powered and not subject to the misfortunes of
ac power line interruptions. Nevertheless, under some con-
ditions a device may temporarily malfunction or cease to
operate, causing an error to be detected by the HP-71B. In
most instances, the execution of a RESTOREIO command is
sufficient to return the interface Ioop to working order.
Clearly, in either production or unattended long-term data
acquisition appiications, some form of automatic error re-
covery is desirable. Each of the programs in the Data Acqui-
sition Pac calls a subprogram RECOVER when a loop prob-
lem is encountered. The recovery subprogram is sufficient
to bring the system back to working order in many cases
without operator intervention. Some system
may require differeiit error

one in the HP 8247
sophisticated system designs for error recovery. For exam-
ple, if an HP 82402A Dual HP-IL Adapter is installed in
the HP-71B, the recovery subprogram might notify a host
computer connected to loop two that loop one is broken
and out of service.

Acknowledgments
Nathan Zelle wrote the assembly language routines and

provided invaluable contributions to the entire project.
Nathan Meyers assembled the data transfer programs from
pieces contributed by me and Bill Saltzstein. Many people
expressed interest and offered design suggestions, making
this a true “next bench” project. Notabl
tions are Bob Botos, Jerry i-hmann, and P
of the Loveland Instnunant Division and
Rudolph, and Don Ouchida.

‘The review and testing of this project were large efforts.
Many thanks are due to Mark Banwarth, Dirk Bodily, Dave
Boggan, Chris Bunsen, Jennifer Burnett, Ron Henderson,
Tim Hubley, Michel Maupoux, Pat Megowan, Henry
Nielsen, Dan Parker, and Don Rodgers.

References
1. Complete issue, Hewlett-Packard Journal, Vol. 35, no. 7, July
1984.
2. J.J. Ressmeyer, “Low-Cost and Portability Come to Data Acqui-
sitiodContro1 Products,” Hewlett-Packard Journal, Vol. 34, no. 2,
February 1983.
3. R.D. Quick and S.L. Harper, “HP-IL: A Low-Cost Digital Inter-
face for Portable Applications,” Hewlett-Packard Journal, Vol. 34,
no. 1, January 1983.
4. C.V. Katen and T.R. Braun, “An Inexpensive, Portable Ink-Jet
Printer Family,” Hewlett-Packard Journal, Vol. 36, no. 5, May
1985.

- b

+ _ * gemetryand software for digital circuit design and
' verification. He is currently involved with micropro-

cessor design validation and testing. Gres IS the
Author
Ntsr;erh 1ggC;T

I I Z U ! v w m R m i ~ -

Martin R. w a n
Interested in ~rwrammina
environments, sohare de-
velopment methodologies,
and computer-assisted in-
struction, Marty Cagan is a
project leader in the Soft-
wareTechnology Labof HP
Laboratories Joining HP in
1981, he has worked on
business aDDlications for

the HP3000 Computer and the impiementation of
the HP Development Environment for Common
Lisp product. He holds BS degrees in computer
science and economics awarded in 1981 by the
University of California at Santa Cruz. A member
of the ACM, the AAAI, and the IEEE Computer
Society, Marty is a resident of Los Altos, California.

A native of Seattle,
Washington. Steve Blair at-
tended the nearby Univer-
sityof Washington. earning
a BS degree in computer
science in 1983. He then
joined HP and is now part
of the staff of Corporate En-
gineenng Amernbrof the
ACM. he lives in Santa
interested in photography,

hiking, and competitive sailihg.

author of three conference papers, &teonf;ncti
recognition in VLSl circuits and two on software
engineering, and is a member afthe Math
Assmiationof Americaand theSocietyforIndus-
trial and Applied Mathematics Outside of work, he
enjoys singing In his church's choir, performing
Renaissance music, and playing volleyball. Greg
lives in Sunnyvale. California

MzLidlrraTd-

Craig D. Fuget
Craig Fuget was born in
Pittsburgh, Pennsylvania
and studied computer sci-
ence and engineering at
the Massachusetts Institute
of Technology He com-
pleted work for his BS de-
gree in 1983 He joined HP
thesameyearand isasoft-
ware quality engineer re-

sponsible for metrics, testing, and tools, primarily
fortheoperatingsystemfortheHPl000Computer
He isamemberof the IEEE Craig lives in Palo Alto,
California and likes reading. traveling, camping,
and other outdoor activities

B.rblmJ.seoft
Barbara Scott studied com-
puter science at the Univer-
sity of California at Davis,
earning b r BS degree in
1979 and her Wdegree in
1980. With HP since 1980,
she is a project manager for
HP-UX system testing. She
has also tested operating
systems and has been the

technical leader responsible for the development
of tools, processes, and training designed to im-
prove HP programmer productivity and software
quality. Earbarawas born in Denver, Coloradoand
now lives tn Sunnyvale, California with her hus-
band. She likes racquetball, aerobics, sewing, and
camping.

A native of San Francisco,
Greg Burroughs studied
mathematics at the Univer-
sity of California at River-
side (BS 1978 and MA
1979) and computer sci-
ence at the University of
Wisconsin(MS 1981) With
HP since 1981, he has
worked on computationa

I

With HP's Waltham Division
since 1982, Jack Ward is a
software quality assurance
engineer He was responsi-
ble for testing the software
for the HP 78720A ECG Ar-
rhythmia Monitor He has
also been atechnical mar-
keting engineer and was a
software support engineer

for DataGeneral Corporation His academic back-
ground includes a BS degree in linguistics from the

and is interested in meditation and martial arts. He
also enjoys fishing, photography, and personal
computers.

vincrnt J. D'AngdO
Vince D'Angelo studied
computer science at
California State University
at Chico and received the
BSdegree in late 197'8. He
then came to HP and has
workedonanumberofap-
plications and tools for the
HP3000andHP9000com-
puters. He was the project

leader for P-PODS and is currently worktng on soft-
ware design support tools Vince previously
worked for Burroughs Corporation on application
development He lives in Sunnyvale, California,
plays the violin, and is involved in numerous church
activities.

John R. Bugarln
With HP since 1981, John
Bugarin is a software pro-
ductivity manager at HPs
Colorado Networks Opera-
tion He has also been a
project manager responsi-
ble for the development of
local area networks for the
'-IP 9000 cMnputer family
lohn was born in MiI-

waukee, Wisconsin and attended the University of
Wisconsin at Madison He completed work for his
BS degree in computer science and mathematics
in 1979 and for his MS degree in computer science
in 1980 He's a member of the ACM He lives in Fort
Colhns, Colorado and likes skiing and golf

Born in Manchestm. lwa,
Bruce Thompson studied

Iowa State University and
received a 0s degree in
1981. He then joined HPs
Greeley Division where he
has workedon the software
desrgnfor the HP7974 ernd

CrJanpUter engineeri~ at
worked on the softvyare de-
sign for the HP 797% Tape
Drive and the HP 88500
bisflape Interface Card
sinw jbning HP in 1983,

pilers. assemblers, and
ding at the bniversity o
Oregon as well as F

his own software consulting business befw
ing HP. He IS m a n R&D engineer anbntritxged
to the design of the ROMbr the HP 71 B Handheld
Computer. He is also thecoauthorofthre@techni-
cal papers. Jim lives in Corvallis,
member of the Corvallis Aft Gull
in the Amwcan Wwt 8nd n
joys music, photography, and cars.

in computer engineer-
t981. David was born
'sand now lives with
Fort Collins, Col-

. . . -. . -

.a

HEWLETT
PAC KARD

