HEWLETT"

(7 il

HEWLETT-PACKARD

J A December 1995 Volume 46 Number 6

Articles

6 DCE: An Environment for Secure Client/Server Computing, by Michael M. Kong

1 6 Adopting DCE Technology for Developing Client/Server Applications, by Paul Lloyd and
Samuel 0. Horowitz

2 3 DCE Directory Services, by Michael M. Kong and David Truong
2 8 X/Open Federated Naming, by Elizabeth A. Martin
3 4 HP Integrated Login, by Jane B. Marcus, Navaneet Kumar, and Lawrence J. Rose

4] The DCE Security Service, by Frederic Gittfer and Anne C. Hopkins

4 2 Glossary

4 9 An Evolution of DCE Authorization Services, by Deborah L. Caswell

5 5 An Object-Oriented Application Framework for DCE-Based Systems, by Mihaela C. Gittler,
Michael Z. Luo, and Luis M. Maldonado

5[] Glossary

6] HP Encina/9000: Middleware for Constructing Transaction Processing Applications, by
Pankaj Gupta

55 awsan

Executive Editor Sizve Heiler » Managing Editor Charlss L (=ath » Senior Editor. Hichard I [o'an « Agsistant Editor Hobin tvorest «
Publication F i ger Susan £ \Wiont » Mustration Rznss [Poghinl « Typography/Layout Johs N

Advisory Board. Ha

2 December 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

7 5 Object-Oriented Perspective on Software System Testing in a Distributed Environment, by

Mark C. Campbell, David K. Hinds, Ana V. Kapetanakis, David S. Levin, Stephen J. McFarland,

David J. Miller, and J. Scott Southwarth
7 6 The Object Management Group’s Distributed Object Model

79 Object-Oriented Programming

82 A New, Lightweight Fetal Telemetry System, by Andreas Boos, Michelle Houghton Jagger,
Giinter W. Paret, and Jiirgen W. Hausmann

94 Zero Bias Detector Diodes for the RF/ID Market, by Rolando A. Buted

95 Backscatter RF/ID Systems

Departments

In this Issue
Cover
What's Ahead
Correction
Authors

1995 Index

88010!:41-5

1

The Hewlett-Packard Journal is publishied bimonthly by the Hewler-Packard Compuny to recognize technical contributions made by Hewlett-Packard
{HPp . While the inf found in this publication is believed to be accurate, the Hewlett-Paakard Campany disclaims all warranties of
mesrchantability snd fitness for d particular purpose and all ohligations and llabilities for demages, including but not limited to indirect, special, or
consenuential damages, antormey's and expert’s fees and court costs, arsing out of or in coinection with this publication

Subscriptions: The Hewlptt-Packard Journal is distributed free of charge to WP research, design and t ing eng |, as well as to
nualified non-HP individuals, libraries, and educational instiutions, Please address subsenption or change of address naquasu arl printed 1anomead for
include a business card} 1o the HP headquarters office in your country or 1o tha HP address on the back cover When submitting a change of address,
please include your xp of postal code and a copy of your old label, Free subscriptions may not be available in afl cauntries,

The Hewlett-Packard Journal is avaitable online via the World-Wide Web (WWW) snd can be viewed and printed with Mosaic. The unifarm resource
lotator (URL] fot the Hewlet-Packard Journal is hrip.www hp com/hpy/deurnal htmi

Submisaions: Mthough articles in the Hewlett- Packard Journal are primarlly authored by HP employess, articles from non- HP suthors deating with
HP-related research or solutions totechnical problems made possible by using HP equip are also consid for publicabion, Please contact the
Editor before submitting such articles. Alse, the Hewlet-Packard Journal encourages technical discussions of the topics presented in recent articlas
and may publish letters pxpactad to be of intérest 1o readers Letters should be bel, and are subject to editing by HP.

Copyright © 1995 Hewlett-Packard Compuny, Al rlghu reservied. Permission 10 copy without fes all or part of this publication is hereby granted provided

that 1) the copieg are not made, used, displayed, o { i for cial 2| the Hewdett-Packard Company copyright notice and the title

of the publication and date appear on the copres; and 31 a notice appears stating that the copying is by permission of the Hewlent-Packard Company

Please address inquines, suhmlssmnrs and raquests 1o: Editor, Hewlatt-Packard Journal, 3000 Hanover Street, Pala Alto, C;‘« 94304 U.SA,

December 195 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

3

In this Issue

The phenomenal growth and complexity of computer networks has created a
wealth of opportunities for communication and resource sharing and a multitude
of concerns about privacy and security. The Open Software Foundation's Distrib-
uted Computing Environment (DCE) was developed to fill the need for a stan-
dardized approach to creating and executing secure client/server applications
in complex, highly networked environments. Applications developed using the
DCE software system are portable and interoperable over a wide range of com-
puters and networks. Applications running in DCE are also able to share data
and services efficiently and securely regardless of the number of computers
used or where they are located. HP, like some other companies in the computer
industry, has contributed technologies to DCE and released several versions of DCE as a product for the
HP-UX* operating system. The first eight articles in this issue describe the fundamental elements of
DCE and the enhancements made to DCE by HP in the areas of application development and security.

DCE is based on the client/server model in which an application's functionality is divided between cli-
ents, which represent users, and servers, which provide the services requested by users. In a DCE envi-
ronment, there might be several thousand host systems, some of which might be from different vendors,
and many different categories of users and applications. To deal with this heterogeneous and diverse
enviranment, DCE defines a basic unit of operation and administration called a cell, which allows users,
systems, and resources to be grouped together according to their needs and common interests. The
client/server paradigm and the concept of cells are introduced in the article on page 6. This article also
introduces features in DCE that facilitate concurrent programming, DCE client/server remote communi-
cation, time synchronization between distributed hosts, and handling a distributed file system.

Encouraging others to adopt a new technology is made a lot easier if you have examples of its use. HP's
information technology group has adopted DCE and has begun to move HP's legacy information technol-
ogy system to the DCE architecture. The article on page 16 describes the issues and rationale that led
HP to adopt DCE for information technology, and the administration and planning issues associated with
this transition.

A typical DCE cell can span several systems and networks. To find users, files, devices, and resources
inside and outside these cells requires a naming system that allows each cell and the objects cantained
inside it to have unique names, and a directory service that can cope with different naming systems. The
article on page 23 describes the DCE directory services and the article on page 28 describes the X/Open/
Federated Naming specification, which defines a uniform naming interface for accessing a variety of
naming systems.

One of the biggest issues surrounding networked systems today is security. How do we protect an
open, distributed system from unauthorized access and abuse? DCE provides a collection of services
for developing security mechanisms to protect against unauthorized access. The user's password Is the
primary key for getting into a system, and in some situations users may be required to enter several
passwords during a session to gain access to different applications or other parts of the system. Each
time the user is required to enter another password, the system is made vulnerable to an opportunity for
hostile invasion. The article on page 34 describes the HP Integrated Login product, which is a single-step
login facility in which the user enters a password once at login time, and this password is used to grant
access to the HP-UX machine as well to verify access to other secured parts of the system. The security
protocol that takes over after the password is entered is described in the DCE security service article on
page 41. The DCE security service authenticates a legitimate user and then checks to make sure that the
user is authorized to have access to the requested services. The article on page 49 describes one of
these autharization mechanisms called access control lists (ACLs), ACLs are lists of permissions that
belong to certain users or groups of users.

4 December 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

DCE provides several very powerful facilities for creating DCE client/server applications. However, the
interfaces to some of these facilities are quite complex. The article on page 55 describes the HP Object-
Oriented DCE (O0DCE) product, which is an object-oriented library of C++ classes that hide the program-
matic complexity of DCE from developers to ease the development of distributed applications.

Transaction processing systems are used in large enterprises to store, retrieve, and manipulate data
reliably in the face of concurrent access. The HP Encina/9000 transaction processing monitor described
on page 61 provides an environment for developing distributed OLTP (online transaction processing)
applications. Encina/9000 uses many of the features of DCE to create its distributed, client/server
capabilities.

One of the biggest challenges in software development is still testing the product. This challenge is even
mare daunting in distributed client/server environments. In the article on page 75 the authors describe
how the testing enviranment far nondistributed, procedural software is not applicable to a distributed
environment. The article describes the evolution of a reusable, object-oriented testing environment called
the object testing framework (OTF). Although OTF was designed for a non-DCE-based product, the con-
cepts and tools developed for OTF are applicable to products that might be based on DCE.

Bar code readers and magnetic strips are so commonplace today that their usefulness in areas such as
banking, manufacturing, and retail is taken for granted. However, these technologies do have their
limitations in that they require a direct line of sight and a relatively clean, benign environment. Another
technology called RF/ID (radio frequency identification), which is a combination of two components—a
transmitter and a receiver—overcomes the limitations of these other technologies. The article on page
94 describes the HP HSMS-285x silicon detector diodes designed for use in RF/ID applications,

In today’s modern hospitals patients wha have to be monitored are connected to an array of high-tech
patient monitoring equipment. Aware of the intimidating look of all this equipment, many hospitals are
trying to create a more friendly environment in their labor and delivery departments by reducing the
amount of technology at the patient’s bedside. The HP Series 50 T fetal telemetry system, which is de-
scribed in the article on page 82, is a step in this direction, The HP Series 50 T combines external and
internal fetal monitering in a lightweight, portable transmitter.

C.L Leath
Managing Editor

Cover

A highly internetworked distributed computing environment made up of clients and servers is shown in
the background. Appearing in the foreground is the software architecture for one pair of client and
server systems.

What's Ahead

In the February issue we'll have several articles on the design of the HP 9000 J-class workstations and
K-class servers, symmetric multiprocessing computer systems hased on the HP PA7200 CPU, a superscalar
PA-RISC processor. We'll also have an overview of code-domain power, timing, and phase measurement
algorithms in the HP 83203B COMA cellular adapter. There’ll be a design article on the HP HOMP-1512/14
1.0625-Ghit/s Fibre Channel chipset and an article on applying the software code inspection process to
hardware descriptions.

Correction
In the August 1995 issue, the curve nearest the vertical axis in Fig. 2 on page 22 should he labeled
Vil FEXT.

December HS Hewlott-Packard Jourmal

© Copr. 1949-1998 Hewlett-Packard Co.

5

.

DCE: An Environment for Secure
Client/Server Computing

The Open Software Foundation's Distributed Computing Environment
provides an infrastructure for developing and executing secure
client/server applications that are portable and interoperable over a wide

range of computers and networks.

by Michael M. Kong

The Distributed Computing Environment (DCE) is a suite of
software that enables networked computers to share data
and services efficiently and securely. The initial specification
and development of DCE took place in 1989 under the aegis
of the Open Software Foundation (OSF) through the OSF
RFT (request for technology) process. Several companies in
the computer industry, including HP, contributed technologies
to DCE. HP has since released several versions of DCE as a
product for HP-UX* systems, with added enhancements
particularly in tools for administration and application de-
velopment. HP remains active in the development of future
OSF DCE releases.

The major technologies in DCE include:

Threads. A library of routines that enable several paths of
execution to exist concurrently within a single process.
Remote Procedure Call (RPC). A facility that extends the
procedure call paradigm to a distributed environment by
enabling the invocation of a routine to occur on one host
and the execution of the routine to oceur on another.
Security. A set of services for authentication (to verify user
identity), authorization (to control user access to data and
services), and account management. DCE security services
are described in the article on page 41.

Cell Directory Service (CDS). A service that maintains a data-
base of objects in a DCE cell and maps their names (which
are readable by human users) to their identifiers and loca-
tions (which are used by programs to access the objects).
CDS is described in the article on page 23.

Global Directory Service (GDS). A service that maintains a
database of objects that may exist anywhere in the world
and enables DCE programs to access objects outside a cell.
GDS is also described in the article on page 23.

Distributed Time Service (DTS). A service that synchronizes
clocks on DCE hosts with each other and, optionally, with
an external clock.

Distributed File Service (DFS). A service that allows DCE
hosts to access each other's files via a consistent global file
naming hierarchy in the DCE namespace.

The HP DCE product adds several features to the OSF DCE
offering, including:

An integrated login facility that enables HP-UX login pro-
grams o perform DCE authentication for users. This feature
is described in the article on page 28.

A DCE cell configuration utility integrated with the HP-UX
system administration manager (SAM).

6 December 1995 Hewlett-Packard Joumnal

» An object-oriented DCE (HP OODCE) programming envi-

ronment that eases DCE application development for C++
programmers. HP OODCE is described in the article on
page 5b.

Integration of DCE application development tools with the
SoftBench product and extensions to these tools that sup-
port tracing and logging of distributed application activity.

This article describes the DCE client/server model, intro-
duces DCE cells, and provides an overview of four technolo-
gies in DCE: threads, RPC (remote procedure calls), DTS
(distributed time service), and DFS (distributed file service).
Articles elsewhere in this issue describe DCE security, the
DCE directory services, and other aspects of the HP DCE
product. Unless otherwise specified, these articles describe
version 1.4 of HP DCE/S000 as released for Version 10.10 of
the HP-UX operating system.

The Client/Server Model

DCE applications and the various components of DCE inter-
act according to a client/server model. Functionality is orga-
nized into discrete services; clients are users of services and
servers are providers of services. A client program issues
requests for services and a server program acts on and re-
sponds to those requests. A program may play both client
and server roles at once by using one service while it pro-
vides another. For example, in a distributed application that
relies on secure communication, both the client and server
sides of the application also act as clients of DCE security
services, The elient/server model insulates the users of a ser-
vice from the details of how the service is implemented,
allowing the server implementation to be extended, relo-
cated, or replicated without perturbing existing clients.

To make the service abstraction work in practice, clients and
servers must agree on how they will interact. They agree on
what requests the client can make of the server, and for
each request, what data will flow between them. In DCE,
these aspects of a service are described in a definition of the
client/server interface written in the RPC Interface Definition
Language (IDL). The DCE application development software
ensures that client and server programs will adhere to the
interface definition. Given an RPC interface definition for a
service, an application developer can build and execute
clients and servers on different DCE implementations, and
the resulting programs will interoperate correctly.

© Copr. 1949-1998 Hewlett-Packard Co.

In addition to RPC interfaces for distributed services, DCE
defines application program interfaces (APIs) that applica-
tions invoke when they wish to use DCE services. In the
example of the secure application mentioned above, the
application client and the application server will both invoke
DCE security routines provided by the DCE run-time library.
The library will interact as necessary with the DCE security
server on behalf of the application program. The existence
of standard APIs for DCE services ensures the portability of
applications across all DCE implementations.

DCE Cells

DCE services are deploved in administrative units called
cells. A cell can encompass one host or many thousands of
hosts in a single local network or in an internetwork span-
ning continents. The grouping of hosts into a cell does not
necessarily follow physical network topology (though net-
work performance characteristics may make some groupings
more practical than others). Rather, a cell is usually defined
according to administrative boundaries. A cell contains a
single security database and a single Cell Directory Service
(CDS) namespace, so all users and applications within a cell
are subject to the same administrative authority, and re-
sources are more easily shared within the cell than between
cells.

Fig. 1 shows a relatively simple DCE cell containing servers
and clients. The minimal set of services in a cell consists of
a security server, a CDS server, and some means of synchro-
nizing time among the hosts. In this cell, the security and
CDS databases are replicated for increased performance
and reliability, so there are two security servers and two
CDS servers. The DCE time service, DTS, is used to synchro-
nize clocks throughout the cell with an external time source.
Other DCE services such as DFS and GDS (Global Directory
Service) need not be configured in a minimal DCE cell but

can be added at any time. A DCE-based application is
installed in the cell in Fig. 1, with an application server run-
ning on an HP 9000 Series 800 server and application clients
running on PCs and workstations. Finally, each host in the
cell has a DCE run-time library and runs DCE client daemons.

Threads

In a distributed environment the need ofien arises for one
program to communicate concurrently with several others.
For example, a server program may handle requests from
many clients. The DCE threads facility provides the means
to create concurrent threads of execution within a process
and hence eases the design and enhances the performance
of distributed applications. The threads facility is not itself
distributed, but virtually all distributed services in DCE rely
on threads, as do most DCE-based applications.

POSIX (Portable Operating System Interface)! has defined
an industry-standard programming interface for writing
multithreaded applications: the POSIX 1003.4a specification.
DCE threads is a user-space implementation of Drafi 4 of
this specification.

One way to introduce the notion of a thread is fo describe
an ordinary singled-threaded process and contrast this with
a multithreaded process. A process is a running instance of
a program. When a process starts, the text of the program is
loaded into the address space of the process and then in-
structions in the program text are executed until the process
terminates. The instructions that are executed can be thought
of as a path or thread of execution through the address space
of the process. An ordinary process can thus be considered
to be single-threaded.

A threads facility allows several threads of execution to exist
within one process. An initial thread exists when a process
starts, and this thread can create additional threads, making

CDS Server CDS Server
GDA Daemon DTS Time Provider
DTS Server DTS Server
DCE Client Daemons DCE Client Daemons DTS Clerk DCE Software
and Run-Time Library and Run-Time Library DCE Client Daemons
Security Server Security Server and Run-Time Library
(Master) {Slave) Application Server
HP 9000 Series 800
Machines
/" § J
> N
y o Clients
Workstations - PC
Application Clients
DTS Clerk
DCE Client Dagmons OCE Processes
and Run-Time Library

Fig. 1. A single DCE eell containing security, CDS, time, and application servers and application elients running on PCs and workstations.

December 1995 Hewlett-Packard Joumal 7

© Copr. 1949-1998 Hewlett-Packard Co.

L]

the process multithreaded. Each thread executes indepen-
dently and has its own stack. However, the threads in a pro-
cess share most process resources, such as user and group
identifiers, working directories, controlling terminals, file
descriptors, global variables, and memory allocated on the
heap.

Resource sharing and concurrent execution can lead to
several performance benefits for multithreaded programs:
Threads can be created, synchronized, and terminated
much more efficiently than processes.

If one thread blocks, waiting for VO or for some resource,
other threads can continue to execute.

A server program can exhibit better responsiveness to
clients by dedicating a separate thread to each client
request, The server can accept a new request even while it
is still executing older requests.

On a multiprocessor compuier, several threads within a
process can run in parallel on several processors.

Of course, the execution of threads in a process can be truly
concurrent only on a computer that has multiple processors
and has a threads implementation that can take advantage of
multiprocessing (even then, concurrency is limited by the
number of processors). In reality, the threads in a process
take turms executing according to a scheduling policy and a
scheduling priority that are assigned to each thread. Depend-
ing on the policy that governs a thread, the thread will run
until it blocks, until it consumes a time slice that was allo-
cated to it, or until it voluntarily yields the processor. A con-
text switch then occurs, and the next thread to execute is
chosen from a queue of threads that are ready to run, based
on their priorities.

Threads programmers can use condition variables to synchro-
nize threads so that a thread will run only after a specified
condition has been safisfied. A thread can wait on a condition
variable either for a specified time to elapse or for another
thread to signal that variable. The waiting thread does not
reenter the ready queue until the condition is satisfied.

Because threads run concurrently and share process re-
sources, programmers must protect regions of code that
access shared resources. For example, if a context switch
occurs in code that manipulates global variables, one thread
may have undesired side effects on another thread. The
threads API allows programmers to use mutual exclusion
(mutex) locks to prevent such effects. Only one thread can
hold a given mutex lock at any time, and any other thread
that attempts to take the lock will block until the lock is
released, so only the thread that holds the lock can execute
the critical region of code.

Like global data, static data can be a conduit for side effects
between threads when a context switch occurs, and this
imposes another constraint on code that executes in multi-
threaded processes. Routines that can be called by multiple
threads must not return pointers to static data,

The requirements mentioned above for code in multithreaded
programs apply not only to DCE executables and DCE appli-
cation programs, but also to any libraries used by those pro-
grams. A library is considered thread safe to the extent that

it behaves correctly when used by a multithreaded program.
The HP-UX operating system defines several levels of thread
safeness for libraries. The HP-UX C library, for instance, can

8 December 1995 Hewlett-Packard Journal

safely be called by several threads in one program, whereas
some other libraries can be called by only one thread per
program.

A kernel-space implementation of the final POSIX threads
specification may ultimately replace the user-space imple-
mentation of Draft 4 that is currently supplied with HP DCE.
Kernel threads would make true concurrency possible on
multiprocessor computers and probably improve perfor-
mance on uniprocessor machines as well.

Remote Procedure Call

The remote procedure call (RPC) facility is the basis for all
DCE client/server communications and therefore is funda-
mental to the distribution of services in DCE applications
and in DCE itself.

The RPC mechanism enables a procedure invoked by one
process (the client) to be executed, possibly on a remote
host, by another process (the server). The client and server
hosts need not have the same operating system or the same
hardware architecture, However, they do need to be able to
reach each other via a transport protocol that is supported
by the DCE implementations on both hosts.

DCE RPC conforms to a set of specifications collectively
known as the Network Computing Architecture (NCA), The
NCA specifications define the protocols that govern the inter-
action of clients and servers, the packet format in which
RPC data is transmitted over the network. and the Interface
Definition Language (1DL) that is used to specify RPC inter-
faces. DCE RPC is based on Version 2 of NCA. Version 1 of
NCA was a set of architecture specifications for another
remote procedure call facility, the Network Computing
System (NCS), which has been in use on the HP-UX operat-
ing system and other plaiforms since the late 1980s. DCE
RPC evolved from NCS, supports the interoperation of NCS
and DCE applications, and offers features that assist in the
conversion of applications from NCS to DCE,

NCA defines two RPC protocols, one for use over connec-
tion-based transports (called NCA CN RPC) and one for use
over datagram-based transports (NCA DG RPC). The con-
nection-based protocol relies on the underlying transport (o
manage connections between clients and servers, whereas
the datagram-based protocol assumes an unreliable trans-
port and performs its own connection management. A DCE
implementation can support each of these protocols over
several transports. HP DCE currently supports NCA connec-
tion-based RPC over TCP/IP and NCA datagram-based RPC
over UDP/IP. The NCA protocols ensure that remote proce-
dure call semantics are not affected by the underlying trans-
port used. This characteristic of NCA, sometimes referred to
as transport independence, is essential for the portability
and interoperability of DCE and DCE applications over
many types of networks and computers.

How RPC Applications Work. To understand how an RPC
application works, first imagine an ordinary nondistributed
program consisting of a main module, which performs vari-
ous initialization tasks and handles user interaction, and a
second module, which does the real work of the application
such as interacting with a database. The main module can be
thought of as a client of the services implemented and
provided by the database module. In DCE terminology, a

© Copr. 1949-1998 Hewlett-Packard Co.

module that implements a service is called a manager, and
the set of manager routines that the client calls constitutes
the interface between client and manager.

Fig. 2a illustrates this simple program and a representation
of the interface between the client and the manager pieces.
Note that the modularization of this program demands only
that the client and manager pieces adhere to the declared
signature (calling syntax) of each routine in the interface.
This implies that the manager module could be replaced by
any other module containing routines that have the same
names, return the same data type, and pass the same argu-
ments. In an ordinary C application, routine signatures are
typically declared in header files that get included in other
modules.

Now imagine that this application is to be distributed so that
the database management code executes on a minicomputer
and the user interface code executes on a graphical work-
station. The first step in building a DCE RPC application is
to write an IDL interface definition. An interface definition
specifies the UUID (universal unique identifier) and version
of the interface, declares the signatures of the operations
(routines) in the interface, and declares data types used by
those operations (Fig. 2b). The declarations of types and
operations in an IDL file resemble those in a C header file,
but an IDL file contains additional information required to
make the operations callable via RPC. For example, the op-
eration declarations in an IDL file are embellished with at-
tributes that specify explicitly whether the routine’s argu-
ments are inputs or outputs, so that when the routine is
called, arguments pass over the network only in the direc-
tion needed.

Uszer Interface

Module
Database Manager
(a) Module
IDL File
db.idl
(b)
|
IDL Compiler
{c) .
Client Program | Server Program
User Interface | ServerStubModule
Module db_sstub.c
ClientStubMaodule L Database Manager
h_estub.g Module

Fig. 2. The process of creating an RPC application. (a) Original
application showing the part that will run on the client and the part
that will run ona server, (b} Creating an [DL file. (¢) Compiling the
1DL file to create a header file and client/server stubs.

RPC Run-Time
Library

RPC Run-Time
Library

Fig. 3. Flow of events when a client program calls db_leckup on the
SErver.

The next step in building a distributed application is to com-
pile the interface definition with the DCE IDL compiler

(Fig. 2¢). The IDL compiler takes the IDL file as input and
emits three C source files as output: a client stub module, a
server stub module, and a header file. The IDL compiler
derives the names of the emitted files from the name of the
IDL file.

The client stub presents to the application client module the
same interface that the manager module did in the local case.
For example, if the manager module contained a routine
called db_lookup, so will the client stub. Likewise, the server
stub presents to the manager module the same interface that
the application client module did. Continuing the example,
the server stub calls the db_lookup routine in the manager just
as the client did in the local case. The header file contains
the declarations needed to compile and link the client and
server programs.

The final step in building the application is to link these
developer-written and IDL-compiler-generated modules into
two programs: a client program consisting of the old client
module and the client stub and a server program made up of
the old manager module and the server stub, (This descrip-
tion is rather simplified. In reality, a number of DCE library
APIs are typically invoked by application code in both the
client and server programs.) Both programs are dynamically
linked with the DCE shared library, which must be present
as part of the DCE run-time environment on the client and
server hosts.

Fig. 3 describes the flow of evenis that occur when the client
program calls db_lookup. The call to db_lookup is resolved in
the elient stub module 1, The db_lookup routine in the client
stub marshalls the operation’s input parameters into a request
buffer and then invokes routines in the DCE library to send
the request to the server host (2. On both the sending and
receiving sides, RPC code in the DCE library deals as neces-
sary with any issues involving the underlying transport, such
as fragmentation and window sizes, When the server program
receives the request, DCE library code calls the db_lookup
routine in the server stub module 3/, which unmarshalls the
input parameters and passes them to the actual implementa-
tion of db_lookup in the application manager module 4,

December 1995 Hewlett-Packard Joumal 9

© Copr. 1949-1998 Hewlett-Packard Co.

L]

When the manager routine returns 5, the server stub mar-
shalls the operation’s output parameters and a return value
into a response buffer and invokes DCE library routines to
send the response to the client (6 . Library code on the client
side receives the response and returns control to the client
stub db_lockup routine 7., which finally unmarshalls the out-
puts and returns to the main client module & .

RPC Protocols. DCE RPC clients and servers communicate
over a network by exchanging messages, such as the request
and response messages described in Fig. 3. Each message,
called a protocol data unit (PDU), consists of up to three
parts:

A header, which contains RPC protocol control information
An optional body, which contains data

An optional authentication verifier, which contains data for
use by an authentication protocol.

The PDU itself is of course encapsulated by control informa-
tion specific to the transport and network underlying a re-
mote procedure call. For example, when a datagram-based
RPC PDU is transmitted as a UDP/IP packet, it is preceded
by UDP/IP header information.

A few examples of information that might be carried in the
header of a DCE RPC PDU include:

The version of the DCE RPC protocol in use

The PDU type (Both connection-based RPC and datagram-
based RPC define request and response PDU types. In addi-
tion, each RPC protocol defines several PDU types specific
to the protocol. For example, because datagram-based RPC
implements its own connection management, it defines
PDU types for pings and acknowledgments.)

The UUID that identifies the interface being used

The operation number that identifies the operation being
called within that interface

The UUID that identifies the object on which the operation
is to be performed

A label that identifies the data representation format in
which the PDU header and body data are encoded

The length of the PDU body.

Many PDU types serve only to convey protocol control infor-
mation between a client and server and hence have no body.
Request and response PDUs, of course, do have bodies con-
taining the input and output parameters of the remote pro-
cedure call. These parameters are encoded according to a
transfer syntax identified by the data representation format
label in the header. DCE RPC currently specifies only one
transfer syntax, the network data representation (NDR)
syntax.

NDR defines the representation of each IDL data type in a
byte stream. For scalar types like integers and floating-point
numbers, NDR addresses issues such as byte order and
floating-point format. For constructed types like arrays,
structures, and unions, NDR sets rules for flattening data
into a byte stream. Thus, the set of input and output values
in every remote procedure call has a byte stream represen-
tation determined by NDR syntax. The byte stream is passed
between client and server as the body in one or more re-
quest and response PDUs. Table I lists the data types sup-
ported by RPC.

10 December 1095 Hewlett-Packard Journal

Some scalar data types have several supported formats in
NDR. Integers, for example, may be in either big-endian
(most significant byte first) or little-endian (least significant
byte first) format. For these primitive types, the format that
governs a particular PDU is indicated as part of the data
representation format label in the PDU header. On any given
hardware architecture, the DCE library will send outgoing
data in the representations native to that architecture. If the
receiving host has different native representations, its DCE
library will convert incoming data (for example, by swapping
bytes in integers) as necessary. DCE RPC thus has what may
be called a multicanonical approach (o data representation.
This approach tends to minimize data conversion, and in
particular, two hosts of the same architecture can usually
communicate without ever converting data. By contrast, il a
data representation scheme dictates a single canonical format
for each scalar type, and the client and server hosts share a
common format other than the canonical one, data will be
converted both when sent and when received.

The third part of a DCE RPC PDU, the authentication veri-
fier, is present only for authenticated remote procedure
calls, It contains data whose format and content depend on
the authentication protocol being used. Use of the authenti-
cation verifier is explained further in the description of
authenticated RPC below.

Client/Server Binding. A key question in the design and imple-
mentation of a DCE RPC application is, how will the client
locate an appropriate server? When making a remote proce-
dure call, a client program must specify to its DCE run-time
library the location of a server that can perform the requested
operation. The server location incorporates an RPC protocol
sequence (the combination of NCA protocol and network
profocol), a network address or host name, and an endpoint
(for the IP protocols, the endpoint is simply a port number).
This information is encapsulated in a structure called a bind-
ing. A binding may also include the UUID of the object to be
operated on, if any, and authentication and authorization
information, if the call is to be authenticated.

The RPC API supports a range of techniques for obtaining
and manipulating bindings. Most applications either con-
struct a textual representation of a binding (called a string
binding) from information supplied by the user or obtain a
binding from a name service.

A string binding represents in a textual format the object
UUID and server location portions of a binding. For exam-
ple, in the string binding:

f858c02c-e42b-11ce-a344-080009357989@ncadg_ip_udp:
192.18.59.131[2001]

the object UTUID appears in the standard string format for
U'UIDs, the ncadg_ip_udp protocol sequence specifies the
NCA DG RPC protocol over UDP/IP, an Internet address
identifies the server host, and a port number specifies the
endpoint on which the server is listening. (The object UUID
and the endpoint are optional.)

© Copr. 1949-1998 Hewlett-Packard Co.

Table |
Data Types Supported in RPC

Primitive Data Types

Integers

Floating-point
numbers

Characters
booleant

bytet

void1

handle_tt

error_status_t7

International
character
Lypes

A type usually used in arrays or siructures
to transmit opaque data. Data of type byte
is guaranteed not to undergo format
conversion.

A type used for operations that return no
value, for null pointer constants, and for
context handles.

A type used to store binding information
in a format that is meaningful to the run-
time DCE library but opaque to applica-
tions.

A type used to store DCE status values.

A set of types constructed from the byte
primitive that support international stan-
dards for character and string representa-
tion.

Constructed Data Types

Structures

[nions

Enumerations

Pipes

Arrays

Strings
Pointers

Context
handles

HDL Keywords

This type is somewhat like a € union oper-
ation, but embeds a discriminator, which
at run time specifies which member of the
union is storecl.

An open-ended sequence of elements of
one type that is used to transfer bulk data.

Arrays may be one-dimensional or multidi-
mensional and may be of fixed size, con-
formant (the array size is determined at
run time), or varying (a subset of the array
to be transmitted is determined at run
time).

Strings are one-dimensional, null-
terminated arrays of characters or bytes.

Context handles are not really distinet
types, but pointers to void data. They are
specified by applying the context_handle at-
tribute to a parameter. A context handle
denotes state information that a server
manager will maintain on behalf of a cli-
ent, Use of a context handle allows this
state to persist across several remote pro-
cedure calls from the client.

String bindings are easy o generate and manipulate and are
suitable for applications in which the user of the client pro-
gram knows in advance the location of the desired server.
The user can supply server location information to the client
program interactively or as a command line argument or via a
configuration file, and client application code can invoke
RPC API routines to compose a string binding and then gen-
erate a binding handle that can be passed to the RPC run-
time library.

String bindings are well-suited for some RPC applications,
but many distributed services require a more flexible and
transparent way of establishing bindings. DCE RPC provides
an application interface, the RPC name service independent
{NSI) API through which servers and clienis can export and
import binding information to and from a name service. The
use of a name service to store binding information insulates
clients from knowledge of where objects and servers reside.
The client has only to specify an object and an interface and
then use the name service to look up the location of an
appropriate server. Thus, the relocation or replication of a
server can be made transparent to clients.

As its name suggests, the RPC NSI interface is independent
of any particular name service. Thus, applications coded to
this interface will potentially be portable across DCE imple-
mentations incorporating a variety of name services. In the
current HP DCE implementation, DCE CDS underlies the
RPC NSI interface, so that the generic RPC name service
routines invoke corresponding DCE CDS routines. In princi-
ple, another name service such as X/Open Federated Naming
(see article on page 28) could supersede CDS in the DCE
run-time environment, and existing RPC applications would
continue to work.

DCE security, which is described in the article on page 41, is
an example of a service that takes advantage of both RPC
binding methods. The security client code in the DCE run-
time library can bind to a security server either through RPC
name service calls or through a string binding generated
from a configuration file on the elient host. The configuration
file solves a bootstrapping problem by making the security
service locatable even when CDS is unavailable.

Authenticated RPC, The ability to perform authenticated RPC

is crucial to the usefulness of DCE in the real world, where

the integrity and privacy of data often must be assured even

when the data is transmitted over physically insecure net-

works. DCE supports several levels of authenticated RPC so

that applications will incur only the performance overhead

necessitated by the desired degree of protection. These

levels include:

None. No protection is performed.

Connection. An encryption handshake oceurs on the first

remote procedure call between the client and the server,

exchanging authenticated identities for client and server.

« Call. In addition to connection-level protection, the integrity
of the first PDU of each request and response is verified.

s Packet. In addition to call-level protection, replay and mis-
ordering detection is applied to each PDU, ensuring that all
data received is from the expected sender.

L]

December 1995 Hewlett-Packard Journal 11

© Copr. 1949-1998 Hewlett-Packard Co.

* Packet Integrity. In addition to packet-level protection, the
integrity of every PDU is verified. This level can be thought
of as protection against tampering.

Packet Privacy. In addition to packet-integrity-level protec-
tion, all remote procedure call parameters are encrypted.
This level ean be thought of as protection against both eaves-
dropping and tampering. The privacy protection level is not
available in all DCE implementations because of restrictions
on the export of encryption technology from the United
States.

When data integrity is protected, the sender computes a
checksum of the data, encrypts the checksum, and inserts
the encrypted checksum in the authentication-verifier por-
tion of the RPC PDU for verification by the receiver. When
data privacy is protected, the sender encrypts the actual
parameters in the RPC PDU body, and the receiver decrypts
them.

The authenticated RPC facility is intended to accommodate
more than one authentication and authorization service, A
server program registers with the DCE run-time library the
authentication protocol it supports. A client specifies an
authentication protocol, an authorization protocol, and a
protection level in its binding. When the server receives a
request, application code in the manager can extract authen-
tication and authorization information from the request. HP
DCE currently supports only the shared-secret authentica-
tion protocol implemented by DCE security.

Distributed Time Service

The distributed time service, or DTS, is a distributed service *
that synchronizes the clocks of all hosts in a cell with each
other and, optionally, with an external time source. In a typi-
cal cell configuration, a few hosts (perhaps three) run a DTS
server daemon, and all other hosts run a DTS client daemon
called a DTS clerk. One of the DTS server hosts may also run
a daemon called a time provider which obtains time from an
external source. DTS clerks and servers communicate via
RPC and also rely on CDS and security services for naming
and authentication.

Clock synchronization is essential for the operation of a DCE
cell. The various methods used in several DCE technologies
to cache or replicate data, for example, require that clocks
agree closely.

In addition to the daemons that synchronize clocks, DTS
includes a library of programming interfaces that allow ap-
plications to generate and manipulate time values in binary
format or in any of several standard textual formats, DTS
associates an estimated inaccuracy with every time value,
s0 a time value can also be treated as an interval that is
likely to include the correct time. Internally, DTS always
keeps time values in the Universal Coordinated Time (UTC)
standard governed by the International Time Bureau. The
DTS API allows applications to display time values in local
time zones.

DTS Clerks. Most hosts in a DCE cell run a DTS clerk. A clerk
periodically (at a randomized interval of roughly ten minutes)
obtains time values from DTS servers in the cell. The clerk
then reconciles these results to compute a single value and
inaccuracy that it applies to the local host. This computation

12

December 1995 Hewlett-Packard Journal

takes into account the inaccuracy of each server and an
estimate of the time lost to processing and communications.
If one DTS server has a faulty clock that disagrees sharply
with the others, the clerks will ignore that value, preventing
the faulty clock from influencing time throughout the cell.
Usually, the time intervals from the servers (time values plus
or minus inaccuracies) intersect, and the computed time lies
within this intersection (see Fig. 4).

The clerk adjusts time on the local host in such a way that
the clock is corrected gradually and continues to advance
monotonically. It is especially important to avoid a sudden
backward correction because many software systems, in-
cluding some components of DCE, depend on the monoton-
icity of the clock. In most computers, a hardware oscillator
generates an interrupt at some fixed interval, and this inter-
rupt, called a tick, causes the operating system to advance a
software register by some increment. Slight inaccuracies in
oscillators cause clocks to drift relative to each other. To
adjust time, rather than write the computed correct time
directly to the clock register, the DTS clerk changes the in-
crement by which the register advances with each tick. In
effect, the software clock rate is increased or decreased to
bring the local host into agreement with the servers.

DTS Servers. DTS servers can be configured in two ways:

If a DTS time provider is running on one of the server hosts,
the DTS servers on all other hosts synchronize with the DTS
server on that host (roughly every two minutes). Thus, time
obtained by the time provider from an external source is
propagated to the DTS servers in the cell.

If there is no DTS time provider in the cell, the DTS servers
synchronize with each other (roughly every two minutes).
This process is similar to the one used by clerks, except that
each DTS server also uses its own time as one of the input
values.

External time sources can include telephone and radio ser-
vices, such as those operated in the United States by the
National Institute of Standards and Technology and various
satellite services. DTS can also use an Internet network time
protocol (NTP) server as an external time source. Though
DTS and NTP cannot both be allowed to control the clock
on any one client host, the DTS NTP time provider can be
used to synchronize a set of DTS-controlled hosts with a set
of NTP-controlled hosts.

X
Server 1
X
Server2
3 X3
Server3 Faulty
fatxg
Server 4
tx

Computed ;
Correct Time

t; =Time Values From DTS Servers

X; = Inaccuracies

Fig. 4. DTS computing the correct time from several reported

times.

© Copr. 1949-1998 Hewlett-Packard Co.

DTS servers and time providers attempt to compensate for
processing and communications delays when they obtain
time values, just as the DTS clerks do.

Distributed File Service

As the UNIX operating system has spread from standalone
computers to networked workstations, the need to combine
file systems in heterogeneous collections of computers has
grown. A few solutions have evolved to meet this need,
including the Network File System (NFS) from Sun Micro-
systems and the Andrew File System (AFS) from Transarc
Corporation. The Distributed File Service (DFS) is a succes-
sor to AFS that is integrated into DCE.

DFS adds a global filespace to the DCE namespace (see the
article on page 23 for a description of DCE naming). File-
sets, the logical units of file system manipulation in DFS, are
mounted within the DFS filespace for access by DFS clients.
DFS cleanly separates the logical and physical aspects of
file service, so that a user can always access a file in the
DFS filespace by the same name, regardless of where the
file or the user physically resides. All DFS file system opera-
tions comply with the POSIX 1003.1 specifications for file
access semantics. A token-based file access protocol en-
sures that readers and writers always see the latest changes
to a file.

DFS is a distributed service whose major components are a
cache manager that runs on DFS client hosts, a fileset server
and file exporter that run on DFS server hosts, and a fileset
location server that can run on any DCE host. Communica-
tion among these components is via RPC; some DFS pro-
cesses run in the operating system kernel and make use of a
special in-kernel implementation of the datagram-based RPC
protocol. Fig, 5 illustraies the relationships between these
processes and the logical roles that a host can assume. In an
actual DFS deployment, one host may play one, two, or all
three of these roles.

Other DFS software in the HHP DCE product includes a DFS-
to-NFS gateway which exports the DFS filespace to NFS,
providing secure access to DFS files from hosts outside a
DCE cell, an update service that keeps files in synchroniza-
tion between hosts, a basic overseer server that monitors

Local Cache
DFS Server Host
DFS Client Host '
Token Cache
Manager Manager = Exporter Manager

DFS Fileset Location

Server Host Local File System
| Basic Overseer — e —
| Server

| Ml = i
| ion (&
» Fileset Location

i Server - >

- Kernel Processes

| | User Processes

Fileset Location
Database

Fig. 5. Relationships between DIFS processes

Aggregate

Aggregate

Fileset

Directory

Directory

Fig. 6. The relationship between DFS aggregates and filesers

DFS daemons on each DFS host and supports various remaote
administrative operations, and other administrative utilities.

Server support for some DFS features is dependent on the
level of functionality provided by the local file system soft-
ware on the server host. For the purposes of this article, a
local file system can be classified as either a traditional
UNIX file system or an extended file system that offers more
advanced functionality. DFS server software can support the
full range of DFS features only if the underlying file system
provides extended file system functionality. HP-UX file sys-
tems currently provide only UNIX file system functionality,
so HP-UX DFS server hosts do not support the DFS features
that depend on extended file system functionality. If DFS is
deployed across a heterogeneous set of platforms, DFS
server machines from other vendors may have file systems
that do allow full DFS support. When accessing files from
such a machine, an HP-UX DFS client host can take advan-
tage of the entire DFS feature set.

Aggregates and Filesets. The DFS filespace is a hierarchy of
directories and files that forms a single logical subtree of the
DCE namespace. The root of the DFS filespace in a cell is
the directory whose global name is /... /<cell-names/fs. This
directory can also be accessed from within the cell by the
local name /: /fs or by the special prefix /.. The directories
and files in the DFS filespace can reside physically on many
different DFS server hosts in the DCE cell. Two types of
DFS resources reside on DFS server hosts: aggregates and
filesets (see Fig. 6).

An aggregate is the DFS reference to the physical entity
from which one or more filesets are created. From the per-
spective of the local operating system, this entity is a logical
disk managed by local file system software. For example, an
aggregate could refer to a logical volume or to a physical
partition on a disk.

A fileset is a hierarchy of directories and files that are stored
in an aggregate, An extended file system aggregate can store
several extended file system [lilesets, whereas a UNIX file

December 5 Hewlett-Packard Jowrnal 13

© Copr. 1949-1998 Hewlett-Packard Co.

L]

.

system aggregate can store only one UNIX file system file-
set. Each fileset has a name (assigned by an administrator)
and a number (generated automatically) that are unique in
the DCE cell. A DFS client uses the fileset name to locate
the fileset, and thus the files it contains, by looking up the
name in the fileset location database.

Many DFS features involve manipulations of filesets. The
operations an administrator can perform on a fileset include:
Mounting it in the filespace so that DFS clients can see its
files

Backing it np

Setting its quota so that when several filesets reside in one
aggregate, the disk space in the aggregate is not dispropor-
tionately consumed by one fileset

Moving it to another aggregate to balance the load among
aggregates and DFS server hosts

Replicating it for performance and reliability.

The last three of these operations are supported only by
extended file system aggregates.

Mounting a fileset in the DFS filespace makes the tree of
directories and files in the fileset visible to DFS clients. The
fileset is mounted at an entry in the filespace, called the
mount point, which then names the root directory of the
fileset. For example, a fileset containing the home directory
for the user Joe might be named users joe. An administrator
might decide to mount the home directories for all users
under one directory in the DFS filespace, such as /../<cell-
name>/fs/users. The administrator would issue a command to
mount users.joe at, say, /../<cell-name>/fs/usersfjoe. Joe could
then use this pathname to aceess his home directory from
anywhere. DFS mount points are permanently recorded in
the file system as special symbolic links and, unlike UNIX
file system mount points, need not be recreated each time a
host boots.

A DFS fileset can also be locally mounted, by the UNIX
mount command in the directory hierarchy of the local host.
For example, the users.joe fileset could be mounted at /users/
joe. A file in a DFS fileset thus can be accessed by several
names: a local pathname specific to the local host (like
Jusers/joe/mail.txt), a pathname relative to the local cell (like
[:/users/joe/mail.txt), and a global pathname (like /. /<cell-name>/
fsfusersfjoe/mail.txt). DF'S guarantees that operations on the file
adhere to POSIX semantics, regardless of which way the file
is accessed.

DFS Client Components. Each host that accesses the DFS file-
space runs a set of DFS client processes that execute in the
kernel, which are collectively called the cache manager. The
cache manager interacts with the client host kernel, which
makes file requests, and with file exporters, which service
file requests. It also maintains a local cache of files that have
been accessed. The cache can reside either on disk or in
MEenory.

When a file in the DFS filespace is referenced, the virtual file
system layer of the kernel invokes the DFS cache manager
to handle the reference. The cache manager checks to see
whether the local cache can satisfy the requested mode of
access fo the requested file. If not, it consults the fileset
location server to locate the file exporter that manages the
requested file and then forwards the requesi to the file

14 December 1995 Hewlett-Packard Journal

exporter. All data returned by file exporters is cached to
reduce load on the servers and on the network.

The interactions of the cache manager with fileset location
servers, file exporters, and the local cache are entirely hid-
den from the operating system on the client host. To the
user, accessing a DFS file is no different from accessing a
file in a local file system.

DFS Server Components. Each DFS server host runs a set of
DFS processes that provide access to its filesets and files.

The fileset server process responds to fileset management
requests from administrative clients for filesets residing on
the DFS server host. The RPC interface exported by the file-
set server includes operations to create and delete filesets,
dump and restore them, and get and set status information.
Fileset servers cooperate with each other, with fileset loca-
tion servers, and with file exporters to implement operations
such as fileset movement and fileset replication,

The file exporter process responds to file access requests
from clients for files residing on the DFS server host. The
file exporter is responsible for reading and writing data to
the file and for managing attributes of the file such as its
modification time.

DFS Fileset Location Server. DF'S keeps information about the
current state of all filesets in the fileset location database.
This replicated database tracks the aggregate and the DFS
server host at which each fileset resides. A set of daemons
called fileset location servers maintains the fileset location
database. Fileset location servers can run on any hosts in a
cell but are typically configured to run on a subset of the
DFS server hosts.

If a DFS client encounters a DF'S mount point while resolving
a pathname, it contacts a fileset location server to obtain the
current location of the fileset mounted at that mount point.
Given the fileset's host and aggregate, the DFS client can
then issue a file access request to the correct file exporter.
Because clients look up fileset locations dynamically, a
fileset can be moved or replicated without users and appli-
cations being aware of the change. DFS fileset servers auto-
matically update the fileset location database whenever
necessary.

Underlying the fileset location database is a data replication
subsystem that implements quorum and voting algorithms to
maintain the consistency of fileset location data among all
fileset location servers, even in the event of hardware or
network failure. A DFS client can thus get current, correct
data from any fileset location server.

DFS Token Management

One of the major benefits offered by DFS is its provision of
single-site file system semantics. With respect to the file
systemn, programs running on different machines behave in
general as though they are all running on the same machine.
All clients see a consistent view of the file system. If a pro-
cess modifies a file in any way, that change is immediately
reflected in any operations performed on that file by other
processes, To ensure this behavior, each DFS server host
must know how clients are using its files. The DFS client

© Copr. 1949-1998 Hewlett-Packard Co.

and server processes exchange this knowledge and synchro-
nize their actions by exchanging tokens. A token is a guaran-
tee from a server to a client, granting that client permission
to use a file from the server in a particular way. Tokens are
handled by a DFS subsystem called the token manager, which
interacts closely with the cache manager on the client side
and the file exporier on the server side.

The following information is encapsulated in a token:
Token Type. A bit mask that encodes one or more of the
values listed in Table II. The token type deseribes the rights
granted to a client by the token.

File ID. A unique low-level name for a file. It consists of a
DCE cell identifier, a DFS fileset identifier, a file identifier,
and a version number.

Byte Range. For data and lock token types, the byte range
indicates the portion of the file to which the token applies.

A DFS client cannot perform any operation on a file unless it
possesses all the tokens required for that operation. For
example, the stat() system call requires a read status token,
the read() system call requires both read status and read data
tokens , and the open() system call requires an open token. In
some cases, the required token is already being held and the
operation can proceed immediately. However, in other cases
the client machine must contact the token manager on the
server host to obtain the necessary tokens.

When the token manager on a DFS server host receives a
request for a token from a client, it first decides whether the
requested token can be legally granted, based on a set of
token compatibility rules. For example, several clients can
have read-data tokens for a file, but if one client has a write-
data token for a portion of a file, then no other clients can
have a read-data or write-data token that overlaps that
portion. If the requested token does not conflict with any
outstanding tokens, it is granted immediately. Otherwise, the
token manager first revokes any conflicting tokens from
other clients before granting the requested token.

The rules by which tokens are expired, returned, or revoked
are also important for correct semantics and optimal perfor-
mance. A token has a finite lifetime, which a client can re-
quest to extend if necessary. By default, tokens expire after
two hours, which is short enough that a token usually will
time out before the server has to revoke it, but long enough
that the client usually will not need to refresh it. Data or
status tokens generally remain with a client until they either
time out or are revoked. Before returning a write token, of
course, a client must first send back to the server any modi-
fications that it made to the file while it possessed the token.

The file-version information in a token helps clients use
cached data efficiently. When a client is granted a token by a
server for a file that remains in its cache from a previous
access, the client uses the file-version information to deter-
mine whether the cached data needs to be obtained again.

Conelusion
The Distributed Computing Environment (DCE) integrates
technologies for threads, remote procedure calls, security,

Table Il

Token Types Used by the Token Manager
Token Type Rights Granted to a Client

Entitles a client to read the attributes of
a file and cache them locally

Read Status

Write Status Entitles a client to modify the attributes

of a file

Entitles a client to read some portion of
a file designated by an associated byte
range and to cache it locally

Read Data

Write Data Entitles a client to modify some portion

of a file designated by an associated

byte range
Read and Indicates that the client has an advisory
Write Lock lock on some portions of a file desig-
nated by an associated byte range
Open Indicates that a process on that client
has a file open
Delete Technically a type of open token which

is used during the deletion of files

A special token that applies to the file-
set as a whole and is used to coordinate
the inferaction between ordinary opera-
tions on single files and operations on
entire filesets, such as the movement of
a fileset from one server to another.

Whole Volume
Token

naming, time synchronization, and remote file access. DCE
eases the development and execution of secure client/server
applications and ensures the portability and interoperability
of these applications across many kinds of computers and
networks.

Acknowledgments

The deseription of DFS in this article is derived largely from
a white paper by John Brezak, Daryl Kinney, Rick Kissel,
Charleen Maunsell, Steve Moriarty, and Al Sanders. Parts of
the section on threads are based on {raining materials pre-
pared by Will Hopkins. Rick Kissel, Larry Pare, Al Sanders,
Joe Sanfilippo, and Seiichi Tatsukawa provided helpful
reviews of this article.

References

1. R. Lalwani, “POSIX Interface for MPEAX," Hewlett-Packard
Jowrnal, Vol. 44, no. 3, June 1993,

HP-UX 9.* and 10.0 for HP 8000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

UNIX is a registered trademark in the United States and other cauntries, licensed exclusively
through %/Open™ Company Limited.

X/Open is a regjstered trademark and the X device is a trademark of X/Open Company Limited
in the LUK and other countries.

Open Software Foundation, OSF, and OSFMotif are a trademarks of the Open Software
Foundation in the US.A and other countries

December 1995 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

Adopting DCE Technology for
Developing Client/Server Applications

HP’s information technology community has adopted DCE as the
infrastructure for developing client/server information technology
applications. The team developing the DCE service has discovered that
putting an infrastructure like DCE in place in a legacy environment is more

than just technology and architecture.

by Paul Lloyd and Samuel D. Horowitz

Many companies are navigating the path tfo open systems.
Vendors, including Hewleti-Packard, claim that companies
can receive significant benefits by adopting open system
client/server approaches for implementing information tech-
nology solutions, While the benefits may be attractive, the
array of architecture and technology choices is bewildering.

Hewlett-Packard’s information technology group has adopted
the Open Software Foundation’s Distributed Computing
Environment (OSF DCE) as a recommended technology for
the implementation of client/server applications within HP.
The adoption of a technology, or even an architecture. is not
sufficient to ensure that the benefits of the elient/server
model are realized. In fact, once the architecture and tech-
nology are chosen, the real journey is just beginning. This
paper discusses the issues that led HP to shift toward open
systems for information technology client/server applications,
the rationale for choosing DCE as a key technology, and the
elements of a new infrastructure built to provide the neces-
sary services required to realize the benefits of open systems.

HP’s Legacy Environment

[ntil very recently, HP's legacy environment included multi-
ple mainframes and over 1000 HP 3000 computers operating
in more than 75 data centers located around the world.

Business transactions were processed at places called sites,
which were major HP installations including manufacturing,
sales, and administrative cenfers. Each site had a local HP
3000 computer system. Most applications were written in
COBOL and made extensive use of HP's Turbolmage data-
base management system and VPlus/3000 routines for termi-
nal screen management. These tools were used because
they made the most effective use of the HP 3000 computer
system. At periodic intervals, batch jobs on the HP 3000 sys-
tems wounld create transaction files for transmission to the
mainframes. Other batch jobs processed files received from
the mainframe. A proprietary store-and-forward system
provided the link between the interactive HP 3000s and the
batch-oriented mainframes. Fig. 1 illustrates this legacy
architecture.

This architecture gave each site access to its own data, but
only its own data. Once a transaction was generated and

16 December 1995 Hewleti-Packard Journal

sent to the mainframe, interaction with other production
systems meant that response was indeterminate, For exam-
ple, system users would have to check repeatedly 1o deter-
mine if a purchase order that had been entered was ac-
cepted by the factory and scheduled for production. This
acknowledgment could take from hours to days depending
on the complexity of the order and the number of HP divi-
sions supplying content. In addition, processing and data
communication delays anywhere in the company could
impact the response tfime for the transaction, but the user
had no way of finding the bottleneck. Further problems

Mainframe

| Corporate

Batch File Transters

Data Center (HP 3000
Systems, COBOL, and HP
Turbolmage Databases)

- 4
Sales Offices, o
Factory Floor, Etc. Data Entry
Terminals
—— — Running VPlus 3000
- Programs

Fig. 1 HP's legacy environment for information technology

© Copr. 1949-1998 Hewlett-Packard Co.

were found during massive data center consolidations that
have taken place over the past few years.

The architecture for HP legacy applications yielded a large
number of applications, each of which required large main-
tenance and support staffs. Many applications were custom-
ized to address the peculiarities of various sites. This con-
tributed to the support problem. As processing power and
network bandwidth grew. the customized versions of stan-
dard applications made consolidation difficult. In some
cases, support costs actually grew.

New applications were both expensive and took a long time
to develop, integrate, and deploy. They made little use of
previously written code, nor did they share data or other
resources effectively. This resulted in a great deal of repli-
cated data within the company. As the environment contin-
ued to evolve and new applications came online to address
business needs, users found themselves having to manage a
multitude of passwords for a large number of systems. From
a security standpoint, each password was fransmitted
multiple times daily over the network, and host-based login
services provided the foundation for all data security.

Movement toward Change

Several years ago, HP realized the benefits that could be
achieved through open systems client/server architectures.
The single biggest driver for the change was a desire to re-
duce business implementation time, which is the time from
when a business need is identified to the time when a pro-
duction system is in place to address the need. Other drivers
ine luded the need for greater cost-effectiveness of the infor-
ration technology (IT) organization, and the need to reduce
« perational and administrative costs. An information fech-
nology steering group determined that the widespread use
of a client/server architecture would enable a reduction in
business implementation time and provide increased organi-
zational effectiveness and reduced cosis.

A group of IT leaders representing multiple HP organizations
formed a task force to develop a client/server architecture
for use within HE. Some of the factors the task force consid-
ered when choosing the best client/server technology to
adopt for our environment included:

Training optimization and the experience of the eurrent
staff

Coneurrent processing in a distributed environment
Enhancing security for confidential and critical data
Moving application servers with minimal impact on clients
Providing interoperability with existing client/server
applications and tools

Enhancing the portability of applications across
architectures

Operating across the HP internet on an enterprise-wide
basis.

The evaluation of these factors by the task force resulted in
a recommendation that the Open Soltware Foundation's
Distributed Computing Environment be adopted as a stan-
dard technology for the implementation of client/server
applications within HP,

DCE and the Evaluation Factors

DCE excels in the area of optimizing the training and experi-
ence of the current staff. One problem faced by early adopt-
ers of client/server computing was that no one could agree
on the definition of what was a client and what was a server.
This led to a plethora of home-grown and purchased solu-
tions that did little to leverage the nature of the HP comput-
mg environment.

The definitions of client and server within DCE are consistent
and tangible. A client refers to a program that calls a remoie
procedure. A server refers to a program that executes the
procedure. There is no confusion with hardware or clients
and servers on the same system or even a single program
being both a elient and server. The definitions are entirely
consistent. In addition, these definitions fit perfectly within
the context of HP's client/server application model.

DCE uses the remote procedure call (RPC) mechanism for
client/server communication. This too is beneficial for pro-
grammers because it is an exiension of a concept that every
programmer knows and understands: how to write and exe-
cute procedures (or subroutines). In DCE, RPCs behave the
same as loeal procedures. They are still distinet, modular
collections of functionality with well-defined parameters
that behave in a "black-box” fashion; send them the required
parameters, and they reply in a predefined and predictable
manner. Further, RPC is unobtrusive in that it hides the com-
plexity of the distributed environment.

With RPCs, application programmers do not need to learn
the intricacies of data networking or the particulars of a
variety of application programming interfaces (APIs) to
implement distributed applications effectively. Unlike other
technologies, RPCs ensure that the operational consider-
ations of network programming are both hidden and auto-
matic. Lastly, the DCE APIs required to establish the client/
server environment can be easily abstracted to hide even
more from the application developer with the further benefit
of contributing to consistency in the environment.

Using these concepts, and the tools described later, several
of our application teams have experienced reduced imple-
mentation times in spite of the need for training in new
technologies.

New issues and opportunities arise with the movement to
client/server architectures. One of these opportunities is the
ability to gain more effective use of computing resources on
the network. Through the implementation of a threads facil-
ity, DCE gives application developers the ability to have a
client call multiple servers simultaneously. In this way, an
individual user executing a client program can invoke the
parallel processing power of many servers. On the other
end, the threads technology also allows servers to respond
to multiple clients by processing each request within its own
thread. This entails significantly less overhead than the cre-
ation and destruction process employed by many alternative
technologies that require a unique server process per client.
DCE threads are briefly described in the article on page 6.

December 1995 Hewlett-Packard Journal - 17

© Copr. 1949-1998 Hewlett-Packard Co.

DCE also incorporates a time service API to provide a con-
sistent network-wide view of time. This service addresses
the issues created when applications require time stamps to
be reconciled across geographic boundaries or between
systems.

Security is another area that raises both issues and opportu-
nities. HP has traditionally used host password security and
the security features inherent in the operating system to
protect data and applications. If a user gained access to an
application, then the user was presumed to have authority
Lo execule any transaction performed by the application. In
recent years, some application teams have supplemented
host security with features provided by relational database
management systems (RDBMS), but these too are usually
limited in their flexibility. For example, a user that may have
the ability to change a record when executing an authorized
transaction should be prohibited from doing so with a data-
base maintenance utility. Such discrimination is beyond the
capability of most relational database management systems
and requires added attention to system administration.

DCE extends the concept of security to the application it-
self. The principles of DCE security are authentication and
authorization. DCE provides three services to enable the
ultimate authorization of actions within a server, The regis-
try service is a database used to keep information about
users, groups, systems, and other principals® that can have
an identity within the DCE security framework. The authen-
tication service, based on the widely respected Kerberos
technology from the Massachusetts Institute of Technology,
is used to allow principals to authenticate themselves. The
privilege service supplies the privilege attributes for a prin-
cipal. These attributes are used by an access control list
(ACL) manager within the body of a server to make autho-
rization decisions. Using an ACL manager, server authoriza-
tion decisions can be as granular as business needs dictate.
Back doors, such as maintenance utilities or rogue pro-
grams, are not possible because users have no access to the
systems on which critical data is stored. This makes the
properly authenticated and authorized transaction the only
vehicle by which a user can affect the database. Security
and ACLs are also described in the articles on pages 41 and
49, respectively.

In addition to authentication and authorization, DCE pro-
vides features to protect both the integrity and privacy of
data transmitted over a network. These features can be in-
voked by clients or servers when the sensitivity of business
data dictates that such precautions are prudent.

Another challenge of the environment is change. Data cen-
ters are consolidated and moved, and hardware within the
centers is replaced on a regular basis.

DCE provides a flexible, scalable directory service that can
be used to apply human readable names to objects such as
servers. Servers record their binding information at startup.
Clients then locate servers wherever they may be. Multiple
directory types permit great flexibility for the application
developer. For example, the corporate telephone directory
may have replicated instances of the server at many loca-
tions. Should one server fail, a client can automatically bind

* A principal can be either a human (ser or an active object (maching, file, process, etc)

18 December 1995 Hewlett-Packard Journal

to another. In the case of an online transaction processing
system, the one and only server can be found reliably by a
client even if it has been moved temporarily after a disaster.
Both of these cases can be accomplished with no changes to
the client or the user’s system configuration. DCE’s global
directory services are described in the article on page 23.

Hewleti-Packard was a significant contributor to the tech-
nology suite that makes up the OSF DCE definition. One of
the most important contributions was the RPC mechanism.

DCE's RPC is a compatible superset of the Network Com
puting System (NCS) from what was once Apollo Computer.
The principles upon which the two solutions are based re-
main the same. They include platform independence and
platform unawareness.

DCE platform independence comes from the fact that it runs
on all computing platforms in common use within HP’s IT
environment: HP 3000 computers, HP 9000 workstations,
[ntel-based Windows™ 3.1, and Windows NT. Platform un-
awareness comes from the fact that application program-
mers only need to concern themselves with the platform
they are working on. Thus, when a developer codes a client,
there is no need for the developer to be concerned with
what platform the server will run on. Conversely, the server
developer does not need to know what platform the client is
using. Thus, an application client running on a desktop PC
can send a byte string or pointer to a server running on a
PA-RISC platform even though the data representations on
the two systems are different. Fig. 2 shows a typical configu-
ration of some of the components in HP's DCE client/server
environment.

RPC provides the added benefit of interoperating with clie s
and servers already implemented using NCS. This provide. a
transition for applications to the more robust world of DCE.

HP operates one of the world’s largest private Internet
Protocol (IP) networks. The final criterion used by the task
force was that the client/server technology chosen must

Application Servers

Production DCE Servers
(Replicated in Key Locations)

HP 9000 Business s
Servers H

AR
:Il:.: R ¢ A | = Security
s, * Time
: - [« Directory

[
Secure
Client/Server |
Communication

Security and Directory
Service Communication

Application Clients
(PC or Workstation)

Fig. 2 The new client/server environment for information technology

operations.

© Copr. 1949-1998 Hewlett-Packard Co.

L]

operate on HP's internet in an enterprise-wide fashion. DCE
was designed to operate in the IP environment in a scale
well above the size required for HP's enterprise.

The task force concluded that the adoption of DCE as a
standard technology would enable some significant benefits
including:

Replacement of batch store-and-forward applications with
OLTP

Encapsulation of legacy code and data into servers that can
be accessed by GUI clients

Implementation of client/server applications with minimum
training

Abstraction of much. if not all, of the infrastructure so that
application teams can concentrate on the business aspects
of applications

Implementation of enterprise-wide robust security
Movement of servers between systems without impacting
the client or the configuration of the client’s host system.

Building HP’s DCE Infrastructure

Because of the scope of DCE and the scale of problems that
DCE addresses, careful planning is required when deciding
how to deploy DCE. We found that the best approach is to
start with the customers. As a group responsible for deliver-
ing DCE to HP’s information technology community, we
defined several categories of customers:

End users. These are the people who interactively use appli-
cations.

Application development teams. These are the people re-
sponsible for designing and constructing applications in
response to some stated business need.

Application administrators. These are the people who ad-
minister and support business applications in production.

Our group, which is the client/server tools group for HP's
corporate network services department, has a long history
of providing application data transfer solutions to each of
these types of customers. The lessons gained from this ex-
perience are simple, even intuitive. End users want technol-
ogy to be as absolutely invisible as possible, application de-
velopment teams want to focus on their specific business
problems, and application administrators want tools and sup-
port. In other words, whenever users must rely on technol-
ogy to provide a solution, they want to be consumers of the
technology and like all consumers, they demand certain
things from a technology supplier such as:

A higher level of abstraction than is usually provided by the
technology

The ability to make necessary, simplifying assumptions

A consistent level of service in all cases.

Given these requirements, HP has chosen to deploy DCE in
the form of an infrastructure. This infrastructure is known
as the HP DCE service. In corporate network services par-
lance a service is an infrastructure with some specific prop-
erties. The prime reason for the term service is that the
entire effort is focused upon meeting the needs of our cus-
tomers, the people of Hewlett-Packard. The term service has
connotations of careful planning, standardization, published
guidelines, and customer satisfaction. It does not have con-
notations of central control, corporate mandate, or arbitrari-
ness. Finally, a service is a process as much as it is a tangible
solution, and it recognizes that as the sophistication of its

L]

L]

customers and their business problems grow with time, so
too will their expectations.

Associated with every service is a value proposition. The
value proposition formally defines the customers, the bene-
fits provided to the customers, and the cost of these benefits.

Our experience designing and constructing a DCE infra-
structure can be summarized very succinctly:

The infrastructure must accommodate diversity.

The infrastructure must provide consistency.

The infrastructure must grow experience.

Accommodating Diversity

Identifying diversity is a crucial aspect of customer aware-
ness. The customers of a distributed computing solution
come from all parts of the organization with distinct require-
ments. We identified four categories that the DCE service
must accommodate,

The first category is network performance. Customers of the
DCE service are, by definition, users of HP's IP network
infrastructure. Because of differences in networking tech-
nology, customers of the HP internet can realize a difference
in both bandwidth and transit delay exceeding two orders of
magnitude. Given the request/reply nature of the RPC proto-
cols. this difference will also be reflected in every DCE oper-
ation. The lesson of this category is that the infrastructure
must not make assumptions regarding the motion of
packets,

The second category is application scope. Many business
applications are truly enterprise-wide in scope in that there
are tens of thousands of clients and massive, dynamic repli-
cation of the application servers. Many business applications
are only deployed to a single group or department where
there are perhaps a few dozen clients and only a single ap-
plication server is required.

The third category is the different types of application users.
Some users use data entry applications in which a small
number of transactions are constantly performed to add or
modify data. Other users use data query applications to per-
form a modest number transactions o read data. Other ap-
plications provide decision-support services, which typically
allow users to perform ad hoe transactions that read data.
Finally, some applications serve noninteractive clients that
typically invoke large numbers of transactions that read,
add, and maodify data.

The fourth category is the geographic dispersal of the enter-
prise. HP does business in several countries all over the
world. What this means is that nighttime or weekend service
outages cannot be tolerated.

We learned from this kind of analysis that enterprise-wide is
a one-dimensional term, and real enterprises are not one-
dimensional. We have added the terms enterprise-deep and
enterprise-broad, Enterprise-deep addresses the diversity of
application users because it acknowledges that a successful
infrastructure will accommodate every type of user. Enter-
prise-broad addresses the diversity of network performance
and application scope by acknowledging that all business
processing must be accommodated. In addition, today’s
business processes often cross company boundaries. In

19

Decerniher 1895 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

these situations, it also necessary to be enterprise-
independent.

HP's DCE service accommodates diversity in several key
ways. The policies and guidelines for the assignment of reg-
istry and namespace (DCE cell directory service) objects
support massive replication of application servers. This
allows DCE to be used as a foundation for truly enterprise-
wide computing. The support model spans all organizations
and all time zones, and no customers are ever treated as
second class. The subscription model allows all customers
to gain access quickly and easily. A subseription-based ser-
vice provides convenient focal points for satisfying service
requests. Finally, policies and guidelines delegate control to
the appropriate level. Thus, since DCE is a distributed com-
puting solution, its administration must also be distributed.

Consistency

Providing consistency is a crucial aspect of customer satis-
faction. Despite their diversity, all customers are consumers
of the same technology. They all demand a complete and
comprehensive solution. Furthermore, the biggest return on
IT investment comes from building on a consistent founda-
tion that encourages resource sharing and leverages off
other infrastructures. As in the case of diversity, the best
place to start is with the customers,

End users have specific requirements regarding consistency,
Since they must sit in front of and interact with the applica-
fions, end users are best served when all applications based
on DCE offer a consistent interface with respect to DCE. A
consistent interface offers equivalent dialog boxes for per-
forming the standard tasks of DCE login and credential
refresh. A consistent interface also offers an equivalent
mechanism of dialog boxes or configuration files for server
hinding and server rebinding. Since DCE is an enabling tech-
nology, end users are best served when they can access a
qariety of DCE applications using their unique, enterprise-
wide identity. Gaining eredentials should be a side effect of
being an employee of the organization, not a side effect of
being a user of application X. Finally, there are standard
tasks, such as password administration, that all end users
must perform and are best served when they all have access
to a standard set of tools.

Application development teams have specific requirements
regarding consistency. Since application development teams
are responsible for incorporating DCE functionality into
applications as part of a business solution, they are best
served when they can make the necessary simplifying as-
sumptions. Application teams do not want the burden of
acquiring and administering the core servers that provide
the DCE security service and the DCE cell directory service.
Removing this burden is especially important for teams who
develop applications that must scale to serve the entire
enterprise.

Application development teams also benefit from the ability
to use tools that abstract the native DCE APIs. These tools
dramatically reduce implementation time, and if they are
standard and consistent, training is leveraged across appli-
cation team boundaries as well as across applications.

20 December 1995 Hewleti-Packard Journal

Finally, application development teams benefit from the
ability to leverage from established best practices and estab-
lished experts. Despite the common misconception that best
practices and experts are an attenpt to constrain feams,
experience has shown their advantages. Code reuse and
resource sharing improve because similarity can be lever-
aged. Also, business implementation time is less because the
need for retraining is reduced, and application quality
increases because teams refine, improve, and reuse their
skills.

Application administrators have specific requirements re-
garding consistency. As is the case with application develop-
ment teams, administrators are best served when they can
make the necessary simplifying assumptions. If an end user
approaches the administrator to gain access, the administra-
tor should be able to ask the end user’s principal name and
then perform the appropriate application-specific ACL ad-
ministration and group managemeni. The nonapplication-
specific tasks of requesting an end user principal and
machine principal and obtaining properly licensed copies of
the DCE software should be left to the end user. The benefit
to the application administrator is vastly reduced workload
because the administrator only deals with the application. In
addition, registry objects such as groups are leveraged
across application boundaries,

Application administrators also benefit from the ability to
leverage the best practices and standard tools. If DCE appli-
cations use DCE objects such as registry groups and name-
space entries in a consistent fashion, retraining is minimized
and a large cause of administrative errors is reduced.

Hewlett-Packard’s DCE service provides consistency in
many ways. Cell boundary decisions are weighted in favor
of larger cells to promote genuine enterprise-wide compui-
ing. Tasks associated with DCE cell administration have
been abstracted into high-level tools based upon the ser-
vice's subscription model. These tools automate and hide
specific, low-level DCE tasks. For example, the task that
corresponds to an application subscription creates prinei-
pals, groups, and accounts for the application’s servers,
creates namespace entries for the application, and modifies
all associated access control lists. The benefit of this
abstraction is the consistency that it ensures because the
actual registry and namespace objects are generated and
administered in a standard, documented manner.

Growing Experience

Growing experience, which means making both application
developers and application users successful, is a crucial
aspect of realizing the business benefits of DCE. Clearly, an
infrastructure that is not used is useless. Growing experience
is a two-step process that never ends. The first step is to
identify barriers, and the second step is to remove these
barriers by any means necessary. Such means include, but
are not limited to, the development and deployment of cus-
tom tools, the absiraction of DCE tasks to better suit exist-
ing business practices, and exploitation of the fact that DCE
is already one of its own best customers. The need for cus-
tom tools is by no means a negative reflection on DCE, but

© Copr. 1949-1998 Hewlett-Packard Co.

simply an acceptance of the fact that no single solution can
do everything for evervbody. Abstraction is simply a way to
make DCE fit the business rather than forcing the business
to fit DCE. Taking advantage of DCE means understanding
that everything in DCE is basically a DCE object accessed
by a client through an interface and protected by an ACL.

Application developers face a variety of barriers. The most
traumatic barrier stems from the large number of new tech-
nologies directed towards development teams. Keep in mind
that in most organizations, new technology really means
new to the organization. In Hewleti-Packard, most IT appli-
cation teams are new to writing distributed applications
using DCE's client/server split or RPC paradigm. Our distrib-
uted applications have traditionally been based on file trans-
fers or message passing. The learning curve for all of the
technologies associated with DCE is nontrivial, especially
when the development tools associated with the technologies
are still evolving. The consequence to application developers
is that creating the first DCE application with out-ofthe-box
DCE, even an evaluation application, is usually a difficult
task. The risk is that IT application teams will not consider
using DCE.

Application developers also face barriers when testing or
deploying applications. The richness of DCE offers the de-
velopers an often bewildering variety of choices such as
different ways to take advantage of the namespace or differ-
ent methods of allocating registry objects to take advantage
of DCE security. Without guidelines, established practices,
and assistance some teams will simply try anything and then
fail. Reports of these failures usually travel faster and wider
than reports of teams that succeed.

HP’s DCE service removes these barriers in three key ways.
First, the service provides a DCE development library that
abstracts the native DCE APIs into two very high-level API
routines that include one call for the client and one call for
the server. Second, the service offers a custom version of
the OSF DCE programmer’s class, which focuses on HP's IT
environment. Third, the service offers consultants who can
help other entities start DCE projects. A typical consulting
venture involves the creation of Interface Definition
Language (IDL)1 files, a skeleton server that takes full
advantage of security and the namespace, and a skeleton
client that can bind to the server. After this is all done the
application team only has to add the application code
between the curly braces. The best part of DCE is that it
allows one to distribute an application without worrying
about how to do it

Application administrators face barriers because for DCE
applications, there will he DCE related tasks that they must
perform either directly or indirectly in a production environ-
ment. Although production-quality DCE applications do not
require much attention, there are still issues that can arise.
For example, there is the occasional administration of end-
points and namespace entries in server failure cases, the
occasional administration of server keytab files, and most of
all, the administration of the application’s ACLs used to con-
trol authorization. The out-of-the-box DCE tools are cumber-
some and error-prone, and worst of all, they are fairly low-

IDL s & language similar to C that allows developars to specify the interfages that tie client
and server applications together

level and require a fairly detailed knowledge of DCE con-
cepts. The risk is that DCE applications can acguire an un-
deserved reputation as being costly and difficult to support
in production.

HP's DCE service removes these barriers by providing cus-
tom OSF/Motif tools to ease these DCE related tasks. Also,
the published guidelines and best practices that bring con-
sistency to DCE applications can help to grow experience

by reducing the need to retrain.

System administrators face barriers because of the complex-
ity of one of the most common tasks in a growing, maturing
DCE cell. Since DCE regards each physical machine as a
principal with its own authenticated identity, configuration
must be done on each machine when adding it fo the cell.
The out-of-the-box tools have two significant problems.
First, they require coordination by the system administrator
for root access. Second, if configuration is done across the
network. both the root password and the DCE cell_admin
password are exposed. These are unacceptable security
holes especially for a system that is intended to serve as a
foundation for secure distributed applications. In addition.
many machines already run NCS applications, and these
applications must not be impacted by the migration to DCE.
As a result, installation and configuration are tedious and
potentially insecure. The risk is that deploying DCE through-
out the enterprise will be viewed as slow and expensive.

Hewlett-Packard’s DCE service removes these barriers in
three key ways. First, we have developed a scheme that
allows a machine to be remotely and securely added to a
cell. In particular, this scheme does not expose the operat-
ing system or DCE passwords across the network. It also
doesn’t require any effort on the part of the system adminis-
trator other than to install an HP-UX* fileset. Second, we are
integrating the DCE elient software into a common operal-
ing environment for machines that run the HP-UX operating
system. Third, we provide a PC-DCETT license server to ease
the distribution of PC-DCE.

End users face a variety of potential barriers. Although it is
the job of the application developer to shield DCE from end
users, they will still be aware of their DCE prineipal. Thus,
end users should have minimal training on obtaining and
refreshing their network credentials as well as managing
their principal. Out-of-the-box DCE does not include a
standalone password management tool, and users must ac-
tually run rgy_edit and modify their account. Also, integrated
login solutions in which the operating system and DCE log-
ins are combined are still evolving (see the article on page
34). The risk is that deploying DCE applications 1o large
numbers of end users can be slow, tedious, and expensive,
and the end users who are exposed to too much DCE be-
cause ol poorly constructed applications may assurme that
all DCE applications are difficult to use.

HP's DCE service removes these barriers in two key ways.
First, we provide tools on both the HP-UX operating system
and the PC to ease password administration. Second, the
service's subscription model provides a simple focal point
for requesting and obtaining a DCE principal.

1 PC-DCE is an implementation of DCE that rung inan MS Windows environmeant

December 1995 Hewlett-Packard Joumal - 21

© Copr. 1949-1998 Hewlett-Packard Co.

The final barrier fo growing experience comes from two
groups of people. The first group believes that client/server
is really just remote SQL, and the second group believes that
client/server just means the motion of bits over the network.
Remote SQL is certainly a fine solution for some business
problems. However, it is important to remember that vendor
lock-in, client-side awareness of database schema, network
performance on the WAN, and the usual lack of network
security could be problems in dealing with remote SQL. Al-
though DCE does move bits over the network, and other
approaches such as message passing using sockets may be
an adequate solution for many business problems, the issues
of WAN performance, architecture differences, code sharing
difficulties, code maintenance difficulties, and the usual lack
of network security could be problems in other approaches.
When making technical decisions, being dogmatic is usually
the first step towards being unsuccessful. The goal is not to
dictate or even to impress, but to educate and promote a
community in which decisions are made objectively.

Hewlett-Packard’s DCE service addresses these barriers in
two ways. First, we offer classes on all aspects of DCE and
its use. Second, service subscribers can access all published
information using Worldwide Web browsers.

Conclusion

Perhaps the best way to get a clear perspective of HP's DCE
service is via analogy with other well-known infrastructures.
Consider customers of a WAN. Everyone wants access and a
consistent service model such as enterprise-wide [P connec-
tivity. Consider the technology that is used to build a WAN,
Now consider a successful WAN infrastructure. It is much
more than the technology (i.e., routers, bridges, etc.) used io
build it, it is a also a distributed creature that requires dis-
tributed administration and coordinated planning and guid-
ance. Furthermore, there is no distinction between a test
network and a production network. The network is simply
an infrastructure that supports all phases of the software
lifecycle,

22

December 1895 Hewlett-Packard Journg]

L]

Another valuable analogy is the interstate highway system in
the United States. In the 1950s automotive technology
boomed and the resulting cost structures allowed many
people to own a car. This produced a fundamental change in
American society because of the freedom, power, and
movement of goods and services the automobile permitted.
Perhaps the biggest contributing factor was the interstate
highway system. The interstate highway system really
wasn't about automaotive technology. It was about use and
access. Distributed applications are the same. The focus
shouldn’t be on distributed computing technology but on use
and access.

DCE is a powerful and impressive collection of software
technology. It offers attractive solutions to the kinds of busi-
ness problems that most large organizations must address.
Our experience has demonstrated the following:

It is OK to experiment.

[t is important to allow a few key people to become
industry-level experts. These are the people who should be
responsible for service management.

DCE should not be managed by regulatory practices.

It is imperative to absiract anything if the result better fits
the business needs and business practices.

Activities should not be done in secret or kept secret.

A service such as DCE is as much a continual process as it
is a tangible solution.

HP-UX 3.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products

UNIX s a registered trademark in the United States and other countries, licensed exclusively
through X/Opan Company Limited

X/Open is a reqistered rademark and the X device is a trademark ot X/Open Company Limited
in the UK and other countries

Opén Software Foundation, OSE and OSF/Motif are trademarks of the Open Software Founda-
tion in the U.S. and other countries

Windaws and MS Windows-are U.S renistered trademarks of Microsoft Corposation

© Copr. 1949-1998 Hewlett-Packard Co.

DCE Directory Services

The DCE directory services provide access for applications and users to a
federation of naming systems at the global, enterprise, and application

levels.

by Michael M. Kong and David Truong

The directory services of the Open Software Foundation's
Distributed Computing Environment (DCE) enable distrib-
uted applications to use a variety of naming systems, both
within and outside a DCE cell. Naming systems make it
possible to give an object a textual name that is easier for
humans to use—easier to read, pronounce, type, remember,
and intuit—than an identifier such as a DCE universal unique
identifier (UUID). Information about the locations of objects
can be stored in naming systems so that users can access an
object by name, with no a priori knowledge of its location.

DCE provides three directory services:

The Global Directory Service (GDS) is the DCE implementa-
tion of the CCITT (International Telegraph and Telephone
Consultative Committee) 1988 X.500 international standard.
GDS is a distributed, replicated directory service that man-
ages a global namespace for names anywhere in the world.
The Cell Directory Service (CDS) is a distributed, replicated
directory service that manages names within a DCE cell.
The Global Directory Agent (GDA) is a daemon that uses
global name services to help applications access names in
remote cells. GDA interacts with either X.500 services such
as GDS or Internet Domain Name System (DNS) services
such as the Berkeley Internet Name Domain (BIND) name
server, named.

Through these services, DCE applications can access several

interconnected namespaces, including X.500, DNS, CDS, the
DCE security namespace (see article, page 41), and the DCE
Distributed File Service (DFS) filespace (see article, page 6).

The DCE Namespace

The DCE namespace is a federation of namespaces at three
levels: global namespaces, an enterprise namespace, and
application namespaces. A DCE name can span one, two, or
all three of these levels, GDS and BIND name servers provide
X.500 and DNS global namespaces in which the names of
DCE cells are stored. Within each DCE cell, CDS provides
an enterprise namespace, and the names of CDS objects in
that namespace are relative to that cell. At the application
level, DCE subsystems including DCE security and DFS
define their own namespaces.

DCE names are hierarchical names consisting of a series of
components delimited by the / character. The first component
of a DCE name is one of three prefixes denoting the root of
i namespace:

® /.. is the global rool. A name that begins with /... is called a
global name.

« /.:is the root of the local cell. This prefix is shorthand for
[...[<local-cell-name>. Names that begin with /. are called local
names.

= [:is the root of the DFS filespace. This prefix, shorthand for
[:/fs, makes DFS filenames easier to use.

Within the local DCE cell, local and global names for an
object are equivalent and interchangeable. However, when a
user references a local name, the resolution of the name is
relative to whatever cell the user is in. Hence, to access an
object in a remote cell, a user must refer to the object by its
global name.

A DCE cell has a global name that may be either an X.500
name stored in GDS or a DNS name stored in a BIND data-
base. For example, a cell at HP's Cupertino site could have
the GDS global name /.../c=us/o=hp/ou=cuperting. In X.500 syntax,
the components of a name are separated by the / character,
and each component describes an attribute of the object.
The component o=hp, for instance, signifies the organization
named HP. The DNS global name /... /cssl.cell.ch.hp.com might
name a cell in HP's Chelmsford systems software lab (CSSL).
As this example shows, a DNS name is a single component
of a DCE name but is itself a compound name. DNS names
are made up of names in the hierarchical DNS namespace,
separated by periods and ordered right-to-left from the DNS
root.

Objects in a cell have names that are composed of the cell
name, a CDS name, and possibly a name from an application
namespace. Some objects, such as RPC servers, are named
directly in the CDS namespace; their names consist of a cell
name plus a CDS name. Other objects, such as DFS files or
DCE security principals, are managed by a service that im-
plements an application namespace. The name for such an
object is formed by concatenating a cell name, a CDS name
for the root of the application namespace, and an applica-
tion name relative to that root. For example:

» If the HP Chelmsford systems software lab cell is running
an RPC server from the Acme Database Company, that
server might be registered under the name /.. /cssl.cell.ch.hp.com/
acme/acme_server (see Fig. 1). Within the CSSL cell, /.:/acme/
acme_server would be an equivalent name for the server.

o II'the HP CSSL cell includes a principal named Nijinsky, that
principal would have the global name /... /cssl.cell.ch.hp.com/
sec/principal/nijinksy (see Fig. 2) and the local name /.:/sec/princi-
pal/nijinksy.

« If the DFS filespace in the HP Cupertino cell contains a file
called /users/sergey/mallfigor, that file would have the global

December 1995 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

/... fessl.cell.hp.com/acme/acme_server

| Global Cell Server
Name Name

i (in DNS) (in CDS)
Global Dbject Name

Fig. 1. A DCE global name for a server,

name /.../c=us/o=hp/ou=cupertino/fs/users/sergey/mail/igor (see
Fig. 3). Within the Cupertino cell, the names /. /fs/users/sergey/
mail/igor and /:/users/sergey/mail/igor would be equivalent names
for the file.

Directory Service Interfaces

DCE offers two sets of programming interfaces to directory
services. The RPC Name Service Independent (NSI) APLis a
generic naming interface provided by DCE RPC. The X/Open™
Directory Service (XDS) and X/Open OS] Abstract Data
Manipulation (XOM) APIs are interfaces based on CCITT
X.5600 standards.

Transparently to an application, the DCE directory services
interact with each other as necessary to resolve names,
Fig. 4 illustrates some of the mterrelationships between
these services.

When a DCE application passes a name to the RPC NSI APIL
CDS client software (in the DCE run-time library and in CDS
client daemons) uses DCE RPC to contact a CDS server
either in the local cell or in a remote cell to look up the name.
Names in the local cell are passed direcily to a CDS server
in the cell. Names in a remote cell are passed 1o a GDA dae-
mon, which performs a lookup in X.500 or DNS, depending
on the syntax of the cell name, to obtain the location and
identity of a CDS server in the remote cell. The CDS client
software then uses this information to contact the remote
CDS server.

When an application passes a name to the XDS/XOM APIs,
the XDS code in the DCE run-time library resolves the name
according to its syntax. If the name consists purely of com-
ponents such as c=us and o=hp, the XDS library passes the

name to the GDS clieni code, which contacts the GDS server

to look up the name. If any portion of the name is not in
GDS syntax, the name is passed to the CDS client code and
resolved in the same way as names passed through the RPC
NSI APL

GDS Directory Structure

The GDS directory is a collection of information about ob-
Jects that exist in the world. Information about objects is
stored in a database called a directory information base. A
directory information base contains an entry that completely

/... fessl.cellhp. ji I/nijinsky
-
Global Cell Principal
Name Name
{in DNS] (in Security)

Name of

Security Root
lin CDS)
Global Object Name

Fig. 2. A DCH global name for a principal.

24 December 1995 Hewlett-Packard Journal

Global Cell Name File Name
(in X.500) (in DFS)
Name of DFS
Root {in CDS) —=
Global Object Name

Fig. 3. A DCE global name for a file.

describes each object and may also contain an alias entry
that provides an alternative name for an object enlry.

An entry in the directory information base consists of a set
of attributes, each of which stores information about the
object to which the entry refers. An attribute is made up of
an attribute type and one or more atiribute values. For ex-
ample, an entry for a person might include attributes whose
attribute types are surname, common name, postal address,
and telephone number. Attributes that have more than one
value are called multivalued attributes. A person with more
than one telephone number would have a multivalued tele-
phone number attribute.

Each entry can belong to one or more object classes. An
object class of an entry resiricts the permitted attributes for
that entry. The mandatory and optional attributes of entries
in an object class are determined by object class rules, and

DCE
Applications

XDS/X0M
APls

RPC NSI API

XDS Library

CDS Client
{Run-Time}

GDS Cliemt
(Run-Time)

GDS Server

Internet DNS
(e.g., BIND)

X.500
(e, GDS)

Fig. 4. Interrelationships between DCE directory services, The
application program interfaces (APIs) are the DCE remote proce-
dure call name service independent APl (RPC NSI API) and the X/
Open Directory Service (XDS) and X/Open OS] Abstract Data Manip-
ulation (XOM) APIs. GDS is the DCE Global Directory Service and
CDS is the DCE Cell Directory Service, GDA is the DCE Global Di-
rectory Agent. X.500 is an international standard implemented by
the DCE GDS. DNS is the Internet Domain Name System. The Berke-
ley Internet Name Domain (BINDY) is an implementation of NS,

© Copr. 1949-1998 Hewlett-Packard Co.

these rules are part of a schema. For example, an entry rep-
resenting an organization must contain an attribute called
Organization-Name, which has the name of the organization as
its value. An entry can contain optional attributes that de-
scribe the organization: the state or locality in which the
organization resides, the postal address of the organization,
and so on. As a general rule, all entries must coniain the
Object-Class atiribute, which contains the list of object classes
to which the entry belongs. If an entry belongs to more than
one object class, all object classes must be listed in this
attribute.

As discussed above, attribute types and object classes have
human-readable names that are meaningful and unigue, but
they are not used in the protocols; an object identifier is
used instead. An object identifier is a hierarchical number
assigned by a registration authority. The possible values of
object identifiers are defined in a tree. The standards com-
mittees ISO and CCITT control the top of the tree and define
portions of this tree. These standards committees delegate
the remaining portions to other organizations so that each
object class, attribute type, and attribute syntax has a unique
object identifier. For example, the object identifier of the
country object class is 2.5.6.2, which can also be written more
verbosely as:

joint-iso-ceitt{2imodules{slobject classes{Blcountry{2}.

X.500 Naming Concepts

Information in the directory information base is organized in »
a hierarchical structure called a directory information tree.

A hierarchical path, called a distinguished name, exists

from the root of the tree to any entry in the directory infor-
mation base. Each entry in the directory information base
must have a name that uniquely describes that entry. For
example, the employee (entry) David has the distinguished

GDS Server
Application

GDS Client

Directory Access Protocol

Application

DUA
Cache

Directory Access Protocol

DUA = Directory User Agent
DSA = Directory System Agent

GDS Server

name C=US/0=hp/0U=hpind/CN=David, where C denotes the coun-
try, 0 the organization, 0U the organization unit, and CN the
COMMON Name.

The distinguished name is a collection of attribute type and
attribute value pairs called relative distinguished names.
From the example above, C (country) is an attribute type
and US (United States) is an attribute value.

Alternative names are supported in the directory information
tree through special entries called alias entries. An alias
entry is a leaf entry in the directory information tree that
points to another name. Alias entries do not contain any
attributes other than their distinguished attributes because
they have no subordinate entries.

GDS Components
As shown in Fig. 5. GDS is made up of four main com-
ponents:

e Directory User Agent (DUA). This process is the user’s

representative to the directory service. The user can be a
person or an application.

Directory System Agent (IDSA). This process controls and
manages access to directory information.

e DITA Cache. This process keeps a cache of information

obtained from the directory DSAs. One DUA cache runs on
each client machine and is used by all the users on that
machine. The DUA cache contains copies of recently
accessed object entries and information about DSAs.
Directory Information Base. This is where GDS stores
information.

The DUA and DSA communicate by using the directory
access protocol. DSAs use the directory system protocol to
communicate with each other.

DUA
Cache

| Directory
| System
Protocol

Directory
Information
Base

ouA

Cache
Fig. 5. Global Directory Service
(GDS) components.

December 1985 Hewletr-Packard Journal - 25

© Copr. 1949-1998 Hewlett-Packard Co.

Since directory information is distributed over several
DSAs, a DUA first directs any queries to a specific DSA. If
this DSA does not have the information, there are two stan-
dard request methods that the DUA can use. The first method
is referral—the DSA addressed returns the query to the DUA
together with a reference indicating the other DSAs that
have the information, Chaining is the second requesi
method—the addressed DSA passes on the query directly to
another DSA via the directory system protocol.

CDS Directory Structure

Every DCE cell must have at least one CDS server. The CDS
servers in a cell collectively maintain a cell namespace, or-
ganized into a hierarchical directory structure. As mentioned
above, the prefix /. is shorthand for the global name of the
cell and hence denotes the root of the cell namespace.

A CDS name is simply a series of directory names followed
by an entry name. The directory names are ordered left-to-
right from the cell root and are separated by the / character.
For example, in the name /.:/acme/acme_server, the directory
acme is a child of the cell root and the object acme_server is an
entry in acme.

In a cell that contains more than one CDS server, CDS direc-
tories can be replicated, with each replica of a directory
managed by a different CDS server. Among the replicas in a
set, only one, the master replica, is modifiable; all other rep-
licas are read-only. Replication increases the availability and
reliability of CDS service and can ease recovery from hard-
ware or network failure.

A CDS directory can contain three types of entries:

Object entries contain information about objects in the cell.
An object can be a host, a user, a server, a device, or any
other resource that has a CDS name.

Soft links provide alternate names for objects, directories,
or other soft links,

Child pointers are pointers to the directories contained by a
parent directory. A child pointer is created when a new direc-
tory is created and is used by CDS to locate replicas of that
directory when resolving the directory's name, Child pointers
are created only by CDS itself, not by applications,

Like GDS, CDS stores information about named objects by
associating attributes with names. Object entries might have
attributes to store the object’s UUID, its lacation, its access
control list (ACL), the time it was created, and the time it
was last updated. A soft link has an afttribute o store the
name of the object to which the link points.

Two special classes of CDS object entries warrant particular
mention:

RPC server entries store information about servers, including
their location and the objects they manage, in the CDS data-
base. Servers register this binding information, and clients
look it up, via the RPC NSI interface.

Junetions enable a service that implements its own name-
space to splice that namespace into the DCE namespace. A
Jjunction is somewhat analogous to a mount point in a
UNIX® file system; the junction entry stores binding infor-
mation for a service and becomes the root for the name-
space managed by that service, The CDS entry /../sec, for
example, is the junction for the DCE security service. Appli-
cations can use names such as /.:/sec/principal/stravinsky to

26 December 1995 Hewlet-Packard Journal

identify principals in the security registry and to obtain
bindings to a security server. Similarly, /.:/fs is the junction
for DFS, and /.:/hosts/<host-name>/config is the junction for the
configuration services provided on each host by the DCE
host daemon, dced.

CDS Components

CDS is a distributed service based on a client-server model.
Fig. 6 illustrates the software components that implement
this service.

All CDS directory data is stored in databases called clearing-
louses, which are managed by CDS server daemons. The
server daemon responds to requests from CDS clients for
lookups in or updates to the database. When an RPC server
invokes an RPC NSI API routine to export binding informa-
tion to the namespace, for example, this routine triggers a
(DS update operation. Similarly, when an RPC client im-
ports bindings from the namespace, a CDS lookup operation
is executed. Each CDS server keeps an image of its clearing-
house in memory and writes the clearinghouse periodically
to disk.

A cell often includes more than one CDS server, each with
its own clearinghouse. Running several CDS servers in one
cell allows administrators to replicate CDS directories. If a
directory is replicated, one clearinghouse stores the master
replica of the directory, and other clearinghouses store read-
only replicas. Clients can perform lookups from any replica
but can perform updates only to the master replica, After a
CDS entry is updated in the master replica of its directory,
the CDS server that manages the master replica propagates
the update to all CDS servers that manage read-only replicas.
Replication improves responsiveness to clients by distribut-
ing work among several servers and ensures the availability
of CDS service if a server machine fails or the network fails.

The architecture of CDS insulates applications from direct
communication with CDS servers. To add, delete, or modify
CDS data, applications call APIs such as the RPC NSI rou-
tines in the DCE run-time library. CDS client code in the
library interacts with a daemon on the local host called the
CDS advertiser, which uses RPC to communicate as neces-
sary with CDS servers. A CDS advertiser runs on every host
ina DCE cell. (In many DCE implementations, several CDS
client daemons execute on each host: one CDS advertiser
and a number of CDS clerks. In the HP DCE/A000 product, a

Client Host CDS Server Host
DCE cos cDs
Applications Server Client Daemon
Clearinghouse Cache
cDs
Client Library

CDS Server Host

cos
Client Daemon

cos
Server

cos
Client Daemon

—_—

Cache Cache

Clearinghouse

Fig. 6. Cell Directory Service (CDS) components,

© Copr. 1949-1998 Hewlett-Packard Co.

single CDS advertiser process subsumes all advertiser and
clerk tasks.) To increase client performance, reduce server
load, and reduce network traffic, each advertiser saves the
results of its lookups in a cache. Frequently accessed data
can be retrieved locally from the cache rather than via RPC
from a server. The advertiser writes the cache to disk peri-
odically, so cached data persists through reboots of the CDS
client host.

Conclusion
DCE provides a three-level naming system and two naming
APls.

Names of cells are stored in a global namespace managed by
a DNS server such as named or by an X.500 server such as
the DCE Global Directory Service (GDS). The Global Direc-
tory Agent (GDA) oversees resolution of global cell names.

The cell namespace consists of two levels: the enterprise
namespace managed by the DCE Cell Directory Service
(CDS) and application namespaces such as those managed
by DCE security and the DCE Distributed File Service
(DFS). The roots of application namespaces are named by
CDS junctions.

DCE offers two naming APIs. The RPC NSI interface is used
by servers to register their names and locations in CDS and
by clients to look up names and get back binding informa-
tion. The XDS/XOM API can access names and their associ-
ated attributes in GDS and CDS.

The DCE name services have some limitations that X/Open’s
Federated Naming specification attempts to solve (see
article, page 28). The RPC NSI API is a specialized interface
that manages only RPC binding handle information; it can-
not read or manipulate other atiributes associated with a
name. Many programmers find the XDS/XOM API cumber-
some; this interface is also difficult to layer over other exist-
ing naming APIs. The RPC NSI API and the XDS/XOM AP
do not offer a way to create or delete directories program-
matically, so an application that needs to create directories
currently must use an intemal CDS interface. The CDS and
GDS protocols are complicated and not very general. New
naming services that are introduced are unlikely to use
either of these protocols or the XDS APL Finally, CDS does
not support an easy, general way to create and resolve
through junctions to application namespaces.

Acknowledgments

Liza Martin and Paul Smythe each reviewed several drafts of
this article and made valuable suggestions, for which we are
grateful.

References

UINIX is a registered trademark in the United States and other countries, licensed exclusively
through ¥/0Open Company Limited.

X/Open is a registered trademark of ¥/Open Company Limited in the UK and other countrigs.

December 1995 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

X/Open Federated Naming

The X/0Open Federated Naming (XFN) specification defines uniform
naming interfaces for accessing a variety of naming systems. XFN
specifies a syntax for composite names, which are names that span
multiple naming systems, and provides operations to join existing naming
systems together into a relatively seamless naming federation.

by Elizabeth A. Martin

Naming of objects is a fundamental need in a computing
system. A naming service maps human-readable names to
internal location information that programs use {o access
the named objects. Current distributed computing environ-
ments that take advantage of large computer networks pre-
sent new problems and requirements for the naming service.

Heterogeneous naming systems are a reality, Unlike the
naming service in a single-host system, the naming service
in a distributed system is usually not a monolithic compo-
nent but consists of various naming systems embedded in
different pieces of the system. The naming systems in the
Open Software Foundation (OSF) Distributed Computing
Environment (DCE, see article, page) include the X.500
directory service,! the DCE Cell Directory Service (CDS),2
and the DCE Distributed File System (DFS, see page 6). The
DCE security service (see article, page 41) and the DCE dae-
mon (see article, page 6) also support namespaces. A typical
DCE installation will have applications that have their own
naming systems, such as databases, email, desktops, and
spreadsheets.

These different naming systems have arisen in part because
they meet different requirements. The DCE security server
uses special and somewhat inconvenient measures to pro-
tect the keys of principals in the system. DCE CDS directo-
ries are replicated but a desktop is not. A spreadsheet
names fine-grained objects (its cells) which present unique
scaling problems. New naming systems will continue to
appear, particularly in applications.

Up to now, there has been no basic and consistent naming
interface. Each naming system has its own API, so applica-
tion programmers must write custom software for each
naming system that their applications use. When applica-
tions are ported to different systems, they must be modified
to use that system’s naming interfaces. As new naming sys-
tems are introduced, applications that need to use them
must be extended.

There has also been no first-class, generic support for com-
posite names. A few distributed systems support composite
names—names that span multiple naming systems. This
support is limited and specialized. The DCE name
{../eh.hp.com/sec/principal/jsmith is a composite name. ch.hp.com is
resolved in the Internet DNS? namespace, sec is resolved in
the DCE CDS namespace, and principal/jsmith is resolved in
the security service’s namespace. In DCE only the security,
file system, and DCE daemon namespaces can be accessed

28 December 1995 Hewlett-Packard Journal

through composite names. UNI X rep uses composite names
in a different way from DCE, For example, ajax:/usr/jsmith/nam-
ing/memo.txt is an rcp name with two components: ajax is a
host name and /usr/jsmith/naming/memo.txt names a file on ajax.
DCE and rep use their own syntaxes and conventions for
their names,

Another area of inconsistency between naming systems is
their policies for how the namespace is structured. Many
systems have very little policy and what policy there is has
evolved in a haphazard way. Application writers who use the
namespace to advertise their services must follow different
conventions for the various environments in which their
programs will run or they must invent their own policies for
using the namespace. Administrators who configure a site
are also faced with confusing, inconsistent, or no policy for
how to use the namespace. End users need intuitive ways of
finding and naming objects.

Overview of X/Open Federated Naming (XFN)

Several vendors of distributed computing systems realized
that they shared these naming problems. Engineers from
Digital, HP, IBM, OSF, SNI, and Sunsoft started work on a
naming specification in June 1993, In March 1984 version 1
of the Federated Naming Specification” went to X/Open™ for
fast-track review. The specification achieved preliminary
status in July 1994, The multivendor team continued to work
on extensions to the specification and on validating it before
it became part of the X/Open Common Application Environ-
ment (CAE) in 1995,

The XFN specification defines application programming
interfaces (APIs) and corresponding remote procedure call
(RPC) interfaces. XFN specifies a naming syntax for com-
posite names and provides operations to join different nam-
ing systems together into a relatively seamless naming fed-
eration. XFN also specifies some naming policy.

Fig. 1 illustrates an XFN configuration. The XFN APl is lay-
ered over a framework into which different context imple-
mentations are inseried. A specific context implementation
is required for each naming system in a federation. A con-
text implementation maps XFN operations into operations
that are native to its naming system. For example, the NIS+0
context implementation maps operations in the XFN API to
corresponding operations in the NIS+ APL A naming system’s
software below the context implementation is not changecd.

© Copr. 1949-1998 Hewlett-Packard Co.

XFN Client System

XFM Library/Framework

NiS=
Context
Implementation

DNS
Context
lmplementation

XDs
Context
Implementation

libnsi/NIS

Internet DNS CDS Clerk

X500 server COS Server

named

To join a federation, a naming system must simply provide
its specific context implementation.

In Fig. 1 the client-side software for five naming systems
runs on the XEN client system. In addition, an XFN client
module that imports an XFN protocol is on this system. The
XFN client module may do caching and other typical naming
client jobs. Each naming client on the system uses its native
protocol to communicate with its server.

Definitions

In this section and hereafter in this article, paragraphs in
quotation marks are taken directly from the X/Open Feder-
ated Naming Specification.”

“Every name is generated by a set of syntactic rules called a
nanving convention, An atomic name is an indivisible com-
ponent of a name, as defined by the naming convention.

A compound name represents a sequence of one or more
atomic names composed according to the naming conven-
tion.”

Case sensitivity, the choice of escape, quote, and delimiter
characters, and the order of atomic names in a compound
name are common features of a naming convention.

“In UNIX pathnames, atomic names are ordered left to right,
and are delimited by slash (/) characters. The UNIX path-
name usr/local/bin is a compound name representing the se-
quence of atomic names, usr, local, and bin. In names from the
Internet DNS, atomic names are ordered from right to left,
and are delimited by dot (0) characters, Thus, the DNS name
sales.Wiz.com is a compound name representing the sequence
of atomic names com, Wiz, sales.”

“The reference of an object contains one or more communi-
cation endpoints (addresses). The association of an atomic
name with an object reference is called a binding. A conteat
is an object whose state is a set of bindings. Every context
has an associated naming convention.”

NDS
Context

Implementation XFN

Cliemt

NDS API

Fig. 1. XFN configuration using
client context implementations.
A program seeking internal loca-
tion information for a human-
readable name passes the name
to the XFN APL The name is
broken apart and processed by
the appropriate naming systems,
and the desired location informa-
tion is returned by the naming
system servers (bottom row).

XFN Protocol-
Exporting
Nameserver

A UNIX directory is a type of context. An atomic name in
one context can be bound to a reference to another naming
context object, called a subcontext.

“A naming system is a connected set of contexts of the
same type (having the same naming convention) and provid-
ing the same set of operations with identical semantics. In
the UNIX operating system, for example, the set of directo-
ries in a given file system (and the naming operations on
directories) constitute a naming system. A naming service
is the service offered by a naming system. It is accessed
using its interface. A namespace is the set of all names in a
naming systerm.”

The XFN API

XFN defines uniform naming interfaces that support basic
naming functionality. As illustrated in Fig. 1, the XFN inter-
face is layered over specific naming services' APIs. The de-
tails of the underlying naming system are hidden from the
application. Applications that use the XFN API can access a
variety of current and future naming systems without
modification.

The operations in the XFN interface range from simple to
complex. Simple naming systems are not expected to sup-
port the more complicated operations, but the functionality
offered by sophisticated naming systems can still be accessed
via the XFN APL

The XFN base context interface includes operations to bind
an atomic name in a context to an XFN reference and to
unbind a name. Other operations in the XFN base context
interface look up a name and return its reference, look up a
link, list all names and bindings in a context, and create a
subcontext,

XFN supports the notion of attributes (or properties) associ-
ated with a name. Attributes can be used to provide summary
characteristics about the object being named. For example,

December 1995 Hewlett-Packard Journal - 29

© Copr. 1949-1998 Hewlett-Packard Co.

a printer might be named /../Wiz.com/eng/os/service /prntr1. The
name pratrl would be bound to an XFN reference that con-
tains the address of the server for that printer. Attributes

could also be associated with the name pratr] that describe
its type (LaserJet, inkjet, etc.) and the formats it supports.

Attributes are accessed through the XFN attribute interface,
which includes operations to set, modify, and get attributes
associated with a name in a context. An attribute consists of
an identifier, a syntax, and one or more values. Operations
to search for names whose attribute values match a filter
expression are also defined. In the printer example, a search
operation could be used to locate a LaserJet printer in the
eng/os department that supports the PostSeript'™ format.

The XFN API has been mapped to Internet DNS, CCITT
X500, DCE CDS, and ONC NIS+. Since X.500 provides the
most functionality of these naming systems through its XDS/
XOM API, this naming system presented the most challenges
for XFN. XFN captures the functionality of XDS/XOM but is
a simpler, more intuitive APL

Support for Composite Names

XFN specifies a syntax and parsing rules for composite
names. Operations fo manipulate these names are also
provided.

"A composite name consists of an ordered list of zero or
more components. Each component is a siring name from
the namespace of a single naming system and uses the nam-
ing syntax of that naming system. A component may be an
atomic name or a compound name from that namespace.”
The string form of a composite name is “the concatenation
of the components from left-to-right with the XFN compo-
nent separator (/) between each component.”

In the DCE composite name /../ch.hp.com/sec/principal/jsmith
mentioned earlier, the ch.hp.com component is a compound
name in the DNS naming system, whose syntax is right-to-
left *." separated. The second component, sec, is in the DCE
CDS naming system, whose syntax is left-to-right */’ sepa-
rated, like XFN's syntax. The final two components, principal/
jsmith, are in the DCE security naming system. This naming
system’s syntax is also left-to-right /' separated. Since a
component is defined as the name between two XFN separa-
tors, principal/jsmith is two components even though both are
in the same naming system.

Composite names are formed when naming systems are
joined by binding location information about a context in
one naming system into its parent context in another nam-
ing system. This location information about a context in
another naming system is called a nexvt-naming-system
pointer. For most naming systems a next-naming-system
pointer is bound to a leaf name in its namespace and is
treated like any other name in its namespace. The location
information is represented in an XFN reference. The XFN
bind operation ean be used to create next-naming-system
pointers.

Fig. 2 shows how the name /../Wiz.com/user/jsmith/fs/naming/
memo.ixt is composed. /.. is a reserved token that indicates
the root of a global naming system. The Wiz.com component
is a name in the DNS naming system, user/jsmith/fs is in the
DCE CDS naming system, and naming/memo.txt names a DFS

30 December 1995 Hewlett-Packard Journal

Starting Context

m\.
\

Context Named
By com

DNS Naming System

Context Named By Wiz

DCECDS
Naming Context Named
System By user
Context Named
By jsmith

Context Named
Byis

File System

Context Named
By naming

memao.ta

Fig. 2. Next-naming-system pointers (Wiz and fs).

file. Location information about the DCE CDS context in
which user is bound is associated with the name Wiz in DNS.
The atomic name fs is bound in the CDS context user/jsmith to
an object reference with location information of jsmith’s
home directory in DFS. Wiz and fs are next-naming-system
pointers.

The XFN framework controls path resolution of a composite
name. To resolve /../ Wiz.com/user/jsmith/fs/naming/memo.txt the
XFN framework first invokes the DNS context implementa-
fion to resolve Wiz.com. The DNS context implementation
makes libresolve calls to gather the information it needs to
form the XFN reference associated with Wiz.com, which it
returns to the framework. The framework inspects the refer-
ence and invokes the context implementation specified in
the reference. The framework passes to the context imple-
mentation the location of the starting context for resolution
and the remaining components to be resolved. In this exam-
ple, the context implementation is tor DCE CDS, the starting
context is the one named by Wiz.com, and the name to be
resolved is user/jsmith/fs/naming/memo.txt. CDS can only resolve
user/jsmith/fs. It returns the XFN reference bound to user/
jsmith/fs and the remaining components to be resolved back
to the framework. The framework then passes the remaining
name, naming/memo.txt, to the file system to complete the
resolution.

XFN Protocols and Configurations

XFN specifies client-server RPC interfaces for use with two
RPC protocols: DCE RPC and ONC RPC. The protocols sup-
port the operations in the XFN APIL. New naming systems
and some current ones are expected to use one of these
protocols for their client/server communications.

© Copr. 1949-1998 Hewlett-Packard Co.

“The advantage for naming systems that export an XFN pro-
tocol is that any existing XFN client that imports the proto-
col can be used to communicate with it. This is particularly
useful for applications that need to export naming inter-
faces. Application programmers do not have to duplicate the
client-side implementation and they do not have to invent
new naming interfaces. This provides additional benefits
such as the ability to use caching and other mechanisms
provided by the XFN client implementations, and a direct
(and possibly more efficient) mapping of XFN operations to
the naming operations.”

The XFN naming model presents a hierarchical namespace
that incorporates different naming systems. The naming
systems are connected together into three levels. The top
level is a global namespace: X.500 and DNS are expected to
control this level, The next level is an enterprise namespace;
DCE CDS, ONC NIS+, Banyan Streettalk, and Novell NDS”
are considered enterprise naming systems. The third level is
the application namespace. The DCE security service, a file
system, and a desktop support application namespaces.

The XFN model, API, and protocols provide a toolkit for
configuring naming federations in various ways. Fig. 1 illus-
trates a heavyweight XFN client system with context imple-
mentations and client-side code for five naming systems and
a module that imports an XFN protocol. Fig. 3 shows a light-
weight XFN client system that only runs the naming module
that imports an XFN protocol. Multiple name servers export
the XFN protocol, Two of the name servers use a variation
of their context implementations to map arriving XEN calls
to their naming systems’ native operations. These servers
also export their native protocols to support elients running

XFN System (Lightweight Client)

XFN Library/Framework

XFN
Client

XFN System on Server {Acting as Surrogate Client)

XFN
Protocol

XFN Library/Framework

XFN System (Lightweight Client)

XFN Library/Framework

L
XFN Protocol NS_2 Protocol
NS _2 Context
Implementation

Fig. 3. Lightweight XFN client configuration with multiple name
SEIVETS.

XFN Protocol

XFN Protocol

Deskiop

N5 1 Context
Implementation

NS_1 Server

legacy software. The desktop application was originally
written to export its namespace with the XEN protocol.

The two systems shown in Fig. 4 are a lightweight XFN cli-
ent and a server that acts as an intermediary. Like the client
in Fig. 3, the XFN client in Fig. 4 only runs the naming mod-
ule that imports an XFN protocol. None of the legacy sys-
tems’ client-side software needs to run on this system. De-
pending on the client system's requirements, the XFN client
can be implemented and configured to consume more or
less resources. For example, the XFN client might defer to
the caching mechanisms provided by the native naming

NIS+
Context

DNS XDS CDS
Context Context
Implementation Implementation

Context
Implementation

Implementation

NIS+ Cliem

© Copr. 1949-1998 Hewlett-Packard Co.

NDS
Context see

Implementation

Fig. 4. Lightweight XFN client
configuration with surrogate
client on server

December 1995 Hewlett-Packard Journal 31

L]

system clients. “The legacy naming system clients in Fig. 4
reside on a remote system (similar to Fig. 1) that also ex-
ports the DCE XFN protocol. This remote client can be
viewed as a surrogate or proxy client that acts on behalf of
the initial requestor and performs the native naming system
functions.”

Another common XFN configuration combines Figs. 3 and 4.
Some name servers export the XFN protocol and can be
accessed directly from the lightweight XFN client. Other
name systems are accessed via an XFN surrogate client.

XFN Enterprise Policies

The three-level hierarchy of global, enterprise, and applica-
tion namespaces is an XFN policy that was mentioned in an
earlier section. Major entities, such as countries and organi-
zations, are named in the global namespace, Names in a
global naming system change infrequently and require sane-
tion from a global authority to do so. The enterprise name-
space is assumed to contain names that are local to an orga-
nization. XFN policies provide some guidelines for
structuring an enterprise namespace. These policies do not
apply to the global or application namespaces.

XFN policy recognizes that there are commonly named
objects in an enterprise. These are organizational units,
users, hosts. services, and files. XFN policy reserves tokens
to identify namespaces for these objects and also applies a
relationship between them. Table | summarizes XFN enter-
prise policies. Some examples of names that use XFN poli-
cies are;
[./Wiz.com/_orgunit/r-d/eng/os/_user/jsmith/_fs/naming/memo_txt.
Names jsmith’s file naming/memo.txt. jsmith is a user in the
r-d/eng/os department of the Wiz.com company.
[../Wiz.com/_orgunit/sales/_user/mjones/_service/calendar. Names
the calendar service for mjones who is a user in the sales
department of the Wiz.com company.
[../Wiz.com/_orgunit/newton/bldg300/conf-rm/chaos/_service/calendar.
Names the calendar service for the Chaos conference room
in building 300 of the Newton site of the Wizcom company.

Programs that use XFN policies are more portable across
computing environments and enterprises. A distributed ap-
plication, such as a calendar service, has a standard place (a
_service context) to put its binding information. An adminis-
trator can put information about each user and each host in
a central, predictable place. An end user can more easily
figure out how to name another user’s files, for example.

Despite the fact that XFN policies are minimal, they are
controversial. Standard token names raise concerns of name
collisions. XFN specifies these tokens on the premise that
the benefits of a more structured namespace outweigh the
risk that XFN tokens will collide with names that are al-
ready in a namespace. An XFN implementation can sacrifice
its portability and customize its own tokens to identify the
namespaces for common objects. An XFN implementation
can conform to the XFN API but to some or none of the XFN
policies. An enterprise namespace will normally have many
contexts that are outside of the XFN policy domain and may
have additional policies of its own.

32 December 1895 Hewlett-Packard .I:;ul'néi

Table |
XFN Enterprise Policies
Context
Context Type Type Parent Subordinate
Token Context Context
Organiza- _orgunit enterprise root user, host,
tional file system,
Unit service
User _user enterprise root, service,
organizational file system
unit
Host _host enterprise root, service,
organizational file system
unit
Service _service enterprise root, not
organizational specified
unit, user, host
File System s enterprise root, not
organizational specified
unit, user, host
Other Naming APIs

Some naming APIs, such as the DCE RPC Name Service
Independent (NSI) Interface® and the OMG Common Object
Service's Naming Service Interface,” are customized inter-
faces that may be layered over an XFN APl and its
implementation.

The RPC NSI provides a high level of abstraction for navi-
gating a namespace and yielding DCE RPC location informa-
tion in the form of RPC binding handles, The OMG naming
interface is a subset of the XFN basic context interface, The
OMG interface maps names to CORBA object references.
Unlike RPC NSI and the OMG naming interface, XFN ac-
cepts many different types of object references and provides
mechanisms to extend the set of object references. Also,
neither the DCE RPC NSI nor the OMG naming interface has
support for attributes.

When these customized interfaces are implemented over
XFN, they take advantage of XFN benefits such as poriabil-
ity and federation and they leverage all the software that
supports the XFN APIL

Conclusions

Among the benefits that XFN provides are:

A uniform naming interface for accessing different naming
systems.

Application programming interfaces as well as RPC inter-
faces.

A naming syntax for composite names.

Operations to join different naming systems together into a
naming federation.

A framework that supports the addition of new naming sys-
tems to an XFN federation with no changes to applications
or to current member naming systems. A naming system
that joins a federation must only supply a context imple-
mentation that maps the XFN API or an XFN protocol to its

Copr. 1949-1998 Hewlett-Packard Co.

native operations. Otherwise, the naming system’s software
is not changed.

Support for small clients.

Easier administration of the various naming systems in a
distributed computing environment. Browsers and editors
that are written to the XFN API can access an entire feder-
ated namespace.

Application power. XFN applications can access a wide va-
riety of naming systems through the same simple, vet func-
tional APL

Future Directions

Future work needs to be done on policy. Different vendors
that offer similar applications need guidelines for sorting out
their uses of the namespace. Users somelimes want 1o se-
lect among similar or replicated services based on network
topology or load balance. Administrators often have com-
mon information about a group of users and customized
per-user information. Namespace policies and software
could support these requirements.

Acknowledgments

This paper is a summary of the X/Open Federated Naming
Specification. Quoted paragraphs are taken directly from
the specification as are some of the figures and tables.

The X/Open Federated Naming architecture team includes:
Rangaswamy Vasudevan, Rosanna Lee, and Vinnie Ryan
from Sunsoft, Ellen Stokes and Dave Bachmann from IBM,
Norbert Lesser and Arthur Harvey from OSF and the author
from HP. Joseph Pato from HP, Arthur Gaylord from the
University of Massachusetts at Amherst, and Richard Curtis

from Banyan were early reviewers and are consultants to
the architecture team. Peter Dejong. Larry Derany, Michael
Kong, and Joseph Pato provided valuable review comments.

References

1. Information Technology—Open Systems Interconnect—The
Dirertory, CCITT X.500 (1988, 1993)1S0 Directory, ISOIEC 9504:
1988, 1993.

2. X/Open DCE: Dirvectory Services, X/Open Preliminary Specifica-
tion, December 1993,

3. PV. Mockapetris, Domain Names—Concepts and Facilities, In-
ternet RFC 1034, November 18987,

4. PV. Mockapetris, Domain Names—Implementation and Specifi-
cation, Internet RFC 1035, November 1987,

5. Federated Naming: The XFN Specification, X/Open Preliminary
Specification, July 1994.

6. R.Ramsey, All About Administering NIS+, SunSoft Press.

7. D. Bierer, et al, Netware 4 for Professionals, New Riders Publish-
ing, 1993.

8. X'Open DCE: Remote Procedure Call, X/Open Preliminary Speci-
fication, October 1993, Specifies RPC NSL

9. “Naming Service Specification,” OMG Common Object Services
Specification, Valume 1, March 1994,

(0SF and Open Saftware Foundation are trademarks of the Open Softwara Foundation in the
U.S.A. and other countries

UNIX® is @ registered trademark in the United States and other countries, licensed exclusivaly
through X%/0pen Company Limited.

X/Open™ is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain
Jurisdictions.

December 1995 Hewlen-Packard Journal -~ 33

© Copr. 1949-1998 Hewlett-Packard Co.

HP Integrated Login

HP Integrated Login coordinates the use of security systems and improves
the usability of computer systems running the HP-UX* operating system.

by Jane B. Marcus, Navaneet Kumar, and Lawrence .J. Rose

The HP Integrated Login product provides major usability
gains for customers deploying enhanced security technolo-
gies on computer systems based on the HP-UX operating
system. In this article, we describe the customer needs and
the HP Integrated Login solution.

As computer networks expand, and as pirates more fre-
quently travel the information superhighway, customers
require more stringent methods for securing data and ac-
counts. The base HP-UX operafing system provides standard
UNIX™ security mechanisms, but these do not meet all the
needs of security-minded customers. There are many secu-
rity technologies available commercially and in the public
domain. HP customers sometimes wish to deploy one or
more of these technologies on the HP-UX platform.

Security technologies use passwords to verify the user’s
identity and determine access rights to data and services. A
user must enter a password and the password must be veri-
fied before access is granted. For example, basic HP-UX
security requires that a password be entered for the user to
gain access to the HP-UX machine. In addition to machine
entitlement, passwords also may be used to verify the user’s
right to access protected services (e.g., mail systems) in the
user’s environment.

Security-minded customers see many benefits to deploy-
ment of enhanced security technologies—for example, pro-
tection against impostors and network eavesdroppers. How-
ever, placing additional security technologies on top of the
HP-UX system can create a burden to the users of the sys-
tem. When multiple security technologies are deployed (to
monitor access to various protected services in the user
environment), each technology requires password verifica-
tion. Thus, a user may be forced to type in a password for
the HP-UX system and then for each additional security
technology. Furthermore, the use of multiple security tech-
nologies creates a complex task for users when passwords
need to be changed in multiple places.

(Customers need enhanced security, but they also want us-
able systems. Customers want to operate in a familiar envi-
ronment, and do not want to learn many new commands for
accomplishing basic tasks. When faced with a lengthy or
complicated process, typical users may ultimately compro-
mise the security of their systems by writing down pass-
words and procedures that might otherwise be forgotten.
Customers will not accept a burdensome process for their
users.

34

December 1995 Hewlett-Packard Journal

HP Integrated Login

The HP Integrated Login product has evolved to meet the
customer needs discussed above. The original product for
the HP-UX 9.x operating system was developed in response
to DCET customer requirements and was delivered primarily
for use by HP's DCE customers. However, with the HP-UX
10.0 release, the HP Integrated Login product has been made
extensible, so that it can serve the HP-UX community at
large. The latest HP Integrated Login provides library inter-
faces that allow a generic set of security technologies to be
integrated with HP-UX. The customer has maximum flexibil-
ity to choose and deploy appropriate technologies. Since
DCE has an outstanding security technology, we expect that
HP Integrated Login users will most often choose DCE for
their security needs, but the HP Integrated Login product
can support other technologies equally well.

The primary purpose of the HP Integrated Login product is
to allow HP-UX users a convenient method for incorporating
other security technologies into the standard HP-UX envi-
ronment. Users should be able to use familiar HP-UX tools
to accomplish familiar tasks. Thus, HP Integrated Login ex-
tensions have been added to several standard HP-UX 10,0
utilities.

The most important functionality delivered by HP Integrated
Login is a single-step login: the user enters a password once
at login time, and this password is used to grant access to
the HP-UX machine as well as verify access among all the
configured security technologies. The HP-UX 10.0 com-
mands login and su have been enhanced to include single-step
login capabilities. Also, the HP user desktop (HP VUE) has
been integrated to support multiple security technologies.
Login information is propagated throughout the entire VUE
session and logins need not be repeated when new VUE
windows are opened.

Password consistency is fundamental to most HP Integrated
Login deployments. A user chooses one password, and this
password is adopted across all security technologies. Thus,
the user can supply the password once and the HP Inte-
grated Login utilities transparently perform logins to each
configured security technology on behalf of the user. The
HP-UX 10.0 passwd command has been integrated to syn-
chronize passwords for the user, so that a requested pass-
word change can be propagated to all configured security
technologies. Likewise, user information commands chfn and

t OCE is the Distribyted Computing Environment. See article, page 6.

© Copr. 1949-1998 Hewlett-Packard Co.

chsh are provided to allow changes to finger and user shell
information across security technologies. (Finger informa-
tion includes the user's real name, location, and telephone
number.)

It is typical of the UNIX operating system that several opera-
tions are password-controlled—for example, file transfer to
or from a remote machine and screen lock or unlock. Inte-
grated file transfer protocol (ftp) and HP VUE lock utilities
have been provided. Consistent with other HP Integrated
Login utilities, these operations verify user access for all
configured security technologies based on one usersupplied
password.

The HP Integrated Login product provides extensions to
HP-UX commands to support multiple security technologies
on top of the HP-UX system. The extension method involves
a new shared library provided with HP-UX 10.0. Integrated
HP-UX utilities make calls to this shared library (libauth.s!).
The libauth library calls handle various security tasks such as
password verification for login and password changes. Thus,
HP-UX utilities relinquish to libauth the direct responsibility
for supporting diverse security technologies. Furthermore,
these HP-UX utilities have no awareness of multiple security
technology configurations, and have no knowledge of the
details of how these security technologies function.

HP Internal Customer Needs

Enhanced security technologies on top of HP-UX have ex-
isted for some time. Before the creation of HP Integrated
Login, several security technologies had independently been
integrated into the HP-UX system. Each security technology
had its own login method, and each security product would
spin off new versions of HP-UX login commands and HP
VUE to incorporate the technology’s login implementation.
These efforts were difficult to coordinate, and there grew to
be many different versions of HP-UX login commands to
accommodate all of these security technologies. One HP
Integrated Login goal was to replace the myriad of login
implementations with one generic login methodology. This
was expected to solve a number of different problems, in-
cluding the HP support cost to maintain multiple code
bases. The solution required the definition of a generic login
procedure, flexible enough to accommodate all the existing
login methods.

Extensibility

HP Integrated Login supports multiple security technolo-
gies. The HP Integrated Login configuration file declares
which technologies are being integrated. Typically, the
HP-UX machine administrator uses HP Integrated Login
administrative tools to create and maintain this configura-
tion file. Each technology declared in HP Integrated Login's
configuration file must provide a technology shared library.
This shared library will be dynamically loaded by the HP
Integrated Login library (libauth), which coordinates all un-
derlying security technologies. The libauth library determines
the names of the technology shared libraries and the order
in which to load them based on the contents of the HP Inte-
grated Login configuration file. Fig. 1 shows the resulting

Interface Interface

DCE Security
Technology
Shared Library

Other Securnty

Technology
Shared Library

Other Security
Technology
Shared Library

Password
Program

Fig. 1. The extensible architecture of HP Integrated Login.

architecture. The libauth library needs no special knowledge
of any security technology library that it loads. Well-defined
interfaces exist between the libauth coordination library and
the security technology shared library.

From HP-UX commands, the following can occur:

The HP-UX command dynamically loads the HP Integrated
Login shared library (libauth).

The libauth library reads the HP Integrated Login configura-
tion file and dynamically loads the configured security tech-
nology libraries.

The HP-UX command makes library calls to libauth to handle
login and password functions.

The libauth library makes library calls to security technology
libraries.

An exception in the HP Integrated Login library strategy is
the method by which basic HP-UX security is provided.
While the HP Integrated Login configuration may specify the
use of basic HP-UX security, there is no HP-UX technology
library to be dynamically loaded. Rather, the HP-UX com-
mands handle basic HP-UX funections from within the com-
mand code.

The libauth library is shipped with the HP Integrated Login
product, and is dynamically loaded by the integrated HP-UX
commands and HP VUE. HP-UX utilities use libauth (o inte-
grate security technologies, but the basic HP-UX security
code is always accessible since it is contained within the
HP-UX utilities. Thus the HP-UX 10.0 utilities can still pro-
vide standard HP-UX functionality on systems that do not
have libauth installed. While the integrated commands must
be aware of their use of libauth, the commands are com-
pletely unaware of libauth’s use of underlying security tech-
nology libraries.

Configuration of Multiple Technologies

The HP Integrated Login configuration file is used to define
a login policy to be used on a particular machine. The policy
specifies which technologies are in use. When multiple secu-
rity technologies are in use, the relative priority of these
technologies must be configured for HP Integrated Login
operation. One technology is configured as the primary login
technology. This primary login technology will be the initial

December 1905 Hewlett-Packard Journal -~ 35

© Copr. 1949-1998 Hewlett-Packard Co.

technology to be consulted for user password verification. If
the primary login succeeds, the user will be granted access
to the HP-UX machine, and additional logins can then pro-
ceed (transparently) to verify the user with other security
technologies.

In case the primary login does not succeed, a fallback tech-
nology can be configured. If the user can be verified with
the fallback security technology, the user is granted access
to the HP-ITX machine, and again, other configured logins
can then proceed.

The importance of the fallback strategy cannot be under-
stated. Security technologies often have dependencies on
network communications and cannot function if the net-
work is not intact. For some customers, it is unacceptable
for users to be denied access to their local machines be-
cause of network problems. The HP Integrated Login fall-
back strategy allows customers who require a high level of
robustness to use HP products with confidence.

The relationship between the primary login technology and
the fallback login technology must be well-understood. In
some cases, the primary login technology may attempt to
synchronize the fallback technology with current user infor-
mation. For example, when DCE serves as the primary login
technology, it is an HP Integrated Login option fo automati-
cally populate the HP-UX user information database (i.e.,
the fetc/passwd file) with information from the DCE security
database. In mosi cases, the /etc/passwd file will never be
accessed at login time, because DCE, as the primary login
technology, will verity the user. However, when DCE is un-
available, HP-UX login security can be used as a fallback to
log in all users known to DCE. Such an arrangement is ad-
vantageous for administrators who want to maintain user
accounts in one primary location, but also want to facilitate
fallback logins where necessary.

In other cases, administrators may purposely wish to main-
tain some users in one security technology database and
other users in a different security technology database. The
HP Integrated Login configuration of primary and fallback
login technologies can facilitate this process. The HI? Inte-
grated Login libauth library will consult the primary login
technology first to verify the user, but if this user is not
known to the technology, HP Integrated Login can be config-
ured to consult the fallback login technology.

In addition to configured primary and fallback login technol-
ogies, other login technologies can be configured. These
logins will be done transparently for the user, in the order in
which they have been configured with HP Integrated Login.
The purpose of these additional logins may be to enable user
access to some protected service in the user’s environment.
These additional logins will only be attempted if the primary
or fallback login has succeeded, that is, if this user has been
granted access to the HP-UX machine. Errors occurring with
these additional logins are nonfatal, meaning that the user
session can proceed even if one or more of these additional
logins fails.

The organization of technologies in the configuration file is
used by libauth to determine the order in which technologies
should be loaded and accessed. We call libauth’s ordering of

36 December 1995 Hewlett-Packard Journal

-

technologies the policy chain, and it reflects the configura-
tion of primary login, fallback, and additional login technol-
ogies. The policy chain is used by libauth to make decisions
on how to sequence through the configured technologies.

The configuration file may also contain directives to libauth
regarding handling of login errors. These directives logically
become part of libauth's policy chain and determine libauth's
actions in the event of login failures. For instance, the con-
figuration file may specify that a login failure because of an
incorrect password entry should result in a denial of ma-
chine access, regardiess of whether this password may be
verifiable by other configured technologies in the policy
chain. The libauth library’s actions in this case would be to
stop the login sequence after the initial failure and refrain
from cycling through the security technologies, The behav-
ior of libauth is configurable, so it is also possible to specify a
configuration that authorizes libauth 1o pass the login request
to the next technology in the policy chain.

The configuration file also includes a mechanism to pass
configuration information to the security technology li-
braries that will be loaded by libauth. Configurable parame-
ters can be specified for each specific security technology.
These parameters are meaningful only to the security tech-
nology library and are determined by the security technol-
ogy library provider. For instance, a specific security tech-
nology may support the notion of a session lifetime. A
configurable parameter called LIFETIME may exist in the HP
Integrated Login configuration file to be passed to the secu-
rity technology when being loaded by libauth, The libauth li-
brary will pass the configuration information to the security
technology library, but will not use or process this informa-
tion in any way (thus preserving the extensibility model).

libauth Login Processing

To accomplish a login that results in a user session, several
behind-the-scenes events must occur. The procedure con-
sists of three phases: the initialization phase, the login
phase, and the session-setup phase.

During the initialization phase, the HP Integrated Login
policy is read from the configuration file. The libauth library
proceeds to load the security technology libraries and
charges them to run through their respective initializations.
Initialization failures from any of the security technology
libraries cause libauth to mark the technology as inaccessible.
When security technologies are inaccessible, libauth must
adjust its understanding of the policy chain to reflect the
effective policy. Upon successful initialization, libauth and the
security technology libraries exchange entry point informa-
tion. This makes it possible for two-way communication to
occur between the security technology library and libauth.
The libauth library can now call the security technology li-
brary interfaces to handle security tasks, and the security
technology libraries can communicate messages and error
status.

The login phase is a two-step process. Step one determines
whether the user should be granted access to the local sys-
tem. Prompts are issued for the user name and password,
and subsequently the primary login technology library is

© Copr. 1949-1998 Hewlett-Packard Co.

called to verify access. Logically, this step may be consid-
ered a Boolean operation which simply returns a yes or no
answer regarding the user’s entitlement to access the local
system. Depending upon the configured policy chain, libauth
may conftinue on failure to the configured fallback technol-
Ogy, or may deny access.

The second step in this login phase (after having granted
machine access) is to complete any additional logins that
should be done. These additional logins may be needed to
enable operations with some protected services once the
user session begins. In current implementations, additional
logins can only succeed if the password entered is valid for
this user across all security technologies. However, libauth
code is in place to support different passwords for addi-
tional security technologies, although this code is not yet in
practical use. The method for supporting multiple pass-
words depends on the primary login technology’s ability fo
securely store passwords to be used with other security
technologies. A successful login with the primary login tech-
nology would result in the stored passwords being passed to
libauth for use with the other technologies in the policy chain.

The session-setup phase is for establishing the user session.
The information about how to set up the session is retrieved
from the underlying primary login technology database. In
particular, the user and group IDs must be set for the new
session, and the user shell must be started. In addition, the
exporiation of environment variables occurs. If any config-
ured technologies require special environment variables to
be set, these environment strings are passed back to the
HP-UX command so that they are exported at session-setup
time,

Password and Information Processing

The libauth library interfaces oversee changes (o user infor-
mation, such as password, user shell, and finger informa-
tion. The HP-UX passwd command, for example, loads libauth
to coordinate password changes. The libauth (and technology
library) initialization phase described for login processing is
the first step here as well.

Before calling libauth to make a password change, the passwd
command calls libauth to check the new password that has
been proposed. Most security technologies apply password
strength checking algorithms to newly created user pass-
words. These algorithms test whether the new password
meets certain criteria. For example, one HP-UX requirement
is that the new password must have at least two alphabetic
characters and at least one numeric or special character.
For password strength checking, a libauth interface deter-
mines if the selected password is acceptable to all config-
ured security technologies. The password is rejected if any
of the security technology libraries rejects it, and the opera-
tion fails.

If the proposed password is acceptable, the command calls
libauth to contact the primary login technology. The primary
login technology will then change the password in the pri-
mary login technology's user database. Failure to change
information correctly with the primary login technology
causes the entire operation to fail. If the change succeeds,
libauth follows the policy chain to request password changes
in all other security technology databases, If a failure occurs

for this user with any of the additional (i.e., optional) tech-
nologies, an error indication is recorded and the next tech-
nology in the chain is tried. If a failure occurs during a pass-
word change operation, the password may no longer be
consistent across all technologies. An error indication
clearly states this and gives advice on how to remedy the
situation manually.

Some details of the policy chain configured in the HP Inte-
grated Login configuration file do not apply to password
processing. The configuration file is used to determine the
primary login technology. However, libauth password inter-
faces make no attempi to deal with a configured fallback
technology in case of error.

The libauth library interfaces allow other user information to
be changed. The user's shell can be also changed. In all
cases, changes to user information start by attempting to
make the change in the database of the primary login tech-
nology. Successful changes cause the operation to continue
down the policy chain to completion.

Other libauth Interfaces
Aside from password and login functionality, other libauth
interfaces are available to HP-UX commands.

For security technologies that include the concept of login
expirations, libauth supports a refresh operation. For exam-
ple, suppose that the user’s machine has been left locked by
the VUE screen lock program, and the user’s login expires
before the user returns to unlock the machine. The libauth
refresh interface allows bypassing some of the details of the
full login process, although reprompting of the password is
required for this step to maintain security.

Another libauth interface resets the current login information.
This interface is used by commands that can switch be-
tween users, such as ftp and su. The reset action cleans up
any residual login information, effectively terminating a pre-
vious login across all security technologies.

Choosing a Primary Security Technology

An HP Integrated Login goal is to simplify user administra-
tion among multiple security technologies. When multiple
security technologies are deployed, multiple user informa-
tion databases may coexist. These registries are reposito-
ries of user-related information, and different technologies
require the storage of different types of information about a
user. HP Integrated Login configuration of a primary login
technology determines which registry is most important for
maintaining user information. The primary login technolo-
gy's registry assumes the role of the main location for user
information, and registries from other technologies are log-
ically subservient. For example, if the password that the
user has provided is determined to be incorrect when
checked against the main registry, HP Integrated Login may
be configured to deny access without further checking of
the password against other technology registries. If the user
requests a change of password and for some reason the
main registry cannoi entertain the change, no attempt is
made to request the change in other regisiries.

December 1995 Hewlett-Packard Jownal - 37

© Copr. 1949-1998 Hewlett-Packard Co.

When deploying multiple security technologies, the choice
of the main registry is very significant. System administra-
tors might ask what features such a registry should have.
Especially in a networked environment, this registry must
be highly available and reliable, since users may be denied
access if it is not in operation. The main registry must be
capable of storing critical user information, including but
not limited to user name, user identifier, password, group
identifier, home directory, and login shell. Since user infor-
mation is likely to change as we move towards more complex
systerms, built-in extensibility of the registry is highly
desirable.

We find DCE to be an excellent choice for the main security
technology. The DCE security service registry satisfies all
basic requirements for a main registry,

The DCE registry is highly available. The implementation
allows for a collection of one master and several replicas, so
user information can be obtained from multiple (but consis-
tent) sources. Replicas are copies of the master information
and are read-only sources of information. If a replica goes
out of service, others are available to provide user informa-
tion. If the master goes down, a suitable replica can be
transformed into a master. If service degrades because of
heavy demand, additional replicas can be added to expedite
requests, Consequently, the service is scalable and reliable.

DCE uses Kerberos™ authentication protocols and is highly
secure in a distributed environment. For example, DCE does
not transmit passwords in the clear across the network. This
feature is not particularly useful if other technologies do

otherwise, but the main registry should not be the weak link.

The OSF DCE 1.1 registry is extensible. System administra-
tors can extend the registry to hold arbitrary user informa-
tion. For example, DCE 1.1 uses this extensibility feature to
support password aging (mandating that passwords be
changed regularly) and password strength checking.

DCE is serviceable, Logging and audit trails can be used to
diagnose error conditions.

In summary, we find DCE to be the logical choice for the
primary login technology and to serve as the main registry
of user information. (See the article on page 41 for more
information about DCE security services.)

Login Access Using HP Integrated Login and DCE
Although the HP Integrated Login design does not require it,
our implementation works very well with DCE providing the
main registry of user information. This solution is robust
and allows administrators to focus their efforts on maintain-
ing user information in one location: the DCE registry. Fig. 2
illustrates how HP Integrated Login uses the DCE registry.

Customers with robustness requirements often choose to
configure HP-UX security as a fallback technology. As de-
scribed earlier, the fallback technology is used when the
primary login technology is unavailable. With DCE as the
primary login technology, DCE is unavailable when the net-
work is not operational. Since HP-UX security is local to the
machine and is unaffected by network errors, an HP-UX

38 December 1995 Hewlett-Packard Journal

fallback may be a good choice. However, if the fallback reg-
istry is to provide access that is consistent with the main
registry, it must be kept consistent with the main registry.
Support for keeping the registries synchronized is obviously
needed.

For this purpose, DCE provides a tool, passwd_export, that
exports the information in the DCE registry to the native
HP-UX registries, /ete/passwd and /etc/groups. When HP Inte-
grated Login is installed, a system administrator can config-
ure the HP-UX command cron to run passwd_export periodi-
cally to keep the registries consistent.

DCE user accounts are valid across the DCE network envi-
ronment. Once established in the DCE registry, a DCE user
can log in from any machine in the user's DCE environment,
with no other special administration required. The DCE reg-
istry is implemented as a centralized network service, with
requests fravelling back and forth over the network from the
registry to the client machines. However, DCE allows regis-
try user information to be overridden at the local machine
level. In this case, information is taken from the local ma-
chine rather than from the DCE network registry. An over-
ride mechanism is important to machine administrators
wishing to cusfomize their individual machines. For exam-
ple, in a traditional UNIX system, each machine has a super-
user account root. Machine administrators do not want the
root account to share a password with all root accounts on
machines in the DCE networked environment. Rather, ma-
chine administrators want to maintain the password for the
root account locally. In this case, administrators must over-
ride the information in the main registry in favor of informa-
tion stored on the local machine.

To handle such cases, DCE provides support for an override
file. This file has a format similar to the traditional UNIX
fetc/passwd file. If a user is maintained in the override file, the
user's access to the machine is verified based on the over-
ride file entry and is not verified by the DCE registry. By
common use, root is maintained in the override file to ensure
that for superuser privileges a local password is required.
The DCE override file is only readable by the superuser ac-
count and as such is more secure than the HP-UX /etc/passwd
file.

Since DCE is a scalable, reliable, and secure service, some
installations with especially stringent security requirements
may wish to disable fallback login verification. In general,
customers can rely on DCE to provide consistent service as

DCE Registry

Password

Password
_exp

Fig. 2. Integrated login using the DCE registry.

© Copr. 1949-1998 Hewlett-Packard Co.

L]

long as the network is operational. Some customers disable
fallback to basic HP-UX security because the HP-UX /etc/
passwd file is inherently less secure than many customers
require. For HP Integrated Login DCE configurations with
no fallback technology, most logins will be disabled if there
are network problems. However, users being administered
in the DCE override file will still have login access in case of
network failure, since the override file is stored on the local
machine and is unaffected by network errors.

Login Information Maintenance: DCE and HP-UX
Suppose HP Integrated Login has been configured with DCE
as the primary login technology and HP-UX security pro-
vides the fallback technology.

Example 1. A user wishes to change a password. We have
two registries to consider: DCE and HP-UX. The following
sequence of events occurs:

Since DCE is the main regisiry, the old and the desired new
passwords are obtained and passed to the DCE security
technology library.

The DCE registry verifies that the old password was correct
and further determines if the new password is strong
enough. If these checks pass, the user's password is
changed in the DCE registry.

No attempt is made to contact the fallback registry (/etc/
passwd) at this time. However, libauth could propagate the
password change to other configured technologies.

After a certain interval configured by the system administra-
tor, passwd_export runs and exports the changed password
information to the HP-UX /ete/ passwd file. Thus, the fallback
plan to HP-UX remains intact with this synchronization.

Example 2. A user whose account information is stored in the
DCE override file requests a password change:

The libauth library passes the request to the DCE security
technology library. When user account information is kept

in the DCE override file, passwords are changed in the over-
ride file only. The DCE registry is not changed at all.

When passwd_export runs, it exports the changed password
from the override file to fetc/passwd. This is how the local root
user ean change its password.

Example 3. A user requests a shell change:

The chsh command calls libauth to pass the new shell infor-
mation to the primary login technology library (DCE).

If configured, passwd_export runs and exports the changed
shell information to the HP-UX /etc/passwd file. Thus, HP-UX
and DCE registries remain synchronized.

If passwd_export is not run periodically, some traditional UNIX
commands and library calls with dependencies on the /etc/
passwd file might use stale data. For example, the Is com-
mand gets user information from the /etc/passwd file. If the
Jete/passwd entry for this user is not kept consistent with the
information in the DCE registry, the Is command may be
relying on old data for this user.

Login Information Maintenance: NIS and DCE
Suppose HP Integrated Login has been configured with
HP-UX as the primary login technology. By way of clarifica-
tion, it should be noted that NIS support falls under the

generic HP-UX umbrella because HP-UX commands have
been integrated with NIS for several years. At present, the
code to support NIS is retained in the HP-UX commands.
Thus, when HP-UX security has been configured, this effec-
tively can include NIS if it has been deployed in the HP-UX
environment. Currently there is no way to ensure full ac-
count consistency between NIS and DCE because there is
no NIS atility comparable to DCE's passwd_export. Thus, users
added to the NIS registry must also be added to the DCE
registry by the system administrator.

Example 4. A user password change is requested and the
HP-UX system (NIS) is the main registry, that is, password
verification by NIS determines the user’s right to machine
access. Suppose also that DCE has been configured for addi-
tional login because users need access fo some DCE
services.

The user wishing the password change must present the old
password and the desired new password. The passwd com-
mand calls libauth.

The libauth library tells the passwd command that the HP-UX
system has been configured, so the passwd command inline
code handles this password change operation.

If the user’s account is in the local /fetc/passwd file, the pass-
word is changed there. If the user’s account is maintained in
the central NIS registry, the password is modified there.
The passwd command calls libauth to propagate the password
change to other configured registries. This request is passed
to the DCE technology library and, if successful, results in a
password change in the DCE registry. If for some reason the
password cannot be changed in the DCE registry, the user is
advised to try changing the DCE password again later. The
passwd command now provides a command line option to
change a password in a specified registry.

The Single Sign-on Problem

HP Integrated Login operates on HP-UX machines only.
Much work remains to be done for customers who need a
higher level of flexibility and integration. For example, a PC
user on a Novell network would like to enter a password af
network login time and have this password also validate
access for other integrated systems. Unfortunately, there are
extremely complex problems associated with login and
password synchronization across operating systems and
across hardware platforms. This larger problem is often
called the single sign-on problem, and is being addressed by
an industry working group of which HP is a coleader.!

Summary

The HP Integrated Login product addresses the needs of
customers wishing to deploy multiple security technologies.
HP Integrated Login improves usability by providing single-
step login. Options to configure fallback login technologies
ensure robustness in the event of network failure. HP Inte-
grated Login is especially convenient for customers deploy-
ing DCE, because DCE and HP Integrated Login together
provide the tools required for maintaining a high level of
consistency between DCE and the HP-UX system for user
account information,

December 1005 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Afinjauyas) Jo-8INLSU| STIBSOYIBSSERY a4) 10 YIBLAPEIL 8 51 STIBT:E)

'SBLIUNGY BUL0 DUB W) BYl U pEEILL]

huedwnry uad0/y J0 YEGPE B S1a%IABD X 3y pue welwspes paisisiial e 5 &_uaclg;'x
PRy Avedwo? vadpy/y ubnoug

AISAISNIXS PESUBIN “SALILNGD SBUI0 pue Sa)eIg paluf) eyl vl wewapes pamisilfiar e 1 JMINN
"S1nposd papuesg

£5 XiNn Ausdwog uad)/y a8 sEndwias DGR PUE 004 SSUSS D006 dH 494 001 PUB L B XTidH
WY Z YRIP/OSS/s0/SMaL T UDIBSSBI/SN/METpE Ik 1sp MM diy

"I T8 gagy IPIMPHOoy U U0 JGISSa0dy ¢HET T Arenigag
‘OufRiug Yo dnosy Buryiop (OSS) ug-ubis abuis 450 ‘1
ERDIEREIE}H |

“1afoxd uisoy pareiEau] dH
ay) 10] jrom adLiojoad Aprea pip oym “Nezaig uof Jo apeul
aQq 1S Honu2UI [210ads B ‘0sTy “SUIpueIsIno are uaindy

[EILINOP IV TIDIMAL] GEGT W00 OF

[SIUR(] PUR JB[ID SUapaly PFeueul 1afold jo suonnquiuod
a1} ‘remonaed uf “onpoad uo] pajeISe] JH 241 Suliesin
U1 SATBUIITES] ANO JO SLIOJI2 11 93Pa[MOID{OE 0] LSIm gy
SHIDWIPI MOV

“ULIOJ

“eyd X[1-dH 241 uo sardojomnoa] fjumoas apdnnu 1oy pwod
-dns jo uoneZIENUAD I Aq Paanpal I8 J1] 01 S1S0)) 'S318
-ojomoy Lumoes apdnmur poddns 0) Areiqy pareys uiso]
PAIRISaI] JH 91 25T MOU SONIHAN 3591 2STR03(‘Yilm
Jeqrurey Apearfe are A1) 1811 S]001 XIN{] JO 1S SUWeS atj} asn
SISIHOISTY) “HI0MAUIRI] SPUBIoD Suipapun 21 Suisweyo
MO S3F0[0mN]0a1 mau eiodioour ue) SISWoISnD pue
‘ugisap Aq ASojomoa) A1ILmoes remoanted Aue ol payoo0|
10U 31 SIW0ISND X[)-dH 2Sea[ar ('0T X{1-dH 43 qis
Sunuisaq ‘S[qISus1Xa PR Usaq SeY WSO piedsan] JH

© Copr. 1949-1998 Hewlett-Packard Co.

—

The DCE Security Service

A security protocol consisting of encryption keys, authentication
credentials, tickets, and user passwords is used to provide secure
transmission of information between two transacting parties in a DCE

client/server enterprise.

by Frédéric Gittler and Anne C. Hopkins

The Open Software Foundation's Distributed Computing
Environment (DCE) is a collection of integrated services
that support the distribution of applications on multiple ma-
chines across a network. In most cases, networks are inher-
ently insecure because it is possible for someone to listen to
traffic or behave as an impostor. Without countermeasures
this threat could prohibit the distribution of business appli-
cations.

The DCE security service described in this article provides a
set of security mechanisms that can be easily used by a dis-
tributed application to remove the security vulnerabilities
mentioned above.

The security functionality provided by the DCE security
service includes:

Identification and authentication of users to verify that they
are who they claim to be

Authorization for applications to decide if a user can access
an operation or object

Secure data communications to protect the data communi-
cation of an application against tampering or eavesdropping.

Security Services

The DCE security service, with additional new services and
facilities, is based on the Kerberos system.! The Kerberos
system performs anthentication of users and servers based
on cryptographic keys so that conununicating parties can
trust the identity of the other. DCE augments Kerberos with
a way lo transfer additional security aftributes (beyond just
identity) to a server which may choose to perform access
control on those attributes. The DCE communication proto-
col contains support for protected communications that
relies on erytographic session keys provided by Kerberos.

IFig. 1 shows the environment in which the DCE security
service operates, and the services provided on the DCE
security server,

Registry. Every DCE security service user is known as a prin-
cipal, Interactive (human) users, systems (computers), and
application servers (processes) are all principals. Each prin-
cipal shares a secrel key! with the DCE security server. The
secrel key for interactive users is derived from the user pass-
word. This security model relies on the fact that a particular
key is known only to the principal and the DCE security
service,

Asin the Kerberas system, keys are used for encrypting and decrypting data transterred in a
netwark transaction, and are known only to the DCE sseerity servir and the parties involved in
the transaction

The registry service is the manager of the central registry
database which contains the principal’s name, universal
unique identifier (UUID), secret key, UNIX® account attri-
butes, and other attributes of the principals. These atiri-
butes include the extended registry attributes (ERA), which
may be defined and instantiated by an administrator.

Like other DCE services, access 1o the registry service is
based on the use of remote procedure calls (RPCs). The
registry’s operation is secure because it uses a protected
RPC for all of its transactions. Extended registry attributes
are covered in more detail later in this article.

Administrator

Security Server

DCE Control Create User

Program

Registry
Server

User

Key
Distribution Security
Center Database
| |
Authorize Me
(with Ticket) |
| Privilege -
| Server =
EPAC + PTGT
PTGT
Authenticate RPC

Access
Control
List

Application with EPAC) Application

Cliem

Server

EPAC = Extended Privilege Attribute Certificate
TGT = Ticket-Granting Ticket
PTGT = Privileged Ticket-Granting Ticket

Fig. 1. The components of the DCE security server in relation to
the other components typically found in a distributed environment,

December 1995 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

The fallowing are some of the terminology and associated acronyms frequently
used in this article:

Extended Privilege Attribute Certificate (EPAC). A credential provided by the
DCE privilege service containing user and group identities and attribute-value
pairs. This information is used by an application server to make authorization
decisions.

Extended Registry Attribute (ERA). A mechanism in which attribute-value pairs
are associated with principals. The infarmation in these attribute-valua pairs may
be used to deny or grant an authorization request

Principal. An entity such as a user, an application, o7 a system whose identity
can be authenticated.

Service Ticket. A credential used by an application client to authenticate itself
to an application server,

Ticket-Granting Ticket (TGT). A credenuial that indicates that & user has been
authenticated and is therefore eligible to get tickets to other services.

Identification and Authentication. The first interaction between
a user and the DCE security service is the login sequence
when the identity of a user is authenticated by a secret key.
The result of this authentication is a ticket-granting ticket
(TGT) containing the user principal’s credentials. The TGT
indicates that the user has been authenticated. It is used. as
its name implies, to obtain tickets to other services. The life
span of a TGT is limited to ensure that the user represented
by the credentials is the user currently using the system and
that the user’s credentials are up-to-date.

The user and group identity and the extended registry attri-
butes are not part of the TGT issued by the authentication
service, The privilege service supports an additional autho-
rization by providing user and group identities and attributes
in the form of an extended privilege attribute certificate
(EPAC). During a login sequence, after the TGT is obtained,
the run-time DCE security service makes a request to the
privilege server to issue a privilege TGT. This ticket is a
combination of the TGT and a seal of the EPAC.

The privilege TGT is stored in the user's environment and is
used by the secure communication mechanisms to obtain a
service tickei from the authentication service. The service
ticket is used by the communication mechanisms to per-
form mutual anthentication between the application client
and the application server.

In each of these exchanges, secret session keys, which are
known only to the DCE security service server, are generated
for a particular session between the client and server. The
DCE security run-time environment, RPC, and GSS (Generic
Security Service)* API use these keys for data encryption or
integrity protection generation in any network communica-
tion during a particular session. A brief description of the
(:SS API is given later in this article.

Authorization. DCE security provides application servers
with multiple options for authorization. A server can choose
to grant access (o a user based on one of the following three
models.

Name-based authorization. The simplest but least scalable
way of doing authorization is to compare the name of the

42 December 1995 Hewlett-Packard Journal

L]

remote principal with the names stored in an application-
specific database. This method is called name-hased autho-
rization and is available when using the DCE secure com-
munication mechanisms.

Privilege-based authorization with access control lists. DCE
servers can choose to protect their resources with access
control lists (ACLs). An ACL contains entries that describe
the particular permissions granted to various principals. An
ACL entry may specify an individual user (principal) name,
a group name that implies several principals, or “other” to
indicate any principal not already matching a user or group
entry. Users, groups, and others from a foreign cell may also
be specified in an ACL entry.

When a server receives a remote request, it asks the authen-
ticated RPC run-time environment for the caller's EPAC. The
EPAC contains the caller’s principal and group identities,
which are compared against the ACL to determine if access
is granted. If the caller's principal identity matches the prin-
cipal in an ACL entry, and if that ACL enfry contains the re-
quired permissions, then access is granted. If there is no
match on the principal, but one of the caller's groups matches
a group ACL entry, then the permissions in the group entry
apply.

The DCE library includes facilities to manage ACLs and per-
form authorization checks based on ACLs. ACLS are de-
scribed in the article on page 49.

Other authorization. Other authorization mechanisms are
made possible by the ERA facility. A server can use the
value of any given attribute in a user’s EPAC to decide
whether it should service or deny any given request.

Secure Data Communication

DCE provides the remote procedure call (RPC) communica-
tion mechanism as one of its core services. The DCE security
service is designed to support protected RPC communication.

Not all distributed applications in a DCE environment will
use RPC. Most client/server applications in existence today
are message-based, and changing them to use the RPC para-
digm is expensive and time-consuming. It is also not practi-
cal for certain applications to use RPC. These applications
nonetheless require security. For this reason the DCE secu-
rity service now supports the Generic Security Service API
(GSS API), which allows an application to authenticate itself
to a remote party and secure data for transmission over an
arbitrary communication mechanism.

Four basic levels of protection are available with either RPC
or GSS APL

No protection. The DCE security service does not mediate
or participate in the connection.

Authentication. The user of the client application is authen-
ticated to the server.

Data integrity. A cryptographic checksum is included with
the data transmitted. The DCE security service guarantees
the data received is identical to the data transmitted.

Data privacy. The data is transmitted in an encrypted form
and is therefore private to the sender and the receiver.
United States export regulations limit the availability of this
level of protection outside of the United Stafes and Canada.

The higher protection levels include the protections offered
by the lower levels.

© Copr. 1949-1998 Hewlett-Packard Co.

Security bevond DCE

Logically, two login sequences are required: the login to the
system and the login to DCE. Entries in the DCE security
service registry contain all the attributes associated with a
UNIX account. These entries can be used instead of the
traditional /etc/pa file or NIS{
information for the UNIX system login. The HP-UX* operating
tem and DCE login sequences into

sswid database as the source of

system integrates the sy
an integrated login facility, which is described in the article

on page 34

The DCE security service can be used as the core security
service for the enterprise because it features an extensible
registry through the ERA facility. Products from HP and
other manufacturers licensing DCE from the Open Software
Foundation (OSF) will undoubtedly use the extended regis-
try attribute facility either to provide other integrated login
facilities or to synchronize the DCE security service registry
with other user databases.

The secure data communication mechanisms described
above can be used by system vendors to secure the standard
network communication protocols, such as the file transfer
protocol (ftp).

Security Mechanisms

The mechanisms used by the DCE security service to pro-
vide secure data communication are a combination of key
distribution, data encryption, and data hash tables. The pur-
pose of this section is to give more details about these
mechanisms. Some details have been omitted for brevity
and readability. More formal and complete descriptions of
the algorithms can be found in the references indicated
below.

Data Encryption. The DCE security service uses the Data
Encryption Standard (DES)? algorithm to protect the data it
transmits. This algorithm is used by both RPC and the GSS
API to protect user data and guarantee its integrity. DES
requires that the two parties exchanging information share a
secret key, which is only known to the two parties. This key
is 64 bits long and has 56 bits of data and 8 bits of parity.

DES encrypts plain text in blocks of 64 bits. The encryption
is obtained by the iteration of a basic operation which com-
bines permutation of bits for both key and data with exclu-
sive-0R operations. The result of the encryption is a block of
cipher text in which each bit depends on all the bits of the
key and the plain text. Decryption of the cipher text involves
the inverse of the same basic operation. The party receiving
the cipher text and performing the decryption has a copy of
the key used for encryption.

The DCE security service uses DES in cipher-block-chaining
mode in which plain text blocks are exclusive-0Red with the
previous cipher text block before being encrypted. The DCE
security service also uses confounder data, which is a
dummy block of random data placed before the application
data. Confounder data is used to prevent guessing by cor-
relation between blocks of encrypted data. The same block
of plain text can result in two completely different blocks of
data once encrypted with the same key because of the fact

tNIS, or Netwark Information Services, isa product from Sun Microsystems

that the confounder data will be different. These two tech-
niques render security attacks particularly difficult because
each block of cipher text depends on the previous cipher
block and some random data

One-Way Hash. The DCE security service uses the message
digest 5 (MD5) algorithm* coupled with the DES encryption
to guarantee the integrity of the data being trans-

gorithm
mitted and verify
MD5 produces a 128-bit signature (also called a message
digest) that represents the data being transmitted. This mes-

the success of the decryption operations

sage digest is obtained by processing the data in blocks of
512 bits. The algorithm is driven by a fixed table containing
64 operations. It uses four 32-bit variables and involves rota-
tion, exclusive-0R, OR, negation, AND, and addition operations
on these variables and the 16 32-bit segments confained in
each block. Like all one-way hash functions, MD5 is designed
to be easy to compute and difficult to break (i.e., derive
plain text from a given hash). DCE uses CCITT-32 CRC,% a
checksum algorithm, to verify data integrity in certain cases.

Keys. The DCE security service uses two types of keys: long-
term principal seeret keys and conversation or session keys.
Principal keys. The DCE authentication protocol (described
below) requires that the DCE security server and the princi-
pal requesting authentication share a secret key. For a ma-
chine or process principal, this key is stored in a file and is
protecied by the local operating system protection mecha-
nisms. In the case of a human prineipal, the secret key is
derived from the user’s password by a one-way hash fune-
tion.! All the principal keys are stored in the DCE registry.
Conversation or session keys. Conversation and session
keys are used to encrypt the data and checksums exchanged
between the application client |, the application server, and
the DCE security server. The designs of the DCE and Ker-
beros security mechanisms avoid the need to establish a
long-term secrel key for each pair of communicating princi-
pals by creating shori-lived session keys and communicat-
ing them securely to each principal engaging in a data ex-
change. In addition, session keys reduce the vulnerability of
long-term principal keys because the latter are used less
often and therefore are less susceptible to offline attacks.

The conversation and session keys are generated as random
numbers by the DCE security service and are not reused.
These keys have typical lifetimes measured in minutes.
Session keys are keys communicated to principals in tickets,
whereas conversation keys are established dynamically by
the RPC run-time environment to protect the data transmis-
sion. Session keys are used in the establishment of commu-
nication keys.

Authentication Protocol

A simplified illustration of the authentication protocol is
shown in Fig. 2. The circled numbers in this section corre-
spond to the circled numbers in Fig. 2.

At the start of a user login sequence the computer estab-
lishes a session with the DCE security service. The user's
password is transformed into a secret key 1. The client
Tand a machine

system has a file containing a machine T(
session key. Knowledge about the machine session key and

December 1895 Hewlet-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

Client System
deed Process
Machine T6T -- b[O ©
Ow >0 —
e Machine
TGT

rr“-\‘
2|
Login Program DCE Security Library

User: Mary

Password=h11l — = bm

=
Oy Q
| Machine (
TGT [

h Machine Session Key

h User Secret Key (Created from Password)
h Conversation Key from deed
h Conversation Key from the Security Library

h Client Session Key
% Internally Generated Keys

TGT = Ticket-Granting Ticket

Security Server System

(. Registry

| Mary

Security Server

’E

o 2

Machine
» TGT

h 4 : oo
Time Stamp | \8,
.‘ o
2

| Data item encrypted first with key x and then with key y.
Q n To get to the data item, the token must be decrypted in
| reverse order (i.e., first key y and then key x).

Fig. 2. Creation of a ticket-granting ticket (TGT) via the authentication protocol.

the user secret key is shared between the client system and
the DCE server system (see keys a and b in Fig. 2).

The protocol used for authentication is known as the DCE
third-party preauthentication protocol. The protocol starts
with the DCE security library requesting, on behalf of a login
utility, a conversation key and a machine TGT from the DCE
daemon, deced 2 . Deed provides the first conversation key
and the machine TGT along with a copy of the conversation
key encrypted with the machine session key 3 . The secu-
rity library then generates a token containing a time stamp
and a second conversation key. The library encrypts that

441 December 1895 Hewlett-Packard Journal

token twice: once with the key derived from the user pass-
word and once with the first conversation key 4 . This en-
crypted token is passed to the DCE security server along
with the machine TGT and the encrypted conversation key
received from the deed process 5.

Upon receipt of the token and other items, the DCE security
server decrypts the first conversation key using the machine
session key & . [t then decrypts the token containing the
time stamp and the second conversation key using the first
conversation key 7. Next, the token is decrypted using the
user’s secret key stored in the registry database ‘8. If the

© Copr. 1949-1998 Hewlett-Packard Co.

time stamp is within acceptable limits, the DCE security
server creates a token containing a TGT and a client session
key 2 . The security server passes the token back to the
client encrypted with the second conversation key 10 . The
client decrypts the token, validates its content, and stores
the TGT and the client session key in the login context for
use in future requests for service tickets 11

At this point the user and the DCE security server are mutu-
ally authenticated. Note that the user's secret key was never
sent (in plain or ciphered format) to the DCE security server.
Proof that the user knows the correct password is verified
by the fact that the time stamp is successfully decoded by
the DCE security server.

Privilege Service. The TGT described above does not contain
the information necessary for the advanced authorization
mechanisms such as groups and ERAs. The privilege service
provides this information by creating an EPAC and a privi-
lege TGT. which contains the TGT and a seal (checksum) of
the EPAC.

When an authenticated RPC is aftempted and a valid privi-
lege TGT is not available, the privilege service is contacted
by the security library. First the library obtains a service
ticket for the privilege service in a manner similar to what is
described below, but using a TGT instead of the privilege
TGT.

The privilege service then prepares the extended privilege
attribute cerfificate, creates the privilege TGT, and commu-
nicates it back to the client. Application servers will be able
to request the EPAC through the RPC run-time environment.

Secure Communication. The authentication and key exchange
protocol needed to establish a secure communication chan-
nel between a client and its associated server is transparent
to the application. The RPC and GSS API facilities and the
DCE security service library cooperate in establishing a se-
cure communication channel.

Fig. 3 is a simplified! representation of the sequence of
events for establishing a protected RPC communication
channel, assuming a valid privilege TGT has already been
established by the privilege service as described above. The
circled numbers in Fig. 3 correspond to the circled numbers
in this section. First, the application client makes a request
to the application server by calling an RPC stub (1

Since the application client needs a service ticket to authen-
ticate itself to the application server, the security library
generates a request to get a ticket and a conversation key
from the security server. This results in the creation of a
token containing the request for the ticket and the privilege
TGT encrypted by the client session key learned during the
login sequence. The token is sent to the key distribution
center (KDC) which is in the security server 2 .

The KDC decrypts and validates the request and then gener-
ates a conversation key for use between the application cli-
ent and the application server. It encrypts the conversation
key and the authentication information (in the service
ticket) with the secret key it shares with the application
server (3. It attaches another copy of the conversation key

he conversation key is established in more steps than shown, and the protocol
aching so-as not to require all steps 1o be executed every time

In particular,
Implameants ¢

to the service ticket and encrypts the whole structure with
the client session key ¢ . This token is then sent to the ap-
plication client system 5, which decrypts it and learns the
conversation key & .

RPC then encrypts the RPC request with the conversation
kev 7 and sends it to the application server. The application
server leamns the conversation key and checks the client’s
authenticity. To accomplish this, the application server
sends a challenge, which is just a random number & . The
client receives this challenge and replies by sending a token
containing the encrypted challenge and the encrypted service
ticket and conversation key obtained from the security
server 9. The server decrypts the ticket and obtains the
client privileges and the conversation key (10 . It decrypts the
challenge with this conversation key 11, and if it matches
what is sent, the authenticity of the client is assumed. It then
proceeds to decrypt the request from the client 12 . The client
and server now share a secret conversation key.

Additional Functionality

Extended Registry Attributes

The DCE registry contains principal account data in a well-
defined format (i.e., a static schema). Every account record
contains the same number and types of data fields, all tar-
geted to meet the requirements of either DCE security or
UNIX platform security. To support integration with other
platforms and security systems, the DCE registry needed a
way to store non-DCE or non-UNIX security data for princi-
pals. To meet this need, the DCE registry was augmented
with a dynamic schema facility called the extended registry
attribute (ERA) facility, which supports the definition of
new types of data fields called attribute types and the assign-
ment of specific values for those attribute types to principals
and other registry objects like groups and organizations.

In the ERA schema, administrators define new attribute
types by specifying a unique attribute name (e.g., X.500_Distin-
guished_Name), the appropriate data type (e.g., string), the
type of registry object (e.g., principal) that supports attrib-
utes of this type, and other related information. Once the
attribute type has been defined in the schema, an adminis-
trator can attach an instance of that attribute type to any
registry object that supports it, For example, an attribute
instance whose type is X.500_Distinguished_Name and whose
value is /C=US/o=HP/0U=05SD/G=JOE/S=KING could be attached
to the principal Joe. 1t From then on applications that re-
quire knowledge of Joe's X.500 distinguished name could
query the registry for that attribute type on the principal
Joe.

In some cases, attribute values of a certain type are more
appropriately created and maintained outside of the DCE
registry. These could include attributes that are already main-
tained in a preexisting legacy database or attributes whose
values differ depending on discriminating factors such as time
of day or operation to be invoked. The ERA trigger facility
supports cases such as these by providing an automatic trig-
ger (or callout) to a remote trigger server that maintains the
attributes of interest. For example, if the registry receives a

11 See the article on page 23 for an explanation of the fields in this string

45

December 1095 Hewlett-Packard Jourmnal

© Copr. 1949-1998 Hewlett-Packard Co.

Application Client System

Application Client

@

RPC Stubs

Application Server System

Application Server

DCE Library
DCE Library f“ —— @ T
:i == A B ¢ - Lo
Chall < | Challenge
® L L
— v | ‘ “J v
"%ﬂ QI hﬁe JQ' c'hailmg_e' Q ® Challenge |Q4 O *
‘ 1.9= Tow |2 S0 u
C ® ® |® ey Table
R;’E;I/W [i servi-
\g/’J S
Security Server System h Client Session Key
Aithantnation h Server Secret Key
Server @ h Conversation Key

i
2

@? Generated Keys

PTGT = Privilege TGT

Fig. 3. Setting up a secure commurnication between a client and server.

query for a particular attribute type that is marked as a
trigger, the registry forwards the query to a preconfigured
trigger server. The server will return the appropriate attrib-
ute value to the registry, which will then respond to the orig-
inal query with this value. A query for a trigger attribute may
include input data required by the trigger server to deter-
mine the appropriate atiribute value to return. Trigger serv-
ers are not provided as part of the DCE package; they are
provided by third-party integrators of security systems. The
ERA trigger facility provides the rules, interfaces, and mech-
anisms for integrating trigger servers with the DCE security
service.

Some application servers need to make decisions, especially
authorization decisions, based on the calling principal’s
atiribute values. The DCE privilege service supports this by
providing a way for applications to request that specific
atiributes be included in a principal’'s EPAC. As described
earlier in the “Identification and Authentication” section, the
RPC run-time environment supports queries for obtaining

46 December 1995 Hewlett-Packard Journal

the calling principal’s EPAC. This enables application serv-
ers to base decisions on the caller’s attribute values and the
identity and groupset information in the EPAC.

Delegation

In a distributed environment, an application server process-
ing a client request may have to make a request on its own
to another server to complete the client request. We will call
the application server with the request an intermediate
server. The identity reported by the intermediate server to
the server it contacts can be either its own identity or the
identity of the client that made the original request. This
latter case is called delegation because the intermediate
server acts as a delegate of the client. A delegation chain is
built as intermediate servers call other intermediate servers.”

For delegation to be possible, the client has to enable this
feature explicitly. Two types of delegation are available:

© Copr. 1949-1998 Hewlett-Packard Co.

 Traced delegation in which the identity and privileges of
each intermediary are kept and can be used for access
control

« Impersonation in which only the originator’s identity and
privileges are carried in the extended privilege attribute
certificate.

A(Ls have been extended to support delegation, making it
possible to grant access based not only on the originator of
the request, but also on the intermediaries. This allows ad-
ministrators (o grant access to servers acting as delegates
on behalf of particular originators without granting access
to the same servers operating on their own behalf.

Compatibility with Kerberos

The authentication service provided in the DCE security is
derived from Kerberos version 5.! The protocol used be-
tween a client and server using the DCE security service is
the native Kerberos protocol and has been adapted for RPC

transport.

DCE security supports Kerberos version 5 clients (e.g., a
telnet, or a terminal server that uses Kerberos version 5).
This removes the need to manage a separate Kerberos realm
because DCE security supports the registration and authen-
tication of Kerberos principals.

DCE security also provides an API that can be used Lo pro-
mote Kerberos eredentials that have been forwarded to a
DCE client into full DCE credentials. Full DCE credentials
represent an authenticated DCE principal, thereby enabling
use of DCE services.

Auditing

DCE offers an auditing service that is part of DCE security.
The DCE security and time services use auditing to record

security-relevant events like account creation, ticket grant-
ing, and system time changes.

DCE auditing is controlled by the DCE control program, with
which DCE administrators can select the events to audit and
control the operation of the audit subsystem.

Authenticated RPC

The DCE remote procedure call (RPC) facility is described
in more detail in the article on page 6. The RPC facility is
integrated with the DCE security service and is referred to
as the authenticated RPC run-time environment.

When an application client wants to make a protected re-

mote call, it ealls the authenticated RPC run-time environ-

ment to select:

The authentication service, which can be either no authenti-

cation or secret key authentication

The protection level, which specifies whether authentica-

tion should oceur only at the beginning of an RPC session or

at each message or packet and whether message data

should be integrity or confidentially protected

* The authorization service, which can be name-based, in
which case only the name of the caller is known to the
server, or privilege-based, in which case all the privileges of
the client, in the form of an EPAC, are made available to the
server for authorization.

The application developer can trade off the resources con-
sumed by an application with the level of security required.

Generic Security Service API

The GSS API improves application portability by reducing
security-mechanism-specific code. It also provides transport
independence since the data protection is not tied to a par-
ticular communication mechanism (e.g., DCE RPC). GS5
API calls are used to authenticate and establish a security
context between communicating peers and to protect
blocks of data cryptographically for transmission between
them. The data protection includes data origin certification,
integrity, and optionally, confidentiality.

The GSS API supports many different underlying security
mechanisms. The GSS API implementation provided with
DCE supports both the DCE and the Kerberos version 5
mechanisms.

Security Run-Time Environment

Applications can access security functions directly through
the security library, which is part of the DCE library on the
HP-UX operating system. The security library provides APls
to make access decisions based on ACLs, manage key tables,
query and update registry data, login and establish creden-
tials, and so on.

System administrators and users can use a series of com-
mands to administer the security service or manage their
local security resources such as credentials, ACLs, or key
tables. Most of the administrative commands are part of the
DCE control program.

Multicell Configurations

In large enterprise networks, it is often impractical or unde-
sirable to configure a single cell. For this reason, DCE fea-
tures intercell communication mechanisms. See the arficle
on page 6 for a brief description of cells.

The DCE security service is an actor in this intercell envi-
ronment. Through a mechanism of key exchange, a relation-
ship of trust can be established between two cells. When an
application client wants to communicate with a server in a
foreign cell, it must obtain a service ticket for that server. To
do so, the DCE security service automatically generates a
foreign privilege TGT, which contains the privilege informa-
tion about the principal (application client) in its local cell
encrypted using the foreign cell’s keys. This key, shared be-
tween the two cells, is used to authenticate and secure this
protocol. The DCE security service then proceeds to get a
service ticket to the foreign server by contacting the foreign
authentication service as it would do for the local cell by
using the foreign privilege TGT instead of the privilege TGT
used in the example given earlier,

ACLs support the intercell operations by allowing foreign
users, groups, and others to be granted permissions.

High Availability

The DCE security service is an essential piece of the distrib-
uted computing environment. Thus, the security service
must stay operational around the clock even when systems

December 1095 Howletp-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

are down or network connections are unavailable, which
could happen frequently in wide area network environments.

For this purpose, the DCE security service features a server
replication mechanism. The master replica is the only one
that can accept requests for updates such as password
changes or account modifications. These modifications are
sent securely to slave replicas, which contain a duplicate
image of the registry database. but support only query, not
update operations. The use of slave replicas improves per-
formance in busy environments since additional DCE secu-
rity servers are available to process queries and requests for
secure communication.

The DCE security service administrative commands allow
the role of master to be moved between replicas. In case the
machine hosting the master is not available for some time,
the administrator can force a slave to become the master.

In the rare case in which no network connection is available
to reach a DCE security server, the DCE security login client
will use a local cache of credentials that have been granted
recently to perform authentication. However, the credentials
usually cannot be used to obtain service tickets.

System Security Requirements

The use of the DCE security service alone does not guarantee
a secure distributed computing environment. The security
service relies on protection features offered by the local
operating system to store its data and credentials.

The systems hosting a DCE security server must be pro-
tected from unauthorized access, They should be placed in a
secure area, such as a locked room, and be given the highest
security considerations. In particular, certain network ser-
vices should be disabled and a limited number of users
should be given access. This security is required because the
DCE security server holds the keys to all the principals in
the enterprise.

The systems hosting the application servers should also be
managed with care, mainly to protect the enterprise data,
which is often not protected by the DCE security service.

Application clients do not need such stringent management
guidelines. On multiuser systems, the user environment
should be partitioned so that one user cannot steal the cre-
dentials of another active user, which could be done by
reading the other user's credential files.

The DCE security service does not guarantee that there are
no undetected intruders in the system, It offers no protection
if the program used for login has been modified to steal the
password, saving it for future retrieval by an intruder.

48 December 19895 Hewlett-Packard Jourmal

If a system other than one hosting a DCE security server is
compromised, only the application servers residing on that
system and the users who performed a login on that system
during the period of compromise are affected. The overall
distributed computing environment protected by the DCE
security service is not affected. This is because the keys are
known only by the owner (server, machine, or application)
and the DCE security servers, and they are never communi-
cated to a third party.

Acknowledgments

The DCE security service was developed by Hewleti-Packard
for the Open Software Foundation as part of the Distributed
Computing Environment project. The DCE security service
finds its roots in the Domain operating system, the Network
Computing System (NCS), and the Athena project at the
Massachusetts Institute of Technology, which created Ker-
beros. Over the years, many different engineers and manag-
ers, 100 numerous to recognize by name, have worked on the
product. The DCE security service continues to evolve as
new services are added through the prestructured technology
program under the auspices of the OSF.

The authors would like to thank Sue Kline, Mike Kong, Sean
Mullan, Joe Pato, Bill Sommerfeld, and Rob Stanzel for their
contributions to this article.

References

1. .J. Kohl, et al., The Kerberos Network Authentication Serviee,
Version 5, RFC-1510, September 1893,

2, Generie Security Service AP, Preliminary Specification P30S,
X/Open Company Ltd., January 1994,

3. Data Encryption Standard, NBS FIPS PUB 46-1, National Burean
of Standards, 11, 5. Department of Commerce, January 1985,

4. R. Rivest, The MD5 Message Digest Algovithm, RFC-1321, April
10992

5. Evvor-Correcting Procedures for DCEs Using Asynchronous-to-
Synchronous Conversions, Recommendation V.42, CCITT. 1985,

6. M. Erdos and J. Pato, “Extending the OSF DCE Authorization
System to Support Practical Delegation,” Proceedings. Privacy ond
Security Research Group Warkshop on Network and Distributed
System Security, February 1995,

HP-UX 8 * and 10,0 for P 9000 Series 700 and BOO computers are X/Open Comparry UNIX 93
branded products

UNIX is & registered trademark in the United States and other countries, licensed exclusively
through ¥/Open Company Limited

X/Dpen is a registered trademark and the X device is a trademark. of %/Open Company Limited
in the UK and other countries

Open Software Foundation and OSF are trademarks of the Open Software Foundation in the
U5 A, and othel countries

© Copr. 1949-1998 Hewlett-Packard Co.

An Evolution of DCE Authorization
Services

One of the strengths of the Open Software Foundation’s Distributed
Computing Environment is that it allows developers to consider
authentication, authorization, privacy, and integrity early in the design of a
client/server application. The HP implementation evolves what DCE offers

to make it easier for server developers to use.

by Deborah L. Caswell

In the Open Software Foundation’s Distributed Computing
Environment (DCE), 12 services are provided by server pro-
cesses. They are accessed on behalf of users by client pro-
cesses often residing on a different computer. Servers need
a way to ascertain whether or not the user has a right to
obtain the service requested. For example, a banking service
accessed through an automated teller machine has to have a
way to know whether the requester is allowed to withdraw
money from the account. A medical patient record service
has to be able to know both who you are and what rights
vou should have with respect to a patient’s record. A policy
can be implemented such that only the patient or the legal
guardian of the patient can read the record, but doctors and
nurses can have read and write access to the record.

The process of determining whether or not a user has per-
mission to perform an operation is called authorization. It is
common to separate the authorization policy from the au-
thorization mechanism. Authorization policy dictates who
has permission to perform which operations on which ob-
Jects. The mechanism is the general-purpose code that en-
forces whatever policy is specified. In DCE, the encoding of
the authorization policy is stored in an access control list
(ACL). Every object that is managed by a server such as a
bank account or a patient record has associated with it an
ACL that dictates which clients can invoke each operation
defined for the object.

For example, to encode the policy that the owner of the
bank account can deposit and withdraw money from the
account and change the mailing address on the account, but

Server Process

only a bank teller may close the account, an ACL on a bank
account owned by client Mary might look like:

user:Mary:DWM
group:teller:C

where D stands for permission to deposit, W for permission
to withdraw, M for permission to change the mailing address,
and C for permission to close the account.

Each application is free to define and name its own set of
permissions. The D, W, and C permissions used in the exam-
ple above are not used by every server. An application in
which the D (deposit) permission makes sense could choose
to name it as the “+" permission. Also, many applications
will not have a deposit operation at all. Therefore, the infer-
pretation of an ACL depends on the set of permissions de-
fined by the server that uses it.

The first part of this paper describes the specifications and
authorization mechanisms (code) offered in DCE that sup-
port the development of authorization services. The second
part describes our efforts to supplement what DCE offers to
make it easier for the server developer to use authorization
services, The ACL functionality described here pertains to
DCE releases before OSF DCE 1.1 and HP DCE 1.4

Authorization Based on Access Control Lists

Fig. 1 shows the client/server modules required for an ACL
authorization scheme used in a hypothetical bank applica-
tion that was implemented using DCE. To understand the

Does Jane Have Permission

Client Process

Dispense U.S. $100

Automated
Teller
Machine

User = Jane, Account = 1234

Imerface
Request = Withdraw U.S. $100

Modify Account
Management Process E¥isia
Give Jane Permission to

Withdraw from Account 1234,

Bank
Administration

Editing
Interface
(rdnct)

Comtrgl Account
Management

to Withdraw from this
Account?

Apptcaton A

Manager

Get Aceount
Permissions

Update ACL
Information

ACL

Databies Fig. 1. Flow of information in the

bank automatic teller machine
example

December 1995 Hewlet-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

interactions between these modules consider the following
scenario. Jane makes a request to withdraw U.S. $100.00
from her account number 1234. The application interface
passes this information to the ACL manager asking for an
authorization decision. The ACL manager retrieves the au-
thorization policy for account 1234 from the ACL database
and applies the policy to derive an answer. If Jane is autho-
rized, the machine dispenses the money.

When Jane's account is first set up, a bank employee would
use an administration tool (from the management process in
Fig. 1) to give Jane permission to withdraw money from
account 1234. The editing interface enables the ACL manager
to change the policy. The ACL manager changes a policy by
retrieving the current policy, modifying it, and writing it
back to the ACL database.

ACL Database. A server that needs to authorize requests must
have a way to store and retrieve the ACLs that describe the
access rights to the objects the server manages. One appli-
cation might want to store ACLs with the objects they pro-
tect and another might want a separate ACL database.
Depending on the number of objects protected and access
patterns, different database implementations would be opti-
mal. For this reason, the requirements for an ACL storage
system are likely to be very dependent on the type of
application.

An Authorization Decision. When an application client makes
a request of the application server, control is given to the
manager routine that implements the desired operation. The
manager routine needs to know what set of permissions or
access rights the client must possess before servicing the
request.

The manager routine must supply the client’s identity (Jane),
the name of the protected object (Account 1234), and the
desired permissions (withdraw) to a routine that executes
the standard ACL authorization algorithm. If the routine
returns a positive result, the server will grant the client’s
request (dispense U.S. $100). Note that the authorization
system depends on the validity of the client’s identity.
Authentication is a necessary prerequisite for authorization
to be meaningful.

Standard Interface for Editing. Without a standard way of ad-
ministering ACLs, each server developer would have to pro-
vide an ACL administration tool, and DCE administrators
would have to learn a different tool for each server that uses
authorization. To avoid that problem., a standard ACL editing
interface is defined so that the same tool can interact with
any service that implements the standard interface.

What DCE Provides

To meet the requirements for the ACL management scheme
mentioned above, DCE provides code to support ACL
management for some requirements and simply defines a
standard interface without providing any code for other
requirements. Fig. 2 shows the main components that pro-
vide DCE ACL support within the server executable.

Unforgeable Identities. DCE provides the run-time RPC (re-

mote procedure call) mechanism, which provides the server
process with information about the client making a request.
Because of the authentication services provided in DCE, the

50 December 1995 Hewleti-Packard Journal

Application —

Application
Client

Interface Stub |

Fram ——= rdacl Server Stub
acl_edit
+ Application

Manager

rdac| Routines

ACL Datahase Access Routines
For ACL Storage and Retrieval

(e.g., sec_acl mgr)

Access Control
Database

|| Code that is automatically generated from the interface specification.

B code that must be provided by the server developers. These routines are
embodied in the ACL manager in Fig. 1.

Fig. 2. Components that provide DCE ACL support in a server
executable.

client’s identity is unforgeable so that the server need not
worry about an impostor.

ACL Database. DCE suggests an interface to an ACL storage
and retrieval subsystem called sec_acl_mgr. This interface is
used within the server, and therefore is not mandatory or
enforceable. DCE currently does not provide an implemen-
tation of this interface for use by application developers.
Furthermore, it does not contain operations for adding and
deleting ACLs, so even if the sec_ac|_mgr interface is used, it
would have to be supplemented by other ACL database
access operations.

Authorization Decisions. DCE specifies a standard way of
reaching an authorization decision given a client’s identity,
desired operation, and authorization policy encoding. The
OSF DCE 1.0 distribution for application developers does
not supply an implementation of this algorithm, requiring
the server developer to write the authorization algorithm.

Standard Editing Interface. DCE provides a tool called ac!_edit
that an administrator can use to change the authorization
policy used by any server that implements the standard rdacl
interface even though each server might use a different set
of permissions.

DCE defines the standard rdacl interface responsible for
enabling modification of the authorization policy. The rdacl
interface is used by acl_edit to access and modify ACL infor-
mation. DCE does not provide an implementation of the rdacl
interface. Without additional help from other sources, each
server developer has to write rdacl routines that call the ACL
database access routines. Servers that implement the rdacl
interface can be administered by any client that uses the
standard interface including the acl_edit tool mentioned
above.

© Copr. 1949-1998 Hewlett-Packard Co.

The rdacl interface does not support adding and deleting
ACLs: it only addresses editing existing ACLs. For that
reason, an ACL storage subsystem must be designed and
implemented for an application that supports adding,
modifying, retrieving, and deleting ACLs.

The rdacl operations listed below are described in the DCE
reference manual.® They are listed here to give an idea of
the size and functionality of the interface.

rdacl_get_access: lists the permissions granted to a principal
to operate on a particular object

rdacl_get_manager_types: gets the list of databases in which the
ACL resides

rdacl_get printstring: gets the user description for each
permission

rdacl_get_referral: gets a reference to the primary update site
rdacl_lookup: gets the ACL for an object

rdacl_replace: replaces the ACL for an object

rdacl_test_access: returns true if the principal is authorized to
perform the specified operation on an object
rdacl_test_access_on_behalf: returns true if both the caller and
a specified third-party principal are authorized to perform
the specified operation on an object.

An implementation of these operations has to call the re-
trieve and modify operations of the ACL storage subsystem,
invoke the authorization decision routine, and describe the
permissions that are used in the ACLs for the particular
implementation.

Component Relationships. Some of the boxes in Fig. 2
represent code that is automatically generated from the
interface description, and other boxes represent code that
must be supplied by server developers,

The modules on the right side of the block diagram in Fig. 2
represent the application-specific interfaces and code. The
application interface stub is the code generated by the Inter-
face Definition Language (IDL) compiler when given the
application interface files. For example, if we have a bank
account server, the application interface stubs would re-
ceive the call and direct it to the application manager. The
application managers are the modules that implement the
application server functionality. In our bank example, this is
the code that implements the deposit and withdrawal
operations.

On the left side of Fig. 2 is the code that is specific to ACL
management of the DCE standard rdacl interface. The rdaclif
(rdacl interface file) server stubs are generated by running
the IDL compiler over the rdaclifidl file which is delivered
with the DCE product. The rdacl routines implement the op-
erations defined in the rdacl interface. The bottom of Fig. 2
shows the ACL storage and retrieval code. The rdacl routines
make calls to the storage layer either to get the ACLs that
will be sent over the wire to a requesting client or to replace
a new ACL received from an ACL administration tool. The
database access routines must also implement the standard
ACL checking authorization algorithm and a routine to com-
pute the effective permissions of a client with respect to a
specific object. The application managers call the database
access layer to get an authorization decision. For example,
the code that implements the withdrawal operation needs to
first make sure that the client making the request is autho-
rized to withdraw money from a particular account.

© Copr. 1949-1998 Hewlett-Packard Co.

Although they do not interact directly with each other, the
application manager routines and rdacl routines coexist
within the same process and call common ACL manager
routines.

Summary

DCE supports a server process’s ability to make an antho-
rization decision in several ways, but as shown in Fig. 2,
there is a lot of code left for the server developer to write.
Some of the required code, such as the authorization deci-
sion routine, can be reused in other applications because it
is application independent. Other code, such as the storage
subsysteny, is more application-specific and might have to
be developed for each new service.

Help for the Server Developer

This section describes three evolutionary steps that we took
to supplement DCE’s authorization support. The approach
we took to each step is not novel. Each approach has value
by itself in addition to being a stepping stone to a more
sophisticated approach.

Note that although the outputs from each of these steps did
not directly become products, they did form the basis for HP
Object-Oriented DCE (HP OODCE). HP OODCE is briefly
described later in this article and completely described in
the article on page 55.

Sample Applications. The first step was simply to provide an
example of server code that performs ACL management.
The application acl_manager is one of a set of sample applica-
tions written to demonstrate the use of various DCE facili-
ties. These sample applications are a valuable learning tool
and are also useful for cutting and pasting working code into
a real-world application.

The acl_manager is based on the ACL manager reference im-
plementation distributed with DCE source code. The sample
application uses a static table of ACLs, and there is no oper-
ation for adding or deleting ACLs and no general storage
manager. However, acl_edit can interact with this primitive
ACL manager to view or modify the ACL for one of these
static objects .

The acl_manager includes a description of how to tailor the
code to one's own application server and provides more
background on how ACL management works than is avail-
able in the DCE manual set.

Another sample application, the phone database, demon-
strates the use of an ACL manager inside an application.
This more complex sample application demonstrates how
application interfaces and the ACL management interface
coexist within the same server and how they interact. The
phone database application uses an in-memory binary free
storage facility with a simple checkpoint facility for commit-
ting changes to stable storage. The persistent representation
of ACLs can be modified by an editor for bulk input. At
startup, the server parses and interprets this file.

As mentioned before, in addition to being a valuable learn-
ing tool, the sample applications provide reuse of code and
ideas at the source-code level.

Common ACL Management Module Interface. Cutiing a sample
application and pasting it into a new application with an

December 1095 Hewlett-Packard Journal 51

understanding of how it needs to be modified is surely bet-
ter than starting from scratch. Reuse through a code library
is better yet. The problem was how to provide a single li-
brary for ACL management when so much of it is applica-
tion-specific. There is so much flexibility in how ACLs are
managed. We wondered if it were possible to anticipate
what most developers would need and if we would be able
to satisfy those needs by creating a general-purpose library.

The first task was to partition the aspects of ACL manage-
ment into those that are application-specific and those that
are application independent. The application independent
portion would be provided as library routines. Our approach
to the application-specific portions was threefold:

Limit the flexibility by providing routines that would be suf-
ficient for most developers. For example, although DCE
allows a server to implement more than 32 permissions,
limiting support to 32 or less simplified the design
considerably.

Parameterize routines such that their behavior can be deter-
mined when the library is initialized at startup. For exam-
ple, each application defines its own set of permissions. A
table of permissions can be downloaded into the library
rather than hard-coded into the library routines.

Identify a well-defined interface 1o the storage and retrieval
routines. As mentioned earlier, the storage requirements are
the one aspect of ACL management that will vary the mosi
among applications. By partitioning the functionality in this
way, customers with special storage needs can write their
own ACL storage management, and provided that they con-
form to the published interface guidelines, would still be
able to use the library for other ACL management functions.

Fig. 3 shows a different view of the ACL components de-
picted in Fig. 2. The application server component is not
called out separately in Fig. 2. The server initialization code
(server.c) is typically located in this component. The applica-
tion server also contains the code that directs the DCE run-
time code to start listening for incoming client requests.

The application manager component in Fig. 3 contains the
same functionality as the application manager component
shown in Fig. 2.

The ACL manager component in Fig. 3 represents the code
needed to support the rdacl interface, the ACL checking algo-
rithm, the computing of effective permissions, and other
general utilities. Basically, the ACL manager contains all the
ACL code that is independent of how an ACL is stored

Application
Interface Stub

Application
Server

Application

Manager

ACL Storage
Manager

ACL Mznager

From acl_edit

52

within a database. It also encapsulates the implementation
of the ACL structure itself. In other words, if the data struc-
ture that represents an ACL were to change, only the ACL
manager component would need to be rewritten to accom-
modate the changes.

The ACL storage manager contains the ACL database access
routines and the ACL database. The ACL storage manager
can manage ACL storage in memory, on disk, or a hybrid of
the two.

The circled numbers in Fig. 3 correspond to the following
interactions between ACL manager components.

1. The application server must call the ACL manager to ini-
tialize its internal data structures and to download applica-
tion-specific information such as permission print strings
and reference monitor callback functions. The reference
monitor implements a general security policy that screens
incoming requests based on the client’s identity and the au-
thentication or authorization policies it is using. The moni-
tor does not base an authorization decision on the requested
operation or the target object. The ACL manager performs
that job. A default reference monitor is provided by the ACL
manager. If an application has its own reference monitor, it
will be invoked instead of the default monitor supplied with
the ACL manager.

2. The application server must call the ACL storage manager
to allow it to initialize itself. The initialization calls performed
by the application server are only done onece when the whole

system is initialized.

3. The application manager calls the ACL manager to per-
form an authorization decision or to invoke a general ACL
utility.

4. The application manager calls the ACL storage manager
to add a new ACL to the database or to delete an old ACL
from the database.

5. The ACL manager calls the ACL storage manager to trans-
fer an ACL to or from the database in response to rdacl
requests coming from acl_edit.

6. The ACL storage manager calls the ACL manager utility
routines to manipulate ACL data structures. One manipula-
tion operation involves converting permissions from human
readable form into a bitmap and vice versa.

From Application Client

Fig. 3. Architecture for modules
that make up the common ACL
management module interface.

ACL
Datahase

December 1095 Hewlett-Packard Jnum.@l Copr. 1949-1998 Hewlett-Packard Co

7. The ACL manager must make a callback to an application-
specific reference monitor routine to screen an incoming
rdacl request according to the application’s general security
policy.

The goal for the common ACL management module interface
was to explore appropriate programmatic interfaces. Our
implementation was a proof of the concept for the design
and was not intended to be the best ACL manager package
The implementation provided the same functionality as the
sample application except that it used an in-memory binary
tree to allow applications to add ACLs at run time. The main
contribution of the common ACL management module inter-
face from an application developer’s standpoint is the ability
to link with a general-purpose library rather than cutting and
pasting source code. The application developer can use
higher-level interfaces for creating ACLs and get authoriza-
tion decisions without having to understand and write the
underlying mechanism.

Although the common ACL management module interface
was never sold as an HP product, it was useful in several
ways. First, we learned a great deal about ACL management
and what developers would want to be able to do with it.
Second, we used the modules in an internal DCE training
class that allowed us to teach ACL management concepts
and have the students add ACL management to an applica-
tion they developed during a two-to-three-hour laboratory
exercise. The common ACL management module interface
allowed the students to spend their lab time reinforcing the
concepts presented in the lecture rather than getting bogged
down in writing a lot of supporting code just to make their
application work. The experiences of the class reinforced
our belief that it is possible to support application develop-
ers in the creation of ACL management functionality without
every developer having to understand all of the complicated
details of ACL management that are DCE-preseribed but not
application-specific.

The version of DCE provided by OSF only supports C pro-
grammatic interfaces. It made sense to implement the com-
mon ACL management modules in ' for two reasons:

Since we were layering on top of DCE, it was more conve-
nient to use the supported language.

We expected that users of the common ACL management
modules would also be programming in C, and so would
want C interfaces to the common ACL management module
interface library.

However, there is growing interest in C++ interfaces to DCE
as well as support for object-oriented programming. In
response 1o that need, a C++ class library for DCE called
OODCE (object-oriented DCE) has been developed.

HP OODCE: A C++ Class Library for DCE

The common management module interface acted as a
springhoard for design and implementation of the C++ ACL
management classes which are part of HP's OODCE
product. Since it is much easier to create abstract interface
definitions in C++ than in C, these DCE ACL management
classes make it easier to provide access control within a
DCE server. Application developers can reimplement spe-
cilic classes to customize the ACL manager to fit their

— DCEAcIMgr DCEAcISiorageManager
A
— DCEAcIDD
DCEAc! & — DCEModityableAc]
v
DCEAcISchema [

Fig. 4. HP OODCE ACL management class interrelationships

needs. The classes supplied with OODCE and their interrela-
tionships are shown in Fig, 4. The classes shown in Fig. 4
represent further modularization of the ACL manager and
ACL storage manager components shown in Fig. 3.

Class Descriptions. The DCEAcIMgr class implements the rdacl
interface for use by the acl_edit tool and other management
tools. There is one instance of an DCEAciMgr per application
server. The DCEAcIStorageManager manages all ACL databases
for this server. The DCEAcIStorageManager is responsible for
finding the database in which the ACL is stored and return-
ing a handle to that database. Programs invoke the DCEAcl-
StorageManager interface to create or register a new ACL
database and o access existing ones.

The DCEAcIDB class defines the interface to an ACL database.
An ACL database may define multiple 32-bit words of per-
missions. The interpretation of the permission bits is stored
in a DCEAcISchema object, and each database has exactly one
DCEAciSchema associated with it

The DCEAc! class defines an interface for accessing DCE ACL
information. In addition to the DCE ACL information, the
DCEAcl class contains information about the database in which
it resides, the owner and group of the protected object, and
other information that is needed by an implementation. The
DCEAcl’s state is read-only. The DCEModifyableAc! class is a
modifiable version of the DCEAc| class.

Using the 00ODCE ACL Management Classes. The application
server invokes a simple macro that initializes the ACL sys-
tem. OODCE, by default, handles all the details of making
the rdacl interface ready to be invoked by remote clients.
This includes registering the interface with the RPC run-time
routines so that an incoming request for that interface is
received and ensuring that the correct entry point for the
rdacl routines is invoked. The application server also handles
exporting location information to the endpoint mappert and
CDS (cell directory service) database so that clients can find
the server's ACL management interface. That is the only
required involvement of the application server. However, the
application server may create DCEAcIDb objects that can be
shared across manager objects. These databases must be
registered with the DCEAciStorageManager.

The mapper maintains a list of interfaces and the corresponding part numbers where services
of the interfaces are listening

53

December 1805 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Application managers create new ACL objects by first re-
questing the DCEAcIDb object to create a DCEModifyableAc! ob-
ject and adding ACL entries to it. When done, the DCEModify-
ableAcl object is committed (added) to the database. To get
an authorization decision, an application manager retrieves
an ACL object from the database and interacts with it to get
an authorization decision.

Overall, it is easier for the application developer to use the
OODCE ACL manager classes than any of the previous
solutions. Many of the routine tasks are done by default by
the library, hut they can be overridden if there are special
circumstances. The ACL management objects are written to
the absiract class definition so that users can provide their
own implementations of DCEAcIDb, DCEAcl, and DCEModifyable-
Acl elasses and have them plug into the rest of the system.

A DCEAcIDb implementation encapsulates the database ac-
cess. This allows the flexibility of storing ACLs either with
the objects managed by the server or in some other data-
base. Any commercial database produet can be used. The
server developer need only implement DCEAcIDb so that it
conforms to the abstract interface and makes the calls to
the commercial database of choice.

The DCEModifyableAcl class allows for fine-grained editing. The
rdacl interface only supports the atomic replacement of an
entire ACL, whereas the DCEModifyableAcl design supports
changing individual elements within an ACL.

HP OODCE ACL objects are more general-purpose than the
common ACL management module interface described ear-
lier because the abstract class design of HP OODCE accom-
modates more features. Its design supports more than 32
permissions, and registration of the rdacl interface with CDS
and the endpoint mapper is automatic and transparent to
the server developer.

54 December 1995 Hewlett-Packard Journal

Current Status. HP OODCE is now a product. It includes de-
fault implementations for all the classes, but we expect that
customers will write their own implementations of DCEAcIDb
and possibly of DCEAcl and DCEMadifyableAcl. There is still
much to learn about what distributed application developers
really need from an ACL management package, but with the
HP OODCE library as a product, we have more opportunity
to get feedback. HP OODCE is deseribed in more detail in
the article on page 55.

Acknowledgments

I would like to thank Bob Fraley who is the codeveloper, my
object-orientation mentor for the HP OODCE portion of this
project, and the principal reviewer of this paper. Jeff Morgan
and John Dilley were developers of HP OODCE and contrib-
uted to discussions of design and implementation of the
ACL management portion. Mickey Gittler enhanced and
made the HP OODCE ACL manager classes into a product.
Thanks also to Jeff Morgan and Cas Caswell who reviewed
this paper and gave helpful suggestions for improvement.,

References

1. W. Rosenberry, . Kenney, and G. Fisher, Understanding DCE,
O'Reilly & Associates, Ine., September 1992,

2..J. Shirley, Guide to Writing DCE Applications, (V'Reilly & Associ-
ates,; Inc., June 1992,

3. DCE Application Development Reference Manual, Open Soft-
ware Foundation, Cambridge, Massachusetts, 1991,

HPF-LX 8. and 10.0 for HP 8000 Series 700 and BO0 computers are %/0pen Company UNIX 93
branded products

UNIX 15 a registered trademark in the United States and other countrigs, licensed exclusivaly
through ¥/0pen™ Company Limited

%/Open is a registered trademark and the X device is a trademark of X/0Open Company Limited
in the UK and other countries

(Open Software Foundation and OSF are trademarks of the Open Software Foundation in the
.S and other countries

© Copr. 1949-1998 Hewlett-Packard Co.

An Object-Oriented Application
Framework for DCE-Based Systems

Using the Interface Definition Language compiler and the C++ class
library, the HP OODCE product provides objects and abstractions that
support the DCE model and facilitate the development of object-oriented

distributed applications.

by Mihaela C. Gittler, Michael Z. Luo, and Luis M. Maldonado

HP’s Object-Oriented DCE (HP OODCE) provides a library
of framework and utility C++ classes that hide DCE pro-
grammatic complexity from developers and provide auto-
matic default behavior to ease the development of distrib-
uted applications. The default behavior is also a great help
in shortening application development time. HP OODCE
offers flexibility by allowing developers to use subelassing
and customized implementation. Fig. 1 shows the product
structure for HP OODCE.

HP OODCE allows clients to view remote objects as C++
objects and to access member functions and receive results
without making explicit remote procedure calls (RPCs).
Also, applications can communicate with each other using
interfaces specified by the Interface Definition Language
(IDL). Finally, HP OODCE uses the C++ class library and the
IDL compiler (idl++) to create an object-oriented program-
ming environment that supports RPC-based communications,
client/server classes, POSIX threads, and access to the DCE
naming and security services,

Customer-Specific
or Vendor-Specific
Object Kits

Extension Classes

{Object Kits)

C++ Framework For DCE

idi++
Compiler

Generated Classes Framework Classes

Provide Support for the C++
Model and Default Implemen-
tations (e.g., DCEnterface,
DCEIntartaceMagr, and DCEServer)

Derived From IDL Specilica-
tion (e.g., Client and Server
Classes)

Lhility Classes

Encapsulate DCE Data
Structures |e.g., DCEUuid and
DCEPmysword)

Fig. 1. HP OODCE product structure.

idl++-Generated Classes

The idl++ compiler takes an IDL specification like the one
shown in Fig. 2 and generates the C++ classes shown in

Fig. 3. The idl++ compiler also generates the header file and
stubs normally produced by the DCE IDL compiler.

The conerete client class® describes the client proxy object
that accesses remote C++ objects implemented by the
server. The proxy object gives the client the impression that
the instantiation of a particular server object is executing
locally. Fig. 4 shows an example of a client proxy class dec-
laration for an interface to the Sleep function, which is re-
sponsible for putting a process to sleep. This class contains
multiple constructors that, when called, locate the compat-
ible manager (server) objects based on location information
and the UUTD (universal unique identifier) supplied as argu-
ments to the constructors.

The abstract server class in Fig. 3 provides declarations for
member functions defined in the IDL specification that
correspond to remote operations that can be accessed by
the client proxy object. The default concrete server class
declares the member functions specified in the abstract
class. The functions must be implemented by the application
developer. Fig. 5 shows the abstract and concrete server
manager declarations for the Sleep function.

The entry point vector contains entry points for each remote
procedure defined in the IDL specification.

HP OODCE Server and Client Classes

The server code that interacts with the DCE subsystems is
embodied in the DCEServer class. An instance of the DCEServer
class, called theServer, manages the remote objects that are
exported by the DCE server application. These objects are

[foa.idl
[unid(DOFCDDT0-7DCB-11CB-BDDD-08000920E4CC),
version(1.0)]

interface sleeper
{
[idempotent] void Sleep
{ [in] handle _th
[in] long time),
}

Fig. 2. DL specification for the interface Sleep

Ses glossary on page 60 for a brief description of the C++ termindlogy used in this article

December 1985 Hewlet-Packard Jourmal b5

© Copr. 1949-1998 Hewlett-Packard Co.

DCE IDL File {foo.idl in Fig. 2)

Server Entry Point
Vector (C++ Stub)

Contains the
Concrete
Client Class

Client Proxy
Declaration
(fooC.H)

{fooE.C)

Client Proxy
Implementation
{fooC.C)

instances of the concrete server manager classes and each
has a DCE UUID. There is one DCEServer instance per DCE
rpc_server_listen call (currently per UNIX® process), which
starts the server’s run-time listening for incoming RPC re-
quests. DCEServer has member functions that establish poli-
cies such as object registration with the RPC run-time pro-
cess or the naming service and setting security preferences.
Object registration takes place whenever the DCEServer class
method RegisterObject is called. Fig. 6 shows the server main
program for the Sleep object and the implementation of the
Sleep function.

In HP OODCE, server objects are accessed via a client ob-
Jject (see Fig. 7). The client RPC request specifies a binding
handle that locates the interface and the DCE objeet UUID.
The entry point vector code locates the correct instance of
the requested manager object. Fig. 8 shows the HP OODCE
client/server run-time organization.

The idl++-generated client proxy class has methods corre-
sponding to the operations defined in the IDL specification.
ldl++ provides an implementation of the client proxy object
methods. These methods locate the server and call the cor-
responding C ++ stub generated by the idl++ compiler. The
proxy implementation handles rebinding, sets security pref-
erences, and maps DCE exceptions returned by RPC into
C++ exceptions (described below).

class sleeper 1_0: public DCEInterface {
public:
sleeper_1_D{DCEUuid& to = NullUuid):
DCElnterface(sleeper v1_0_c_ifspec, to){}
sleeper_1_0Oirpc_binding_handle_t bh, DCEUuid& to = NullUuid)
DCEInterface(sleeper_v1 _0_c_ifspec, bh, to){}
sleeper_1_0(rpc_binding_vector_t* bvec):
DCElInterface(sleeper v1_0 c_ifspec, bvec){}
sleeper_1_0{unsigned char* name,
unsigned32 syntax = rpc_c_ns_syntax_default,
DCEUuid& to = NullUuid) :
DCElnterface(sleeper_v1_0 c_ifspec, na.e, syntax, to){ }
sleeper_1_0{unsigned char® netaddr,
unsigned char® protseq, DCEUuid& to = NullUuid) :
DCEinterface(sleeper_v1_0_c ifspec, netaddr, protseq, to) { }
sleeper 1_0(DCEOhjRefT* ref) :
DCEinterface(sleeper vi_0 c_ifspec, ref){}

{/ Member functions for client
void Sleep(
/* [in] */ idl_long_int time
)
L

Fig. 4. Client proxy class declaration. The class contains several
constructors for the Sleep function. The highlighted canstructor is
the one used in the examples in this article.

56

December 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-

Abstract Server
Class Declaration
(fooS.H)
(Fig. 5a) Manager
Classes

Concrete Server

Class Declaration
(fooS.H)

Fig. 3. The files created after an
IDL specification is processed by
the idl++ compiler.

(Fig. 5h)

HP OODCE Framework and Utility Classes

The framework classes represent the HP OODCE object
maodel abstraction and provide the basis for DCE functional-
ity and default behavior (see Fig. 9). Classes, such as DCE-
Server, DCEInterfaceMgr, and DCElnterface interact with DCE
through the DCE application programming interface.

The idl++-generated manager classes (server side) inherit
from the DCEObj and DCEInterfaceMgr classes. DCEQb] associates
a C++ object instance, which may export several DCE inter-
faces, with a specific DCE object. Each DCE object is identi-
fied by its object UUID. DCEOb] holds the UTIID for the DCE
object (see Fig. 5b),

class sleeper_1_0_ABS : public virtual DCEObj, DCEInterfaceMagr {
public:
// Class constructors must initialize virtual base classes
sleeper_1_0_ABS|uuid_t* obj, uuid* type):
DCEObj{obj),
DCEInterfaceMgr(sleeper_v1_0_s_ifspec, (DCEObj&)*this, type,

(rpc_mar_epv_t)(&sleeper v1 0 _mar)){}

®

sleeper_1_0_ABS(uuid_t* type):
DCEDbj(uuid _t*)(0}),
DCEInterfaceMgr(sleeper_v1_0_s_ifspec, (DCEObj&)"this, type,

{rpc_mgr_epv_t)(&sleeper v1 0 mgr)){}

@.

// Pure virtual member f
virtual void Sleep(
/* [in] */id!_longint time
)=0;

ding to

procedures

p

(a)

class sleeper_1_0 Mgr: public sleeper_1_0_ABS{
public:
/{ Class constructors pass constructor arguments 1o base classes
sleeper_1_0_Mgr{uuid_t* ohj) :
DCEODbj{obj),
sleeper 1_0_ABS(obj, (uuid_t*)(0)}{}

sleeper 1_0_Magr(}:
DCEObij({uuid_t*)(0)),

P
O sleeper_1_0 ABS{uuid_t*)0)){}

virtual void Sleep(// This is what the developer must implement
f* [in] */idI_long_int time
)i

(b}

@ Corresponds to @

@ Corresponds to @
Fig. 5. File fooS.H server-side declarations generated by idl++.(a)

An example of an abstract server manager declaration, (b) An
example of a concrete server manager declaration.

Packard Co.

void main| |

{
ty { /| Handle exceptions from constructor er DCE calls
() sleeper_1_0_Mgr * sleeper = new sleeper_1_0_Mgr:// Dynamic UUID
' DCEPthread * exitThd = new DCEPthread(DCEServer:: ServerCleanup, 0);

®

/I Accept all other defaults and activate the server
(3) /! Detaults are: Use all protocols, don't use COS, na security

theServer—sListen|);
}
/| Catch any DCE related errors and print out on message if any occur
catch (DCEEr& exc){
traceobj < < "Caught DCE DCEException’ n” < < (const char®|exec;
}
/I Destructors are called at this point and take care of DCE cleanup
}
(a)

/[Developer simply implements one method to provide the implementation

void sleeper_v1_0_Mgr::Sleep(long int time} {
// Call the (reentrant!) libc sleep function
sleepitime);

}

(h)
@ Instance of Concrete Server Class
(2) Register Interface with the Object
@ Setup for Listen

Fig. 6. (a) The server program that handles requests for the Sleep
interface. (b) The implementation of the Sleep function.

Client Side

Local Calls to
Dhjects that Correspond to
Remote Server Dbjects

() (2)
~ Server
Binding

Security
Preferences

Method 1

Method n

DCE Client Stub

RPCy,... RPC,
(RPC Protacol Engine)

Instance of a Client
Proxy Concrete Class —
main{int, char** argvl
{
try { /1 Handle exceptions from constructor or DCE calls

// Constructor takes a network address and protocol sequence
sleeper_1_OsieepClient((unsigned char*largv(1]
(unsigned char®)"ip”);

// The Sleep method invokes the remote procedure on the server
sleepClient.Slesp({10);

catch (DCEErr& exec) {
printf{ "DCEException: %s\ n”, (const char®lexec);

exit{0);
I

Fig. 7. A client main program that invokes the Sleep function on
the server.

DCEInterfaceMgr is an abstract base class used by the server
side of the application to encapsulate object and type infor-
mation as well as the entry point vector called by the RPC
subsystem when an incoming RPC is received (see Fig. 5a).
The manager interface is registered with the DCE run-time
setup and optionally with the naming service. DCEInterfaceMar
can retrieve the UUID of a particular implementation object
instance, the entry point vector, and the pointer to the secu-
rity reference monitor described by the DCERefMon class.

DCEInterface is an abstract base class used by the client side
of the application. This class controls binding and security

Server Side

Sscuril\r,{s \
Object —
|DCEReIMon,
ACL)

®]

Entry Paint Entry Point (6)
@ Vector Stub Veclor Stub Security
For RPC, For RPC,, Preferences
DCE (7)
Object
Mapper
®

RPC Protocol Engine

@ Sets up security preferences, which have to be compatible
with the server's security preferences

@ Dbtains the binding handle to the server
@ C++ object instances defined in the IDL Interface

G‘] C++ entry point vectors generated by idl++

Fig. 8. The HP OODCE client/server architecture,

© Copr. 1949-1998 Hewlett-Packard Co.

@ RPC run-time server endpoint and server stub

@ Checks security preferences before allowing
the request access to the selected object

(7) Locates objects

@ Set up by user

December 1995 Hewlett-Packard Journal 57

L]

* DCEUuid
« DCEBinding

» Server Implementation

= Exceptions Daiss
» Client Proxy Object o DCEServer
o DCEI + Threads
nterface . = DCEImerdaceMyr
+ Name Service
Interface = DCEMgmtAuth
* DCEPassword * DCEKeyRetriever
» DCELoginContext » DCEReiMon

DODCE Client

policies and can retrieve ohject references. The idl++-gener-
ated clienf proxy class inherits from the DCEInterface class
(see Fig, 4).

The HP OODCE utility classes add convenience to the HP
O0ODCE development environment. These classes encapsu-
late DCE types and provide direct DCE functionality. For
example, DCEVUuid deals with the DCE C language representa-
tion of the uuid_t type* and its possible conversions to other
types, while DCEBinding encapsulates DCE binding handle
types.

Other utility classes include:

Security services: DCERefMan for setting security preferences
and DCERegistry for accessing the DCE registry database
Naming services to model and access objects in the
directory namespace

Thread services to encapsulate the use of pthread mutexes,**
condition variables, and thread policies

Error handling and fracing services to support an exception
mechanism and log information.

The security, naming, and thread services are described in
the articles on pages, 41, 28, and 6 respectively.

Additional Classes

Additional classes can be derived from the abstract manager
class to allow for multiple implementations for a given DCE
interface. Each class must be registered with the global
server (DCEServer) via the theServer object (remember that
theServer is an instance of the DCEServer class). This allows
the entry point vector code to locate the object manager
instance, verily security preferences, and allow access to
the manager methods (see Fig. 8). If the manager object is
not immediately located in the HP OODCE internal map
managed by theServer object, the entry point vector code can
call a user-defined method to activate the manager object
according to user-defined polices. Once activated, the man-
ager object is reregistered with theServer and mapped into
the object map. An object manager can be deactivated
(removed from the object map) when requested by the user
application.

While HP OODCE adheres to the object model provided by
DCE, two extensions have been made to enhance object
functionality. An 0bjRef class contains a reference to an
object and may be used to pass remote object identities

* wuid_t is a C structure contaiming all the charactenstics fora UUID

* Mutexes, or mutual exclusion locks, are used to protect critical regions of code in DCE threads

December 1985 Hewlett-Packard Journal

58

Fig. 9. HP OODCE framework and
utility class library components

between remote objects. When an 0bjRef is used to establish
the binding to an object. the referenced object may need to
be activated by bringing its persistent data into memory
from a file. HP OODCE provides an activation structure that
allows this behavior to be implemented easily by the server.

The application developer can add framework or utility
classes and provide additional implementations as well as
change some HP OODCE default behavior. Additionally, the
developer continues to have access to the C language-based
DCE APL Direct use of this API is governed only by the cor-
rect mapping of exceptions and the corresponding rules for
(C++ with regard to the C language.

HP OODCE Exception Model

One goal of the HP OODCE system was to create a consis-
tent error model. C++ exception handling was the natural
choice as the basis for this model since this mechanism is
already well integrated into the language. C++ provides
benefits such as object destruction and reduced source code
size and is similar in principle to the current DCE exception
handling mechanism.

Despite their similarity, the C++ and DCE exception mecha-
nisms do not integrate well, Exceptions raised by one imple-
mentation cannot be caught by the other, and more impor-
tant. those generated by the DCE implementation can cause
memory leaks if they are allowed to propagate through C++
code. This latter problem is a result of the use of the setjmp
and longjmp functions in the DCE exception implementation,
which do net allow nm-time C++ to call destructors for
temporary and explicitly declared objects before exiting a
particular scope.

DECEDSException

=5

|
=

FA S

= e |

Fig. 10. Exception class hierarchy.

© Copr. 1949-1998 Hewlett-Packard Co.

» Throw DODCE Exception

* C++ Catch Exception

* Map Exception to DCE
Status Code

» Return C++ Status Code

Client Proxy
Implementation

Server Entry

Point Vector

» Check Status Code

+ Map Status Code to DCE
Fault

Transmit Fault

To solve the problems raised by the use of two different ex-
ception mechanisms, HP OODCE maps DCE exceptions into
C++ exceptions. The HP OODCE classes are arranged into a
C++ class hierarchy (see Fig. 10). DCEException is the base
class for the hierarchy and provides pure virtual operators
to convert exceptions to status codes or ASCII strings. The
hierarchy contains subclasses derived from the base class
for each of the DCE subcomponents (RPC, security, direc-
tory services, configuration, CMA (common multithreaded
architecture) threads, and so on) so that each individual
DCE exception can be caught by type.

HP OODCE takes particular care to prevent DCE exceptions
from being propagated directly into C++ code. At the bound-
aries between DCE C and HP OODCE C++ code, DCE ex-
ceptions and error status codes are mapped into HP OODCE
exceptions and propagated into C++ code. One area that
needed particular attention was in passing exceptions be-
tween the server and client. We wanted to use the RPC run-
time implementation of the server’s communication fault
transmission, but to do so required a “franslation” layer to
isolate RPC exceptions from HP OODCE C++ code. This
translation layer is implemented within the idl++-generated
client proxy imaplementation and server entry point vector
classes (see Fig. 11). C++ exceptions raised in the HP
OODCE server are caught in the server entry point vector
and mapped to a DCE status code. This status code is then
returned to the server stub, which translates the code into a
DCE exception and raises it to the attention of the run-time
RPC. The run-time RPC takes care of mapping the exception
to one of the currently implemented RPC fault codes and

» Handle Exception

« Catch Exception
» Throw
= Map DCE Exception
to 0ODCE Exception
+ Throw Exception

* Receive Fault

» Map Fault to OCE
Exception

Raise Excepti
e Fig. 11. Exception handling in

HP OODCE.

then transmits the fault to the client. Basically the reverse
happens on the client side, except that here, the client im-
plementation class will catch the DCE exception raised from
the client stub and throw the HP OODCE exception back to
the client.

Acknowledgments

The idea, overall architecture, initial design, and prototype
implementation of this project are mainly attributed to Jeff
Morgan. Deborah Caswell, John Dilley, and Bob Fraley each
designed and implemented significant parts of the system.
We wish to thank them for their continuing advice and con-
tributions to this product. We also wish to thank Amy Arnold,
Serena Chang, Jack Danahy, Linda Donovan, John Griffith,
and John Stodieck for their effort in making HP OODCE an
HP product.

Bibliography

1..J. Dilley, *O0ODCE: A C++ Framework for the OSF Distributed
Computing Environment,” Proceedings of the Winter ‘95 USENIX
Conference.

2, Open Software Foundation, OSF DCE Application Envivanment
Specification, 1992,

3. M.Ellis and B.Stroustrup, The Annotated Cv+ Reference Manual,
Addison Wesley, May, 1991,

UNIX is @ registered trademark in the United Statas and other countries, licensed exclusively
through X/Open™ Campany Limited

X/Open 15 & registered trademark and the X device is a trademark of X/0Open Company Limited
in the UK and ather countrigs

December 1995 Hewlett-Packard Journal -~ 59

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

Although the terminology associated with object-oriented programming and C++
has become reasonably standardized, some object-oriented terms may be slightly
different depending on the implementation. Therefore, brief definitions of some of
the terminology used in this paper are given below. For more information on these
terms see the references in the accompanying article.

Abstract Class. Abstract classes represent the interface to more than one imple-
mentation of a common, usually complicated concept. Because an abstract olass is
a base class ta more than one derived class, it must contain at least one pure
virtual function. Objects of this type can only be created through derivation in
which the pure virtual function implementation is filled in by the derived classes

The following Is an example of an abstract base class:

class polygon {

public:
// constructor, destructor and other member functions
{/ could go here...
virtual void rotate {inti} = 0; //a pure virtual function
{/ other functions go here..

I

Other classes, such as square, triangle, and trapezoid, can be derived from poly-
gon, and the rotate function can be filled in and defined in any of these derived
classes

Base Class. To reuse the member functions and member data structures of an
existing class, C++ provides a technique called class derivation in which a new
class can derive the functions and data representation from an old class. The old
class is referred to as a base class since |t is a foundation (or base) for other
tlasses, and the new class is called a derived class. Equivalent terminology refers
to the base class as the superclass and the derived class as the subclass.

catch Block. One (or more| catch statements follow a try block and provide ex-
ception-handling cade to be executed when one or more exceptions are thrown.
Caught exceptions can be rethrown via another throw statement within the catch
block.

Class. A class is a user-defined type that specifies the type and structure of the
information needed to create an object (or instance) of the class.

Concrete Data Class. Concrete data classes are the representation of new
user-defined data types. These user-defined data types supplement the C++
built-in data types such as integers and characters to provide new atomic building
blocks fora C++ program. Al the operations {i.e., member functions) essential for
the support of a user-defined data type are provided in the concrete class defini-
tion. For example, types such as complex, date, and character strings could all be
concrete data types which (by definition) could be used as building blocks te
create objects in the user’s application

The following code shows portions of a concrate class called date, which is re-
spansible for constructing the basic data structure for the object date.

typedef boolean int;
#define TRUE1
#define FALSED

class date {

public:
date {int month, int day, int year); //Constructor
~datell; {/Destructor

boolean set datelint month, int day, int year);
/I Additional member functions could go here. . .

private

int year,

int numerical_date,

/f Additional data members could go hera...
b

Constructors. A constructor creatas an object, performing initialization on both
stack-based and free-storage allocated objects. Constructors can be overloaded,
but they cannot be virtual or static. C++ constructors cannot specify a return type,
not even void

Derived Class. A class that is derived from one (or more) base classes.

Destructors. A destructor effectively turns an ohject back into raw memory. A
destructor takes no arguments, and no return type can be specified (not even void)
However, destructors can be virtual,

Exception Handling. Exception handling in C++ provides language support for
synchronous event handling. The C++ exception handling mechanism is supported
by the throw statement, try blocks, and cateh blocks

Member Functions. Member functions are associated with a specific object of a
class. That is, they operate on the data members of an object. Member functions
are always declared within a class declaration. Member functions are sometimes
referred to as methods.

Object. Objects are created from a particular class definition and many objects
can be associated with a particular class. The objects associated with & class are
sometimes called instances of the class. Each object is an independent abject
with its own data and state. However, an object has the same data structure (hut
gach object has its own copy of the data) and shares the same member functions
as all other objects of the same class and exhibits similar behavior. For example,
all the objects of a class that draws circles will draw circles when requested to do
s0, but because of differences in the data in each object’s data structures, the
circles may be drawn in different sizes, colors, and locations depending on the
state of the data members for that particular object.

Throw Statement. A throw siatement is part of the C++ exception handling mech-
anism. A throw statement transfers control from the point of the program anomaly
to an exception handler. The exception handler catches the exception. A throw
statement takes place from within a try block, or from a function in the try block,

Try Block. A try block defines a section of code in which an exceptian may be
thrown. A try block is always followed by one or more catch statements
Exceptions may also be thrown by functions called within the try block

Virtual Functions. A virtual function enahles the programmer to declare member
functions in a base class that can be redefined by each derived class. Virtual
functions provide dynamic (1.e.. run-time) binding depending on the type of object.

60 December 19695 Hewlett-Packard Joumal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Encina/9000: Middleware for
Constructing Transaction Processing

Applications

A transaction processing monitor for distributed transaction processing
applications maintains the ACID (atomicity, consistency, isolation, and
durability) properties of the transactions and provides recovery facilities
for aborting transactions and recovering from system or network failures.

by Pankaj Gupta

Transaction processing systems are widely used by enter-
prises to support mission-critical applications, such as air-
line reservation systems and banking applications. These
applications need to store and update data reliably, provide
concurrent aceess to the data by hundreds or thousands of
users, and maintain the reliability of the data in the presence
of failures.

The HP Encina/9000 transaction processing monitor ! pro-
vides the middleware for running transaction processing ap-
plications. It maintains ACID (atomicity, consistency, isola-
tion, and durability) properties for transactions (see the
glossary on page 65). It ensures that applications that run
concurrently will maintain data consistency. Encina/89000
also provides recovery facilities for aborting transactions
and recovering from failures such as machine or network
crashes.

DCE and Distribution

Encina/f000 provides the ability to write distributed applica-
tions. Encina/9000 applications can be written as client/server
applications with the client and server possibly running on
different machines. Encina/9000 servers can comununicate
and cooperate with each other in updating data on several
different machines.

Distributed applications provide several advantages. The
data maintained by an enterprise may itself be distributed
because of historical and geographical considerations.
Furthermore, distributed applications are able to exploit
parallelism by running concurrently on several machines.

Distributed computing offers the advantage of improved
performance, availability, and access to distributed data.
Performance is improved by spreading the computing
among various machines. For example, the application’s
user interface can be run on a PC while the user code could
be split to run on several machines. The use of multiprocess-
ing machines to provide parallelism for multiple users can
improve the throughput of the system. Availability can be
increased by a distributed system in which replication is
used to keep several copies of the data. Access to distrib-
uted data or to data that is maintained in several databases
is also facilitated by distributed computing,

Data may be distributed because the database becomes too
large or the CPU on the database machine becomes a bottle-
neck. Data can also be distributed 1o increase availability
and improve the response time by keeping the data close to
the users accessing it. Finally, data can be distributed to
keep separafe administrative domains, such as different
divisions in a corporation that want to keep their data local.

Encina/9000 uses the Open Software Foundation’s DCE =
(Distributed Computing Environment) as the underlying
mechanism for providing distribution. It uses the DCE RPC
mechanism to provide client/server commumication. Encina/
9000 is also very closely tied to DCE naming and security
services (see the articles on pages 28 and 41 for more about
these services). For example, an Encina/9000 server can be
protected from unauthorized use by defining access control
lists (ACLs). ACLs contain an encoding of the authorization
policy Tor different users and are enforced by DCE at run
time. ACLs are described on page 49. Encina/%000 also
makes use of the threading package provided by DCE.

To achieve optimum price and performance, careful consid-
eration needs to be given to how the data and the applica-
tion are partitioned. Throughput and response times are
often the key criteria by which users judge the performance
of a system. Encina/9000 provides the flexibility of being
able to specify the distribution topology of the application.
In addition, users can specify data replication if it will help
to ensure higher availability of mission-critical data.

Two-Tiered versus Three-Tiered Architectures
In the past, transaction processing applications were imple-
mented using a two-tiered architecture (see Fig. 1). In this

Client
GUl'and

Application
Logic

Data
- Stored

Fig, 1. Two-tiered architecture for transaction processing

December 1995 Hewlett-Packard Joumal - 61

© Copr. 1949-1998 Hewlett-Packard Co.

paradigm an application is written as a client, which accesses
a database server. The client implements the graphical user
interface (GUI) and the application logic. The database
server handles access to the data stored in a database.

The advantage of this approach is simplicity. The disadvan-
tage is that it is not scalable beyond a certain point. It is also
less flexible and harder to modify to meet new business
needs.

Encina/9000 allows the development of applications using a
three-tiered architecture like the one shown in Fig. 2. In this
paradigm, an applicalion is partitioned into a client that im-
plements the graphical user interface to the user, an applica-
tion server that implements the business logic of the appli-
cation, and a database server that implements the database
access.

The Encina/9000 three-tiered architecture provides the fol-
lowing advantages over traditional two-tiered architectures:
Decoupling the GUI from the business logic

Scalability of the architecture to support a very large num-
ber of users and a high transaction throughput
Accessibility to multiple database servers from an applica-
tion server

Freedom from being tied into any particular database
vendor

Tight integration with the distributed computing facilities
offered by DCE

Choice of transactional applications that support any com-
bination of RPC, CPI-C (Common Programming Interface
for Communications), and quened message communication
Ability to retain data on a mainframe or other legacy com-
puter and reengineer by adding HP-UX* application servers,
providing lower cost and higher price/performance relative
to some mainframe systems.

Three-tiered architectures are more complicated in general
but provide greater flexibility of application design and de-
velopment. Among the reasons why users are willing to give
up the simplicity of the two-tiered architecture is the faster
response times and the more effective user interfaces pro-
vided by the three-tiered architecture. The ability to provide
a front-end workstation that supports graphical user inter-
faces gives an application a more effective user interface.
For applications that require access to data distributed across
large geographic regions, a three-tiered architecture offers
more flexibility to tune the communications to compensate
for WAN delays and improve availability. This results in a
faster response time because the user is accessing local data
most of the time. Propagation of the data to other machines
can be queued and performed offline. Therefore, geographi-
cally distributed data can be maintained without having to
perform expensive distributed two-phase commit protocols

Application

Server
Datahase

Server

Application
Logic

&
-

Fig. 2. Three-tiered architecture for transaction processing.

Data
Stored

62

December 1995 Hewlett-Packard Journal

L]

online. Two-phase commits that happen over wide area net-
works are expensive and care must be taken when designing
distributed applications to minimize the amount of two-
phase commits over the network. Queued communications
also improve availability. See page 65 for a definition of
commil.

Components of Encina/9000

Fig. 3 shows the architecture for the implementation of
Encina/0000 thal runs on the HP-UX™ operating system.

Each of the components shown in Fig. 3 is packaged inde-
pendently. A machine that runs Encina/9000 clients only can
be configured withoul the Encina/8000 server software.
Machines that run Encina/%000 servers must be configured
with both the Encina/9000 client and server components.

Encina/9000 applications that can be configured to run on
top of the Encina/9000 server component include:
Peerto-peer communication, which provides transactional
access to data stored on mainframes and workstations run-
ning the HP-UX operating system

Structured file system, which is a record-oriented file sys-
tem base on the X/Open®™ ISAM (index sequential access
method) standard

Recoverable queueing service, which provides applications
with the ability to enqueue and dequeue data

Monitor, which is an infrastructure for application develop-
ment, run-time support, and administration.

The DCE components used by Encina/9000 include: RPC, the
directory service, the security service, and threads.

Encina/9000 Toolkit

The Encina/8000 client component is also called the Encina/
9000 toolkit executive and the Encina/0000 server component
is also called the Encina/9000 toolkit server core. Together
these components are called the Encina/9000 toolkit.

Fig. 4 shows the components that make up and support the
Encina/9000 toolkit.

Base Development Environment. The lowest layer of the
Encina/9000 toolkit is the base development environment.

It provides developers of other Encina/9000 components
with a uniform set of features independent of the underlying
operating system. The base development environment library

_ Encina3000
PPC Gateway
PPC Executive

gnc_auamon
Recoverable
Queveing Service

Structured

Monitor i
File System

Encina/9000 Server

Encina/9000
Toolkit

PPC = Peer-to-Peer Communication

Fig. 3. The architecture of Encina/9000 on the HP-UX operating
System.

© Copr. 1949-1998 Hewlett-Packard Co.

provides a common plaiform independent threading inter-
face and an abstraction for low-level functions so that the
upper layers that use the base development environment

can be independent of differences in the operating system or
the hardware platform on which Encina/8000 runs.

The base development environment provides support for
multiple threads of execution by using DCE threads. Also, it
provides thread-safe routines for the following functionality:
Memory management

File VO

Process management

Signal handling

Timers and alarms

Native language support.

The base development environment is intended primarily for
the development of other Encina/9000 components.

Transaction Manager. The transaction manager provides the
ability to demarcate transactions, which means that it is
able to specify the beginning, the commit, and the abort of a
transaction. Internally it supports a distributed two-phase
commit management protocol, including the ability to per-
form coordinator migration.

The transaction manager supports nested transactions capa-
bility,? which allows nested transactions to be defined within
a top-level transaction. Nested transactions have isolation
and durability properties similar to regular transactions, but
the abort of a nested transaction does not cause the top-level
transaction to abort. This allows a finer granularity of failure
isolation in which the main transaction can handle the fail-
ure of certain components implemented with a nested trans-
action, Nested transactions are defined in the glossary on
page G5,

The application must be carefully designed since failures
such as crashed server nodes, which cause a nested trans-
action to fail, could in some cases also cause the top-level
transaction to fail. The Encina/9000 structured file system
provides support for nested transactions for data stored in
structured files. However, database vendors like Oracle do
not currently support nested transactions in their products,
making it impossible to exploit the advantages of Encina/
9000's nested transaction capabilities for data stored by
these relational databases.

[2
Tran-C Toolkit
Log | Recovery Server Server
Extensions |G
Encina/3000
d Toolkit Transaction) dcr:filwr Transactional Toolkit
Components Mannger (TID) RPC Executive
W Base Development Environment
L.
' DCE
Dperating System

Fig. 4. A detailed view of the components that make up and support
the Encina/ononn toolkit,

The Encina/8000 iransaction manager provides an applica-
tion program with the ability to issue callbacks on events
related to the transaction’s commit protocol. This enables
the programmer to write routines that are invoked before
the transaction prepares or aborts or after the coordinator
decides to abort or commit the transaction.

The transaction manager allows transactions to be heuristi-
cally committed by a system administrator. This should only
be used in rare cases in which the transaction coordinator is
unavailable and the administrator does not want to block
access to locked data and has to trade off data availability to
avoid possible data inconsistency.

Thread-to-TID. Since Encina/@000 makes use of DCE threads.
the work done on behalf of a user transaction can be com-
posed of several different threads. The thread-to-TID service
associates a transaction with a thread and maintains the
mapping between a thread and a transaction identifier (TID).
This service is used by other Encina/9000 components and is
rarely used by programmers directly.

Transactional RPC. The Encina/9000 transactional RPC ser-
vice enhances the DCE RPC mechanism to provide transac-
tional semantics for remote procedure calls. Unlike remote
procedure calls, transactional RPCs have once-only seman-
ties. If a transaction performing an RPC commits, then the
RPC is guaranteed to have executed once and once only. If
the fransaction performing an RPC aborts then the RPC is
guaranteed not to have executed (if the RPC was executed
its effects are undone by the fransaction abort).

A transaction can make transactional RPC calls to multiple
servers, and a server can in turn make a transactional RPC
call to another server.

The transactional RPC service extends the DCE RPC model.
The interface definition for the service executed on behalf
of a transaction is defined in a TIDL (Transactional Interface
Definition Language) file, which is similar to a DCE IDL
file.* This file must be preprocessed with a TIDL compiler
(similar to an IDL compiler). The TIDL preprocessor gener-
ates client stubs, server stubs, a header file, and an IDL file.
The DCE IDL preprocessor is run on the IDL file to generate
additional stubs and header files. The client and the server
executables are generated by compiling and linking the vari-
ous stub sources and libraries. This process is illustrated in
Fig. 5.

Transactional RPC also supports nontransactional RPCs (a
nontransactional RPC call can be made by calling the trans-
actional RPC service). The TIDL file for the service interface
must specify that the service is nontransactional.

Log. This component of Encina/9000 provides logging capa-
bilities. It provides write-ahead logging (see glossary) for
storing log records that correspond to updates to recoverable
data and log records that correspond to transaction out-
comes. The log records are used by the transaction manager
to undo the effects of transactions that have aborted and to
ensure that the committed transactions are durable.

* See the article on page 55 for more about 10 files

December 1805 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

@ Preprocess transaction through the TIDL compiler.
(2) Run the DL file created in (1) through the IDL compiler.
@ Create the client program.

@ Create the server program.

For earlier versions of Encina/9000, the log service was
implemented to provide a log server that could be used by
many different clients to store log records. The latest ver-
sion of Encina/9000 supports the log service as a library
which is linked into the client code.

The log service supports archiving of log data for crash and
media recovery. It also supports mirroring of data.

Lock. This component provides two-phase locking (see glos-
sary) facilities to ensure the isolation and consistency prop-
erties of transactions. Applications can request locks on
resources before accessing them, and the lock manager
ensures that the lock request on behalf of a transaction will
not be granted if another transaction holds a conflicting lock
on that resource. Locks are released antomatically when the
transaction completes, and the application may also request
early release of locks when it is safe to do so. The lock ser-
vice also supports locking for nested transactions.

The locking service implements logical locking in which the
programmer defines lock names and associates the lock
names with physical resources. When a programmer wants
to lock a physical resource, the logical lock name associated
with that resource is specified in the call to the locking
service.

In addition to supporting the conventional read/write locks,
Encina/f000 also supports intention locks and instant dura-
tion locks. Intention locks are used to declare an infent to
subsequently lock a resource. The use of intention locks can
reduce the potential for deadlock among concurrent trans-
actions. Instant duration locks are locks that are granted but

64 December 1995 Hewlett-Packard Journal

jill_manager.c

il managerc
|

Fig. 5. The steps nwvolved in turming
a transaction into client and server
executables,

not held and can be used to implement complex locking
algorithms.

The lock service also provides the ability to determine if a
transaction is deadlocked or not.

Volume. This component maintains the data storage in terms
of logical data volumes. It provides the ability to manage
very large files and view multiple physical disks as a virtual
file. It also supports the ability to mirror a data volume
transparently to the client. The volume component some-
times sacrifices speed for increased reliability and may be
inappropriate for certain applications. This component is
currently not used by the log component.

TM-XA. The Encina/®000 TM-XA component implements the
X/Open XA interface. The XA interface is a bidirectional
interface between a transaction manager and a resource
manager such as a database. The XA interface provides a
standard way for transaction managers to connect to data-
bases.

The use of TM-XA with the Encina/9000 monitor is recom-
mended. In this case the server registers each resource man-
ager with a call providing the name of the resource manager
and an associated switch structure,* which gives the Encina/
9000 TM-XA component information about the resource
manager. In addition, the server must also be declared as a
recoverable server. TM-XA allows Encina/8000 to hook up
with standard database products such as Oracle, Informix,
and so on.

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

The following are brief definitions of some of the transactionrelated terminology
used in the accompanying article.

Transactions and ACID

A transattion 15 the logical grouping of
it maintains its ACID [atomicity, consistency, isolation, and durabilityl properties
Transactions allow users 1o execuls their programs and modify shared r &
like daiabases in the presence of simultaneous access and updates by multiple
users and in the presence of various kinds of failures

user function performed as a unit 5o that

S

Atomicity of a transaction means that aither 21l the actions specifiad within the

transaction will be performed or none of them will be perfarmed. This ensures that

a transaction is not partially applied, which is desirable since a partial application
of the user transaction could leave the database in an inconsistent state. Consis-

igncy means that the database consistency is preserved in the presence of cancur-

rency among multiple users. Isolation means that while the transaction 1§ execut-
ing. its effects will not be visible to other concurrently running transactions. Dura-
bility means that once a transaction has been successfully completed the effects

of that transaction are made permanent and survive failures.

Commit, Abort, and Prepare

A successful completion of a transaction is called a commit of the transaction.
Befare a transaction commits, it can be aborted either by the user or by the trans-
action processing system,

A user organizes a set of-actions in a transaction with the intent that all of these
actions should happen or none of these actions should happen. An example of
such a transaction is a transfer of money between a person’s savings account and
checking account. This transaction consists of the actions of changing the savings

account balance and the checking accaunt balance. If the transaction is successful

then both these account batances should be changed, one debited by amount X,
and the other credited by amount X. Any other outcome would be in error. Whan

the user submits this transaction and all operations in the transaction are success-

tully carried out, the transaction is said to have committed.

[t may not always be possible to commit a transaction. For example, the maching
that maintains the checking account balance may be down, or the user may have
supplied an incorrect personal identification number (PIN) or decided to cancel the
request after submitting it. If the transaction cannot be performed, then it is said
to have been aborted or simply to have aborted. If a transaction is aborted
{aborts), then none of the actions of the transaction are performed (or if they had
been performed they are undong)

Transaction processing systems use mechanisms like two-phase locking to ensure
the isolation properties, and twa-phase commit pratocols to ensure that all the
participants within a transaction can be atomically committed or abarted !

A two-phase commit protocol is typically used to commit a transaction in which
muitiple participants are performing actions reguested by the transaction. One of
these participants is-called the coordinator. In the first phase of the two-phase
commit protocol, the coordinator sends a prepare message to all the participants
asking them to prepare the transaction and send 2 message back indicating

2y can prepare the transaction. if & participants respond
that they can prepare the transaction, the coord

mdicating that the trarsaction 1S committ

commit the transaction (this is the second phase of the protocel). If any participant
responds back to the coordinator that it is unable o prepare the transaction, the
coordinator notes inits |ﬂ§ ihat the transaction 15 aborted and instructs gll partici-
pants to abort the transaction

whather or

When a participant receives a commit message from the coordinator in the second
phase, it must ensure that al| the actions of the transaction are durably stored on
disk. When a participant receives an abort message from the coordinator in the
second phase, it must ensure that all the actions of the transaction are undane.
Therefore, in the first phase of the two-phase commit protacal, the participant
must ensure that data is stored reliably in logs that enable it subsequently to undo
the effects of a transaction or make permanent the effects of a transaction

Nested Transaction

In the nested transaction motlel, a transaction (also called a top-level transaction)
can be decomposed into & tree-like hierarchy. For example, a debit-credit transac-
tion can be decomposed into two subtransactions, one for debit and one for credit.
The debit or credit subtransactions could be further decomposed into smaller
subtransactions. 4 subtransaction maintans the durability and consistency proper-
ties of its parents. The difference is that a subtransaction can be aborted and
reexecuted without aborting its parent. In the debit-credit example, the debit
subtransaction can be aborted and reexecuted without having to abort the entire
transaction. In this case the top-leve! transaction verifies that each subtransaction
can be committed at the time of transaction commit.

Two-Phase Locking

Two-phase locking means that a transaction will have two phases. In the first
phase the fransaction can only acquire and not release locks, and in the second
phase it can only release and not acquire locks.

Write-Ahead Logging

For data recovery, transaction processing systems use a log to log data that is
being modified, In write-ahead lagging, data is copied to the log before it is over-
written. This ensures that if the transaction is aborted, the data can be restored to
its original state.

Reference
1.J Grayand A Reuters, Transaction Provessing Cancepts and Techniques, Morgan Kaufman,
1993,

TM-XA allows an Encina/0000 application to make calls to
one or more resource managers that support the XA inter-
face. The Encina/0000 application starts a transaction,
accesses 4 resource manager using its native SQL interface,
and then commits the transaction. The TM-XA software
coordinates the commit of the transaction among the vari-
ous resource managers and other Encina/ 9000 components
(like the structured file system or the recoverable queuing
system) which might be accessed by the user transaction.

Recovery. This component drives the recovery protocols to

recover from failures. It provides recoverable memory man-

agement. Recovery also provides the ability to perform:

Abort recovery. This ensures that after a transaction is

aborted, it is rolled back at all participating sites.

s Crash recovery. This provides a recovery after a system
failure by rolling back all the transactions that had not been

committed and rolling forward all the committed trans-
actions.

Media recovery. This is used to provide recovery when data
written to the disk is destroyed.

The recovery component produces and uses the records
written by the log service and ensures the consistency of
transactional data. In the case of a transaction failure, the
recovery component undoes the effects of a transaction.
During recovery from a system failure, this component will
examine the records in the log, appropriately commit or
abort transactions for which it finds records in the log, and
bring the data to a consistent state.

For media failures, the system administrator must provide
archives that are used by the recovery component to restore
the data to the state it was in when the archive was created.

December 1905 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

There may be a loss of data in the case of media recovery.
Encina/9000 also provides the ability to perform online back-
ups to create the media archives necessary for recovery.

Tran-C

Enecina/9000 provides extensions to the C programming lan-
guage to make it easy to invoke the functionality provided
by the Encina/9000 toolkit. Tran-C' consists of library fune-
tions and macros that provide a simple programming para-
digm so that the user does not have to access the toolkit
module interfaces directly. The user can invoke high-level
Tran-C constructs rather than the lower-level toolkit calls.
The use of Tran-C versus toolkit calls is analogous to using a
high-level language versus assembly language. Using the
toolkit primitives directly is much more flexible, but the
flexibility comes at the price of far greater complexity.

In general, Tran-C is recommended for application
programming.

The most important constructs provided by Tran-C are the
transaction, onCommit, and onAbort clauses. These constructs
provide a mechanism for the programmer to start a trans-
action and declare code to execute when the transaction
commits or aborts. This is illustrated in Fig. 6. The applica-
tion programmer is freed from the task of initializing all the
underlying toolkit components and manually managing
transaction identifiers, transactional locks, and other trans-
actional metadata. All the code bracketed by the transaction
clause is executed on behalf of the same transaction. When
a transaction bounded by the transaction construct aborts

(or commits), control in the program automatically transfers

to the associated onAbort (or onCommit) clause.,

Tran-C also supports nested transactions and multiple threads
of control. The concurrent and cofor constructs can be used to
create multiple concurrent threads within a transaction. The
concurrent construct is used to enable an application to con-
currently execute a predetermined number of threads, while
the cofor construct enables the application to concurrently
execute a variable number of threads. Both consiructs pro-
vide the ability to create multiple threads which can be run
either as subtransactions or as concurrent threads within the
transaction, The subTran construct allows a created thread to

transaction -—— Starts a Transaction
Iramsgcuon -=— Transactional Logic
commands

onCommit

Control Passes Here
after Commit

code to execute
onCommit

onfbort

Control Passes Here
after Abort

code to execute
onAbort

Fig. 6. A code fragment illustrating the use of the Tran-C constructs
Transaction, onCommit, and onAbart.

66 December 1985 Hewlett-Packard .lmmgj

be execufed as a subtransaction within the parent trans-
action. The subThread construct allows a created thread to be
executed as a separate thread within a nested transaction.

Toolkit Example

Fig. 7 shows an example of the interactions between the
components of the Encina/9000 toolkit. In this example a
client makes a call to update data stored by a database and
then commits the transaction. The following steps are asso-
ciated with the circled numbers in Fig. 7.

1. The client starts a transaction by making a call to the
fransaction manager.

2. The client performs a transactional RPC by making a call
to the transactional RPC component.

3. The transactional RPC component makes a call to the
fransaction manager to obtain transactional data for the
transaction,

4. The transactional RPC component calls DCE RPC to
transmit the user data and transactional data to the server.
5. DCE RPC (on the server) makes a call to the transactional
RPC.

6. The transactional RPC component passes the transactional
information to the transaction manager.

7. The transaction manager uses the TM-XA interface to call
the resource manager.

8. The transactional RPC component calls the user function
that makes SQL calls to the resource manager. The resource

Client

Begin Transaction
Call Function on a Remote Server

DCERPC

Transaction
Manager

Transaction
Manager

Transactional Resource
RPC Manager

Recovery

Execute Function
SQL Calls

End Function Call

|
|
|
|
|

Fig. 7. An example of the interactions between components of
the Encina/9000 toolkit

Copr. 1949-1998 Hewlett-Packard Co.

manager performs the appropriate locking and updating of
its data.

9. The user function on the server returns to that frans-
actional RPC component which then returns to the client via
DCE.

10. The client calls the transaction manager to commit the
transaction.

11. The ransaction manager uses a two-phase comuiit pro-
tocol to commit the transaction. It contacts all the trans-
action manager participants that have participated in the
transaction. Each transaction manager uses the recovery
and log components to log the prepare and commit deci-
sions during various phases of the commit protocol for the
transaction.

Peer-to-Peer Communications

Encina/f000 peer-to-peer communications, or PPC, provides
transactional access to data stored on mainframes, and it
performs a distributed two-phase commit of data stored on
mainframes and HP 9000 servers. This allows mainframe
applications to participate in an Encina/9000 transactional
application, and conversely, an Encina/9000 application is
able to participate in a mainframe transactional application.
Encina/9000 PPC uses a two-phase commit syne protocol
(syne level 2) to commit a transaction that accesses data on
a mainframe and an HP 9000 server.

PPC services are implemented as a PPC executive and a
PPC gateway product. These products can be purchased
separately. The PPC executive is a library that runs in a DCE
cell, and the PPC gateway is a server that acts as a gateway
between DCE and SNA communications protocol. This gate-
way allows Encina/l000 applications to communicate with
LU 6.2 applications.”

A typical PPC configuration involves an Encina/8000 PPC
application running in a DCE cell and communicating with a
PPC gateway server running in the same DCE cell. The PPC
gateway server communicates with the mainframe using an
SNA communications package. PPC provides the ability (o
write Encina/9000 applications that act as either the coordi-
nator or the subordinate in a transaction between an Encina/
9000 system and a mainframe host. Encina/9000 application
programmers use the CPI-C APl for coding the PPC compo-
nent. The PPC gateway translates the CPI-C conversations
from TCP/AP to LUG.2. This is illustrated in Fig. 5.

Structured File System

The structured file system is a record-oriented file system
based on the X/Open ISAM standard. It provides an alterna-
tive to other commercial resource managers and the ability
to support nested transactions that access data in the strue-
tured file system. It also provides full transactional integrity.

The records in the structured file system contain different
fields that can be indexed by primary keys and secondary
keys, The structured file system’s field and record types are
similar to those used by the recoverable queuing service
(desceribed below), allowing applications to have easy access

* LU 2 applications are maintrame applications that are wiitten 1o run on top of [BM's LU B.2
protocol

HP-UX Machine
Application
|
HP-UX Machine Mainframe
TCP/IP PPC SNA LUG2Z
== . Gateway 1 Application

Fig. 8. A PPC configuration showing the PPC gateway translating
TCP/P protocol to SNA protocol

to both systems. In addition, the structured file system sup-
ports a COBOL interface with the structured file system’s
external file handler.

Files in the structured file system are organized in one of the
following three ways: entry-sequenced, relative, and B-iree
clustered (see Fig. 9). Records in an eniry-sequenced file are
stored in the order in which they are written into the file.

New records are always appended to the end of the file. A
relative file is an array of fixed-length slots. Records can be
inserted in the first free slot found from the beginning of the
file, at the end of the file, or in a specified slot in the file. A
B-tree clustered file is a tree-structured file in which records
with adjacent index names are clusiered fogether.

Entry-Sequenced File Structure

First Record | Second Record
Inserted Inserted e,

» As records are inserted in time they
are appended 1o the end.
« Deleted records leave a blank space.

Relative File Structure

Record 0 '

« To look up, insert, or delete
record n, go to (n « record size).

. S

B-Tree Cluster

* Records are Elrgsnizad asa B tree. The
record key is used to traverse the tree to
locate the appropriate record.

Fig. 9. File organizations supported in the structured file systam.

December 19095 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

The structured file system is simple and fast, but limited in
flexibility when compared to relational databases. Relational
databases provide powerful and complex access semantics
with operations such as select, join, aggregate, and so on.
The structured file system provides low-level access to rec-
ords whose formats are user-defined and controlled.

Recoverable Queueing Service

Encina/8000 provides a recoverable queueing service which
is layered on top of the basie toolkit and server core compo-
nents, This service provides applications with the ability to
transactionally queue and dequeue data. Application devel-
opers can write applications that transactionally update data
in a resource manager like a database and queue or dequeue
data with the guarantee that either both operations will
succeed or both operations will abort.

An example of a transactionally recoverable queue would be
a banking application that sends a letter to a customer if the
customer's balance goes below zero. The action to generate
the letter can be queued and processed later at the end of
the day. The recoverable gqueue ensures that this action will
always be performed even in the event of system failures,

One advantage of the queueing model is that applications
can offload some work to be done at a later time. This de-
ferred mode of computing is in contrast with the RPC style
of commumication in which an application invokes a service
to do the processing as soon as it can.

A queue is a linear data structure. Elements in the data
structure are queued in a particular configurable order and
the dequeue occurs on a FIFO (first in, first out) basis, An
element of a recoverable queueing service queue is struc-
tured in a record-oriented format. Encina/9000 supports
queues that may contain elements of different data types. An
element key is a sequence of one or more fields of an ele-
ment type that are used to refrieve an element.

Ineina/9000 provides the ability to define one or more re-
coverable queueing service servers in an Encina/8000 cell.
Each server can internally support multiple queue sets. A
queue set is a collection of queues within a recoverable
queueing service server. Applications can queue or dequeue
to or from a particular queue set. Queunes within a queue set
can be assigned priority classes relative to each other. Also,
service levels define how to distribute the dequeues so that
the queues with lower priority are not starved.

The recoverable queueing service supports a weak FIFO
locking behavior. For example, when two transactions con-
currently dequeue from a queue, each obtains a lock on the
first element that it can lock on the queue. It is possible for
the transaction that obtained a lock on the second element
in the queue fo commit before the transaction that obtained
a lock on the first element in the queue. Another consequence
of the weak FIFO locking policy may be that a transaction
that consecutively queues multiple elements may not be
able to place all these elements in that queue in an uninter-
rupted sequence.

The recoverable queueing service uses the DCE security
mechanisms to secure access to the queue. Administratively,

68 December 1985 Hewlett-Packard Jo

ACLs (access control lists) can be set up to authorize users
or groups to be able to perform queue operations like read
from queue, queune to the queue, dequeue from the queue,
delete a queue, and so on.

A recoverable queueing service queue can be scanned using
element keys, cursors (for sequential access), or element
identifiers.

Finally, the recoverable queueing service provides the ability
to register callbacks with the service’s server on callback
quantities such as the number of elements, size in bytes, and
work accumulation. For example, with this feature it is pos-
sible to write applications that can ask the recoverable
queueing service server to inform them when ten elements
have been queued.

Monitor

The Encina/9000 transaction processing monitor provides
an infrastructure for application development, run-time sup-
port, and administration. It supports the development of a
three-tiered architecture in which multiple clients can access
data stored in multiple resource managers.

Like DCE, the Encina/9000 monitor also has the concept of a
cell. For the Encina/%9000 monitor the cell is called an Encina
cell. The Encina cell is a subset of the DCE cell, and multiple
Encina cells can be defined within a DCE cell. (DCE cells
are described in the article on page 6.) An Encina cell may
consist of multiple nodes. A node is either a public node or a
secure node. A secure node is a node on which the Encina/
9000 servers can be securely run. Public nodes are nodes
where only elients are run. Servers are not configured to run
on public nodes. An example of an Encina cell is shown in
Fig. 10. Like DCE, an Encina cell has a cell administrator
who is responsible for performing administrative tasks.

Public Node
v F
Secure Node Secure Node
Application Node
Server Manager
Node
M
Cell i Structured
Manager File System
Server
I A
v v
Secure Node
Node
Recoverahle Manager

Queuveing

Service
Server

Application

Server

Fig. 10. The components it an Eneina/8000 cell.

urmal
© Copr. 1949-1998 Hewlett-Packard Co.

The encina cell contains the following server processes:

Cell Manager. There is one cell manager process in an
Encina cell. The cell manager maintains the data needed to
configure and administer the Encina cell. This data is stored
in a data repository managed by the structured file system.
The data describes how the application servers are config-
ured to run on the secure nodes and includes the authoriza-
tion information for those servers. The cell manager also
monitors the state of the node managers and keeps statistics
on the use of the servers by the clients.

Node Manager. There is one node manager process in each
secure node in an Encina cell. The node manager monitors
the application servers that are running in that node. If an
application server fails, the failure is detected by the node
manager which then restarts the application server.
Application Server. The server part of a user application is an
application server. Typically, application servers accept calls
from an Encina cell’s clients and then process the user re-
quests by accessing one or more resource managers. Appli-
cation servers may be recoverable or ephemeral. A recover-
able application server is one that uses the underlying
Encina/9000 facilities to provide the ACID (atomicity, con-
sistency, isolation, and durability) transactional properties.
When a recoverable server fails, it performs recovery on
restart which guarantees the consistency of the data. An
ephemeral server does not provide the ACID properties to
the data it accesses. An application server consists of a
scheduling daemon process (called mond) and one or more
processes (called PAs) that accept client requesis. PAs are
multithreaded processes. The mond coordinates the clients’
requests for servers and assigns a PA to a requesting client.
In this respect the role of the mond is similar to that of the
RPC daemon rped in DCE. The mond also monitors the PAs
and automatically restarts a PA in the event that the PA dies.
An example of an application running in an Encina/9000 cell
is shown in Fig. 11.

In the Encina/9000 monitor environment, a client can make
a server request using explicit binding or transparent bind-
ing. With transparent binding the client simply makes a call
to the server and the monitor environment is responsible for
routing the client request to an appropriate server. With ex-
plicit binding, a client explicitly binds to a particular server.
The Encina/9000 monitor provides a call to request a list of
all servers exporting a particular interface, a call to get a
handle to a mond for one of those servers, and a call to get a
handle to a PA that is under the control of a particular mond.
When using explicit binding, a client can specify that the

Interface 1 Interface 2
Yy Vv
Application Server 1 Application Server 2

mond = Scheduling Daemon
PA = Multithreaded Process
Fig, 11. An example of an encina cell’s application servers,

client block if the PA is busy or that it get back a status if the
PA is busy. In addition, the client can request that the PA be
reserved for that client by specifyving a long-term reservation
to the server.

In general it is easier to code the client to use transparent
binding. This also has the advantage that the monitor code
can perform load balancing of client requesis among the
available PAs. The monitor software uses a probabilistic
algorithm to route client requesis to the available PAsin a
ratio predefined by a system administrator. With transparent
binding the monitor software will use an existing binding if
one exists, or it will ereate a binding to an appropniate
server if no such binding exists. If all the available servers
are busy, the client waits at the server for a free PA

Although it is more complicated to write clients that use
explicit binding, it does provide the user with the ability to
select the PA on which the call is executed. There are cer-
tain situations in which explicit binding used in conjunction
with long-term reservation of PAs is advantageous. For ex-
ample, consider a client process servicing a large number of
users. In this ease it would be advantageous for that process
to reserve a PA and then direct the various user requests (o
that PA. Having a direct connection fo a PA reduces the fime
needed to connect to a PA on subsequent calls. Long-term
reservation makes the PA unavailable to other clients, and it
must be used with care. Administratively, a timeout interval
can be specified so that if there are no client calls to the PA
within that interval, the long-term reservation is canceled,

When an application server is initialized, it can specify one
of the three scheduling policies: exclusive, concurrent shared,
and shared. Shared scheduling is provided primarily for
compatibility with previous releases, and its use is not
recommended. The default poliey is exclusive scheduling,
With this scheduling only one client RPC can be execuiing
within a given PA at any time, and the PA is scheduled exclu-
sively for the entire duration of the client transaction. This
has the advantage that the programmer does not have to be
concerned about issues related to threading. This is required
when the PA is accessing a database that is not thread safe
{which is currently the case for most RDBMSs).

With concurrent shared scheduling, many clients can be
executing within a PA at the same time, and the mulfi-
threaded PA assigns a different thread for each client re-
quest. If the PA accesses global or static variables, they must
be protected by DCE synchronization facilities such as
mutexes.* Concurrent shared scheduling should only be
used when linking with thread-safe libraries. Concurrent
shared scheduling provides the best performance with the
lowest use of resources.

The monitor allows the creation and access of monitor-
shared memory (HP 9000 virtual memory) which can be
shared among the PAs within an application server. This
allows a quick and easy way for the PAs to share transac-
tional data. Monitor-shared memory is much cheaper than,
say, using an external RDBMS, but care should be exercised
when using the monitor-shared memory because it is the
user’s responsibility to perform the appropriate locking
when accessing the shared memory. Since locks must be

* Mutexes, or mutual exclusion locks, are used to protect critical regions of code in DCE threads

Diecember 15995 Hewlett-Packard Jourmal 69

© Copr. 1949-1998 Hewlett-Packard Co.

used, it also has the potential of introducing deadlocks.
Transactional timeouts can be declared for aborting such
transactions.

The monitor allows the use of the recoverable queueing ser-
vice for queueing work items which are eventually processed
by a monitor application server. Using the queued request
facility, entries of the appropriate type are queued to the
recoverable queueing service. A queued request facility
daemon will then dequeue the request and forward the
request to the appropriate PA.

The Encma/8000 monitor also provides a timer mechanism
to allow servers to schedule a call to be issued at a later
time. This functionality is provided transactionally so that
the call made within the scope of a transaction is scheduled
if the transaction commits. The call does not oceur if the
transaction aborts.

The Encina/8000 monitor provides support for application
developers who wish to integrate their Encina/9000 client
with forms-based user interface tools. Encina/9000 is inte-
grated with JAM, a forms-based tool from JYACC Ine.

In summary, the Encina/9000 monitor provides the following
benefits:

Simplified programming for writing clients and servers
Automatic detection of failures and restarts of monitor
daemons and PAs

Automatic load balancing between clients and servers
Collection of statistics by the monitor for server use
Simplified central place of administration for distributed
clients and servers

Support for highly concurrent access to relational data-
bases.

Standards Supported by Encina/9000
Encina/9000 supports the following standards:
X/Open:
XA
>'TX
TxRPC API
- CPIC
o ISAM
SAA:
CPIC
CPI/RR
OSF DCE.

Encina/9000 interoperates with the following products:
Oracle

Informix

Ingres

Sybase

Open CICS

IBM mainframe CICS

IBM mainframe IMS/DC.

The Encina/8000 toolkit has been used to support other
transaction processing products and provide the base func-
tionality to support other products like Open CICS and
STDL each running on top of Encina/9000 on the HP-UX
operating system.

70 December 1995 Hewlett-Packard Journal

* Perl |Practical Extraction Report Language) s a UNIX programming language that is des

Value-Added Features

HP Encina/29000 provides value-added features in the areas
of system administration and high availability.

System Administration

An Encina/9000 system administrator must configure the
Encina cell and define the administrative interfaces for the
various servers in the system.

An Encina cell must be closely tied to a logical administra-
tive unit of work, and the data accessed to do this work
should be in the same cell. It is possible for applications to
interoperate across Encina cells using explicit bindings.
Therefore, the exact boundaries of an Encina cell must be
defined by carefully analyzing the applications running in
the system with careful consideration being given to secu-
rity, number of users and machines, location of data, and the
applications that access the data.

A system administrator must create the log space used by
Encina/9000 and then bring up the following Encina/9000
components:

Structured file system

Cell manager

Node manager

Servers such as the recoverable queueing service and the
PPC gateway if they are needed

The required application servers.

Encina/9000 provides administration tools for the following
components: log, structured file system, monitor, recover-
able queueing service, PPC, and the rest of the toolkit. These
tools provide the appropriate low-level commands for ad-
ministering these components. Encina/9000 also provides a
perl-based” tool called encsetup, which provides higher-level
system administration facilities. The HP value-added system
administration facilities are described later in this section.
Finally, Encina/9000 also provides libraries for developing
system administration products, which are very useful for
customers developing these kinds of products.

Encina/9000 system administration is very closely tied to
DCE system administration. The DCE cell must be config-
ured before the Encina cell can be configured. Encina/9000
also makes use of the DCE directory service. The default
Encina root cell directory is defined as /./encina (this default
can be changed if needed). Encina/9000 components regis-
ter their name under this directory. Within this directory
there are directory entries for the recoverable queueing ser-
vice, the structured file system, the Encina/9000 monitor,
transactional RPC, and peer-to-peer communication (PPC),
For example, each recoverable toolkit server registers an
entry in the /:/encina/trpe directory (trpc = transactional RPC),
and each recoverable monitor server registers an entry in
the /./encina/tpm/trpe directory (tpm = Encina/f000 monitor).

The use of the directory allows the Encina/9000 system
administrator to restrict access to various resources. The

to-handle system adminstrator functions

© Copr. 1949-1998 Hewlett-Packard Co.

system administrator can use DCE tools like acl_edit to grant
a user, a group, or an organization permission to access a
particular resource. Encina/900() uses the DCE authentica-
tion and authorization mechanisms to maintain security. An
Encina/Q000 server can specify the level of authorization a
user of the server must have to access that server. A client
wishing to access a secure server must be authenticated with
DCE and when the client calls the server, the server uses the
DCE security mechanisms to verify whether it should allow
access to the user. DCE access control and security are dis-
cussed in the articles of pages 49 and 41 respectively.

HP provides a DCAM layer for Encina/0000. DCAM stands
for distributed computing application management. DCAM
is an architecture and methodology for providing uniform
system management for products that enable distributed
computing such as DCE, Encina/8000, and CICS. An advan-
tage of DCAM is that it provides a consistent look and feel
for all of these produets to the user and aids in the overall
ease of use of these products. It provides a graphical user
interface as well as a DCAM shell. DCAM provides a set of
action verbs that can be modified by options and operate on
objects.

Fig. 12 shows the relationship between the DCAM CLI
(command-line interface) layer, the DCAM shell, and SAM
(system administration manager).

SAM is a menu-driven interface used to manage an Encina/
9000 system. The DCAM shell is a command-line interface
which can be used to type in administrative commands.
SAM and the DCAM shell are layered on top of the DCAM
CLI scripts which convert the DCAM commands to native
Encina/9000 administration commands,

The common look and feel provided by DCAM enables a
system administrator to manage the different distributed
systems and applications based on DCE with a consistent
and user-friendly interface. DCAM does this by providing
consistent use of vocabulary to represent actions. The con-
sistent use of syntax and semantics is important because ol
the different subsystems that DCAM is built upon. The con-
sistency provided by DCAM improves user efficiency and
lowers error rates.

DCAM provides a natural way for system administrators Lo
express the actions that they want. For example, to create a
structured file system server, a system administrator would
type the command: create sfsserver. This command is converted
by DCAM to the underlying Encina/%000 low-level commands
needed to create the server.

User

DCAM Shell

Underlying Encina/9000 Components

Fig. 12. System administration tools with DCAM.

The SAM interface of DCAM is more useful for people who
are familiar with SAM or are getting acquainted with Encina/
9000. The DCAM shell is generally used for efficiency by
experienced Encina/Q000 system administrators. In addition,
the DCAM shell is also used for writing and customizing
system administration scripts.

DCAM is object-oriented. Objects represent items that can
be encapsulated and acted upon. Encina/8000 objects can be
an Encina cell, a server, or a transaction. Objeects have attri-
butes. For example, a structured file system server has an
associated attribute that describes the log volume associated
with the server. Actions are verbs that act upon the objects.
For example, the actions create, start, modify, and stop can
be used to act upon an object. Actions have object indepen-
dent semantics in that they have similar semantics regardless
of the type of object they are working on. For example, the
verb ereate can be used to create an Encina cell, a structured
file system server, an application server, and so on. Actions
have options. An action can be specified with the default
options, or the administrator can specify task-specific op-
tions with the action.

A task defines a pairing of an action with an object. A task
consists of one action, one object, zero or more options, and
one or more attributes. For example, start cell -Name name,
which tells DCAM to start up the named cell along with
other optional parameters, is a task that can be specified
with the DCAM shell. If the parameters are not specified, the
DCAM shell will prompt for the parameters. In SAM, the
parameters are displayed as fields in the SAM panel and can
be entered. If the required parameters are not entered, an
error is displayed.

Another useful feature of DCAM is the help facility, which
can be used by the system administrator to interactively
obtain help on a topic. This is also useful for someone who
is learning Encina/9000 administration since it lists the vari-
ous alternatives and options to a command and provides an
easy way for administrators to get a feel for the various
commands and options.

To many users the real value of DCAM is the added capabili-
ties it has that go beyond what native Encina/9000 adminis-
tration supports. This includes high-level server configura-
tion tasks which are much easier, complete support for
transparent remote configuration from anywhere in the DCE
cell, autorestart of toolkit servers like the structured file
system and the recoverable queuneing service, and support
for ServiceGuard/UX's failover” feature.

High-Availability Features

Many customers have a strict requirement for data to be
available at all times. Data replication with Encina/9000 can
be provided by the use of data mirroring with mirrored
disks. In addition, to provide data availability in the case of
machine failures, Encina/0000 can be integrated with the
Switchover/UX and the ServiceGuard/UX products (de-
scribed below). These produets allow node failures to be
handled, and they provide a set of scripts that facilitate the
administration of a highly available system.

* Failover refers to the process that ogcurs when & standby node takes over from a failed node

December 1995 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

In a distributed system there can be many causes of failures,
and failures of disks, networks, and machines can all impact
availability. Since the system is composed of several nodes
connected with network links, there are more points of fail-
ure that could impact availability. Network failures are not
described here, but users who need highly available Encina/
9000 applications should try to avoid single points of net-
work failure.

Many techniques exist for dealing with disk failures. The
preferred method of dealing with disk failures is to use
HP-UX mirrored disks with a logical volume manager. Other
choices are to use RAID? or to use Encina/9000 mirrored
disks. The advantage of the HP-UX mirrored disk technique
is that it is a general-purpose solution with applicability to
all kinds of data like the structured file system and DBMSs.
If the database can handle the logical volume manager con-
figured for no consistency then it should be used for data-
base data. Mirror write consistency, or mirror consistency,
should be used for Encina/9000 data or for database data
that can handle consistency mirroring. RAID can be used as
a relatively inexpensive solution to handle disk failures, but
it has many single points of failure in the disk /O path and is
not good for the short random write updates that are typi-
cally found in transaction systems. Encina/9000 mirroring
has the disadvantage that it is not integrated in the HP-UX
operating system and can therefore only be used for Encina/
9000 data and not for, say, DCE or DBMS, Its advantage is
that it can automatically handle more failure conditions than
HP-UX mirroring. Encina/9000 mirroring is slower than
HP-UX mirroring, but it has a faster recovery time.

There are two primary solutions for node failures: Switch-
over/UX and ServiceGuard/UX. In Switchover/UX, a primary
node and a standby node are configured with multihosted
disks. The primary node runs in the normal case. The standby
node is also connected o the disks and uses a heartbeat
protocol to detect failure of the primary node. When the
standby node detects that the primary node has failed, it
assumes the primary node’s identity by booting off the pri-
mary node’s disks and using the primary node’s IP address.
The standby node then uses the primary node’s disks to re-
boot and to restart the system processes and applications.
This allows a fast restart after the primary node has
crashed, resulting in a small downtime. The primary and
standby nodes should be from the same hardware family.

With Switchover/UX the Encina/9000 processes are restarted
when the standby node reboots. Using Encina/9000's trans-
parent binding, clienis are automatically reconnected to the
servers. However, in this case client transactions will keep
aborting until the failover is complete.

In ServiceGuard/UX, applications and data are encapsulated
as packages that can be run on various nodes of a cluster.
ServiceGuard/UX allows the user to define the packages,
and each package has a prioritized list of nodes it can run
on. ServiceGuard/UX ensures that a package only runs on
one node at a time. A package is defined by a startup/shut-
down script and can represent any application. The nodes
running packages monitor each other’s status and restart
packages when they detect the failure of another node.

A package can be an Encina/9000 application server running
under a single Encina/9000 node manager. The package can

72 December 1995 Hewlett-Packard Journal

also include assorted toolkit servers like the structured file
system, a recoverable queueing service, or an Encina/9000
monitor. Optionally, a package can have one or more IP ad-
dresses. If specified, a package's IP address is associated
with the network interface on the machine currently execut-
ing the package. With ServiceGuard/UX a user can configure
a simple failover scheme. The user can also define a single
package that can execute on a primary or a backup node.
This scheme is general and can be used for the Encina/9000
log, structured file system, recoverable queueing service,
monitor, and DBMS and DCE core servers.

Encina/8000 servers can be integrated with ServiceGuard/
UX. In this case the Encina/9000 servers should be config-
ured in a ServiceGuard/UX cluster, and a package should be
created for the servers. The package should contain run and
halt seripts for the servers, which specify the actions to take
when a package is started or terminated. The actions in a
run seript include adding the relocatable IP address to the
network interface, mounting all logical volumes, and calling
an Encina/9000 script to start all the Encina/9000 servers.
The actions in a halt script include calling an Encina/9000
script to halt all the Encina/9000 servers, unmounting all the
logical volumes, and removing the relocatable IP address.

ServiceGuard/UX offers a more flexible solution for high
availability. It can be configured with a dedicated standby
solution similar to Switchover/UX, or it can be configured in
a more cluster-like configuration. It also has a faster recov-
ery time since failover nodes do not need to reboot.

Encina/f000 also provides the ability to perform application-
level replication of data. An alternative to application-level
replication is the replication of data provided by databases,
Database-level replication has the advantage of being trans-
parent to the user, and it is relatively efficient. Application-
level replication, on the other hand, is less dependent on
specific DBMS platforms and can be used to provide replica-
tion across DBMS platforms. In addition, it is more flexible
and can be performed in a synchronous or asynchronous
manner. It may be important to perform asynchronous repli-
cation across a WAN to achieve a faster response time. The
disadvantage of application-level replication is that the ap-
plication developer must design and implement the replica-
tion scheme.

An example of replication using Encina/9000 is master/slave
replication of data with deferred updates to the slave. In this
scheme, the master copy of the database is maintained on a
machine. The application updates the master database and
stores a copy of the update in the recoverable queueing
service. With this setup the application can transactionally
update the master database and store a copy of the updates
in the recoverable queueing service. At a later time the data
is transactionally dequeued from the recoverable queueing
service and applied to the slave database on another ma-
chine. The strength of this approach is that the two ma-
chines holding copies of the data do not have to be running
at the same time, and the update can be deferred to a time
when the load on the system is low. It also avoids having to
do online a two-phase commit across the machines. How-
ever, there is the drawback that the replica is not consistent
with the master, and the updated data would be unavailable
while the master node is down.

© Copr. 1949-1998 Hewlett-Packard Co.

Encina/9000-Based Architectures

Some of the common Encina/900(-based architectures in-
clude corporate centralized data architecture, region
centralized data architecture, and branch data architecture.
In each of these architectures we consider a corporation to
be an entity that has a central data processing center located
at its headquarters. The corporation’s business is geographi-
cally spread over several regions, and each regional center
has a data processing center. Each region also contains mul-
tiple branch offices, and the branch office has a number of
users who are executing transactions. In the past, compa-
nies employed mainframes at the corporate headquarters,
where all the data was maintained. This was expensive to
maintain, and the response time got worse as the data on
the mainframe increased.

In a corporate centralized data architecture, data is still
maintained at the mainframe host. Connection to the main-
frame is through gateway machines that run the Encina/9000
PPC executive. Depending on the availability requirements,
the gateway machines could be implemented with the high-
availability solutions mentioned earlier. One option would
be not to have any machines at the branch offices or the
region offices but rather to have PCs at these offices which
talk directly to the mainframe. Alternately, the regional cen-
ters or the branches could have machines, and the regional
machine could route a request from a branch to the corpo-
rate center. All the data is maintained at the corporate cen-
ter and there is no local business data at either the regional
offices or the branch offices. This architecture is shown in
Fig. 13.

This architecture is useful if it is hard to replace the main-
frame machines and data. Alternately, it may be possible to
offload some of the data from the mainframe to machines
running the HP-UX operating system at the corporate data
center.

The regional centralized data architecture is similar to the
corporate centralized data architecture, except that the data
is partitioned across the regional data centers. The data
could also be stored with the mainframe at the corporate
data center. Clients can run at the branch machines or at the
regional center. Optionally, there could be a database at

Corporate Center
Maintains All Data
Regional Office
May Route Branch
Connections
Branch Office
¢ Connects to Corporate
- Directly or Through Region

Fig. 13. A corporate centralized data architecture

either the corporate center or the regions that assists in
routing a request to the appropriate regional center. This
architecture is shown in Fig. 14.

In the regional centralized data architecture, Encina/8000
servers typically run on the regional machines. Clients can
run at the branch or regional offices. Clients employ lookup
mechanisms to locate the appropriate server and then make
calls to the servers. An Encina/000 PPC can be nsed to
transactionally read or update data stored at the corporate
center.

The regional centralized data architecture has the advantage
of avoiding CPU bottleneck problems when a large number
of transactions have to be processed on a single database.
Since the databases are spread throughout the regions, they
all ecan handle transactional access to the data allowing a
higher volume of transactional traffic. In addition, if users
frequently access data at the nearby regional center, nei-
work traffic will be localized.

In the branch data architecture, each branch maintains its
local branch data. The data can also be aggregated and
maintained at the corporate center, but users primarily ac-
cess the data at a branch machine. Optionally. corporate or
regional centers can maintain a cross-reference database to
assist with routing a user request to the appropriate branch.
This architecture is shown in Fig. 15.

The main advantage of this solution is the fast response time,
since for most transactions data can be looked up locally
and expensive two-phase commits over the WAN can be
minimized. The drawback of this scheme is having to main-
tain a large number of databases and administering them.

Conclusion

The Encina/9000 product provides an application develop-
ment environment for developing OLTP applications and the
run-time support for running and administering the applica-
tions. Its strengths are the flexibility it provides for distrib-
uted OLTP applications compared to the traditional data-
base products, and its strong integration with the HP DCE
produet, It provides an infrastructure for eustomers to write

Corporate Center
Maintrame E::!;::::;d Data
Regional Offices
Regional Holds Regional
Machine Data
Data
Branch Offices | |
Use Applications
in Regional Dffice

N

Fig. 14, A regional centralized data architecture

December 1996 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Corporate Center
- Hold Some
Mainframe Consolidated
Data
Regional Center
i : Hold Some
Regional Regional 2o
Machine Machine g:llu.sohliatad

Some Data

Branch Office

Branch Branch
Machine Machine
in Branches
* Maintain Own

Data

Fig. 15. Branch data architecture,

74 December 1005 Hewlett-Packard Journal

= Use Applications

reliable and secure applications for their mission-critical data.
Additionally, the Encina/9000 product provides added value
in the areas of system administration and fault tolerance,

Acknowledgments _
I would like to thank Jay Kasi for his insightful discussions
on several topics mentioned in this paper.

References:

L. Eneina/0000 Refevenee Manwals, Part Number B 3750AA,
Hewlert Packard Company, 1005,

2. 08F DCE Application Devetopment Guide, Revision 1,03, Pren-
tice Hall, 1993,

4. LE.B. Moss, Nested Transactions: An Approach to Reliable Dis-
tribited Compuling, MIT Press, 1985,

1. CAE Specification Distributed Transaction Processing: The XA
Speeification, X/Open, 1991

5. M. Rusnack and T. Skeie, HP Disk Array: Mass Storage Fault Tol-
erance for PC Servers, Hewlett-Packad Jowrnal, Vol, 46, no. 3, June
18995, pp. 71 to 81.

HP-UX 8 * and 10.0 for HP 3000 Series 700 and BO0 computers are X/ Open Company UNIX 83
brandsd preduets

LINIX is & registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited

X/Upen 15 a registerad rademark and the X device s a trademark of X/Open Company Limitad
in the LK and othiel countries

Open Sohiware Faundation and OSF are trademarks of the Open Sohware Foundation in the
LS. and other countries

© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Perspective on
Software System Testing in a
Distributed Environment

A flexible object-oriented test system was developed to deal with the
testing challenges imposed by software systems that run in distributed

client/server environments.

by Mark C. Campbell, David K. Hinds, Ana V. Kapetanakis, David S. Levin, Stephen .J. McFarland,

David .J. Miller, and J. Scott Southworth

In recent years software technology has evolved from
single-machine applications to multimachine applications
(the realm of the client and server). Also, object-oriented
programming technigques have been gaining ground on pro-
cedural programming languages and practices. Recentily,
test engineers have focused on techniques for testing ob-
jects. However, the design and implementation of the test
tools and code have remained largely procedural in nature.

This paper will describe the object testing framework, which
is a software testing framework designed to meet the testing
needs of new software technologies and take advantage of
object-oriented techniques to maximize flexibility and tool
reuse.

System Software Testing

The levels of software testing include unit, integration, and
system testing. Unit testing involves testing individual system
modules by themselves, integration testing involves testing
the individual modules working together, and system testing
involves testing the whole product in its actual or simulated
operating environment. This paper focuses on software
system testing.

A software system test is intended to determine whether the
software product is ready to ship by observing how the
product performs over time while attempting to simulate its
real use. System testing is composed of functional, perfor-
mance, and stress tests. It also covers operational, installa-
tion, and usability aspects of the product and may include
destructive and concurrence testing. The product may sup-
port many different hardware and software configurations
which all require testing. All of these aspects are combined
to assess the product’s overall reliability. Software system
testing is usually done when all of the individual software
product components are completed and assembled into the
final product.

In the past, system testing environments centered around
testing procedural, nondistributed software. These environ-
ments, which were also procedural and nondistributed,
were usually developed by the test writer on an ad hoe basis
along with the test code for the product, Recently, soltware
system festing has benefited from the use of highly auto-
mated test harnesses and environments that simplify test

execution, results gathering, and report generation (see

Fig. 1). Unfortunately, the test harnesses created in these
environments were not easily reusable, and when the next
project reached the test planning stage, the test harness had
to be reworked.

The advent of standardized test environments such as TET
(Test Environment Toolkit }* helped to reduce this costly
retooling by providing a standard API (application program
interface) and tool base that test developers can adopt and
use to write standardized tests. However, the difficulty is to
provide a standard test harness that is complete but flexible
enough to keep pace with changing software technology and
remain viable for the long term.

During the development and testing of the initial release of
HP ORB Plus, which is an object request broker based on
the Object Management Group’s CORBA specification (see
page T6), we realized that distributed object technology
posed testing problems that were not adequately solved by
any of the test harnesses currently available. We needed a
flexible test environment that could handle heterogeneous

* The Test Enviranment Toolkit (TET) specification began in September 1988 as a joint proposal

by the Open Software Foundation, UNIX™ International. and X/Open”

|
Configuration Management,
Test 253
Created

] Test Control,
by Test
Developers Test Test ,
Case | Case | Case [| Test Scripts,
3 N Test Cases, etc.
: . 8 »
v

Report Generation, etc.
System Under Test (SUT)

Fig. 1. A typical automated test environment,

December 1995 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

distributed systems communicating over multiple transports
using multithreaded clients and servers. However, we were
not willing to lose the investment we made in the test code
and tools developed for our earlier products.

Instead of abandoning the old test environment and replac-
ing it with an enfirely new system, we decided to use the
object-oriented principles of encapsulation and polymor-
phism to evolve our current environment base to meet our
needs without throwing out the old code. The ability to
change or replace functional blocks of a system without
affecting the enfire environment is one of the main benefits
of object-oriented design (see “Object-Oriented Program-
ming” on page 79). Object-oriented prineiples allowed us to
reuse existing tools.

Distributed System Testing

In a distributed object system, service providers are distrib-
uted across a network of systems and are called servers.
Clients, who issue requests for those services, are also dis-
tributed across a network. A single program can be both a
client (issues requests) and a server (services requests),
Clients can issue requests to local and remote servers. Dur-
ing a distributed object system test, clients are responsible
for reporting any failures or status resulting from the re-
quests they make.

The first task performed during the system testing of a dis-
tributed object software product is test setup. Clients and
servers must be deployed across the network to targeted
systems. Consideration must also be given to the fact that

servers may have multiple clients sending messages to them,

and the distribution of clients and servers may change dur-
ing a system test so that various hardware and software
configurations can be tested.

The Object Management Group’s
Distributed Object Model

The Object Management Group (OMG) creates standards for the interoperability
and portability of distributed object-oriented applications. The OMG only produces
specifications, not software. Each participating vendor provides an implementa-
tion to meet the specification. The Common Object Request Broker Architecture
(CORBA| specification defines a fiexible framework upon which distributed object-
oriented applications can be built. This architecture represents the Object Request
Broker (ORB) technology that was adopted by the OMG. An ORB provides the
mechanisms by which distributed objects transparently make requests and receive
responses. The ORB enabies object-criented applications on different machines to
communicate and interoperate.

The OMG has defined an Object Management Architecture object model. In this
model, objects provide services, and clients issue requasts for those services. The
ORE facilitates this model by delivering requests to objects and returning any
output values to the elient. The services that the ORB provides are transparent to
the client.

Ta request a service, a client needs the object reference for the object that is to
provide the service. The ORB uses this object reference to identify and locate the
object. The ORB activates the object if it is not already executing and directs the
request to the object

76 Devember 1995 Hewlett-Packard Journal

When test clients execute, they are instrueted to run for a
specified amount of time. They report failure and status in-
formation back to a central location. Upon completion of
the system test, clients and servers are stopped, temporary
files are removed, and final summary reports are produced.

The Test System

To manage all the activities of distributed system testing, we
developed a test infrastructure that met our current needs
and could evolve with new technologies and new needs. We
followed a modular, object-oriented design approach to
accomplish this,

We first engaged in several brainstorming sessions to pro-
duce a list of requirements for a complete distributed testing
framework. This was an attempt to pinpoint all the attributes
and functionality that a “perfect” test infrastructure would
have, and it was done in the context of system testing dis-
tributed objects. The needs of product developers, test de-
velopers, and testers were considered, as well as the need to
report metrics to the project team. The main focus, however,
was on the two groups who would use the test framework
the most: test developers and testers. Often these are the
same people, but the distinction was made to clearly differ-
entiate the needs of each group.

Produet developers normally want quick and simple tests to
verify that their code behaves correctly and at the same time
have their programs work as they would for an end user.
They don’t want to be distracted by the infrastructure. Exist-
ing test APIs tend to be intrusive, requiring developers to
have knowledge of the test environment in which their tesis
will be run. Therefore, we wanted our new test framework
to minimize intrusiveness. This would allow developers to
focus on testing the proper behavior of their code and not
on the test infrastructure. Ideally, product developers should
be able to write their tests with minimum restrictions, and
the tests should plug and play in many different testing
situations.

Test developers, whose job it is to develop ways Lo test the
product, have many of the same needs as product develop-
ers but are more concerned with black-box testing and try-
ing to "break” the product rather than verifying correct be-
havior. To do this, test developers want to be able to plug
new tests into the test environment easily and quickly, and
they wani process and environment control. This would
allow them to use the same tests in different scenarios to
find more product defects. Test developers are usually the
ones responsible for supporting the testing infrastructure,
Thus, more than any of the other groups, test developers
need a framework that is extensible, reusable, flexible, and
controlled, and hopefully has a long lifetime. If a testing in-
frastructure becomes out of date, test developers will have
to repair or replace it.

Often test developers are the ones who perform system test-
ing, but many times this role is handed off to testers. Although
the needs of both groups clearly overlap, testers need a tesi-
ing infrastructure that is easy to use for the installation, con-
figuration, and execution of tests. In many of our past proj-
ects, testing was done by temporary personnel. This freed

© Copr. 1949-1998 Hewlett-Packard Co.

L]

test developers to write more tests and assist product devel-
opers in debugging. When the test infrastructure is easy to
use, the testing role can be handed off to testers earlier in
the testing process. Additionally, the ability to reconfigure
the test environment easily and quickly allows more scenar-
i0s to be tested. This increases the likelihood of finding more
product defects, which leads to a better quality product.

Finally. test results are usually provided to the project team
in the form of metrics. Gathering metrics in a distributed
environment can be time-consuming. Pata can be located on
multiple systems on the network. However, when dealing
with multiple processes running in parallel on different sys-
tems, results may not always occur in a consistent order.
This implies the need for a centralized repository for testing
results. This would make the generation of metrics much
easier and faster, while providing a central location for find-
ing problems and debugging.

Design Methodology

Taking into consideration the needs of the different groups
mentioned above, we decided that the following attributes
were required for our test infrastructure,

Extensibility. Ensure the evolution of a modular system that
can be dealt with on a component-by-component basis.
Reusability. Allow object and code reuse for both tests and
the test infrastructure.

Flexibility. Provide a plug-and-play environment that allows
for flexibility in test writing and configuration.

Simulation. Provide the ability to simulate customer
environments.

Control. Provide centralized control of the test processes
and environment.

Nonintrusive. Hide as much of the testing infrastructure as
possible from the sysiem under test.

Ease of use. Provide ease of use for installation, setup, con-
figuration, execution, results gathering , and test distribution.

With these attributes in mind, we set about deciding on the
basic set of classes that would be needed. We used a method
for object-oriented design called Object Modeling Technigue
(OMT)! to develop a diagram showing class relationships
(see "Object-Oriented Programming” on page 79).

We walked through several scenarios and expanded and
refined our set of classes. Once we had an initial design we
wrote CRC (class, responsibility, and collaboration)? cards
for each of the classes in our design. (CRC cards are also
described on page 79.) This design was reviewed by the
product development team and their feedback was incorpo-
rated.

The Object Testing Framework

The design process produced an object-oriented software
testing system that we named the object testing framework
(OTF). Although this design is intended to test distributed
object-based software, it can also be used to test distributed,
procedurally based client/server software. The OTF consists
of the classes shown in Fig. 2. The architecture of the OTF is
such that there is a single master test control system (OTF
management system in Fig. 2) that orchestrates running
tests on multiple systems under test. This master system can
also be a system under test.

In the following design discussion, the term object can mean
class or an instance of a class. It should be clear from the
context of the discussion which is meant.

OTF Management System

The OTF management sysiem consisis of the six major
classes: user interface, OTF controller, test suite configura-
tion, test coniroller, report generator, and database control-
ler. This system provides the user interface that the software
tester interacts with. Through this interface the tester speci-
fies test configurations such as which client and server pro-
grams will be running on which SUTs. The OTF management
system takes the specified configurations and makes them
available to each of the SUTs, ensures that the SUTs run the
specified tests, logs test data and results, and generates test
reports.

The main class in the OTF management system is the OTF
controller, which serves as the delegator object. It takes
requests from the user interface object and manages the
activities of the test suite configuration, test controller, and
report generator objects. The test suite configuration object
is actually created by the OTF controller. For a new configu-
ration the object will initialize from the configuration data
provided by the user interface. For a previously specified
configuration, the object will initialize from the database.
After this object’s configuration data has been set, its pri-
mary responsibility is to respond to configuration queries
from the SUTs.

The test controller has the overall responsibility for coordi-
nating the running of tests on the SUTs. It provides the SUTs
with a pointer to the test suite configuration ohject, synchro-
nizes the starting of tests, and passes status data and re-
quests back to the OTF controller. It also has the capability
to log status data to the database via the database controller,

The report generator, upon a request from the OTF control-
ler, queries the database controller to assemble, filter, and
format test data into user-specified test reports. Raw test
data is put into the database by each SUT’s TestEnvironment
object, while test process status data is put into the data-
base by the test controller as mentioned above.

System under Test

Each system under test (SUT) contains fifteen classes. In
normal operation, a SUT retrieves configuration data from
the OTF management system, and then, based on that data,
refrieves the specified tests from the management systern.
Since the SUT has the capability to build test executables
from source code, it can retrieve test source code and exe-
cutables from the OTF management system. Once the test
executables are in place and any specified test setup has
been completed, the SUT waits for a management system
request to start the tests. When this happens, the SUT is
responsible for running the tests, logging status, test data,
and results, and cleaning up upon test completion.

The main object in the SUT is the host daemon, which is the
SUT’s delegator object. The host daemon takes requests

from and forwards requests to the OTF management system
and manages the activities of the setier upper, test executor,
cleaner upper, process controller, and TestEnvironment objects.

i

Diecember 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

OTF Management System

User
Interface

OTF

Contraller

Report
Generator

Test
Controller

Test Suite

Configuration

— 8 8 8
System under Test
Host
Daemon
Test Management Subsystem

Cleaner
Upper

Setter
Upper

| Test
Distributor

Process Management Subsystem

Process
Controlier TestEnvironment

Database
Controller

== el

N

Factory

Buijlde
ailo'n TesiCase

User Written Test
MyFactory
Test Case

@ =Multiple Associations
. =Subclasses or Inheritances

The overall responsibility of the setter upper, test executor,
and cleaner upper objects is to manage how the tests are
run. These three objects collaborate with the builder, test
distributor, checker, and factory TestCase objects to form the
test management subsystem shown in Fig. 2. The process
controller and TestEnvironment objects provide the infrastruc-
ture for connecting the tests to the framework. These two
objects collaborate with the TestCase objects to form the
process management subsystem.

Test Management Subsystem

This subsystem sets up and executes the tests and then
cleans up after the tests have completed. The setter upper is
the object that controls test setup. It is a low-level delegator
that manages the activities of the builder, test distributor,
checker, and factory TestCase objects. The test distributor is
responsible for retrieving test executables and sources from
the OTF management system. When it retrieves source
code, the builder is responsible for generating test execut-
ables from the code. How the tests are reirieved depends on
the overall system environment and resources available. A
distributed file system, like NFS, could be used, or the tests

78 Decernber 1995 Hewlett-Packard Journal

| Client
TesiCase

Server
TestCase

MyClhent MyServer

Test Case

Test Case

Fig. 2. System architecture for the
object testing framework.

could be remote copied from the management system to the
SUT. An important design consideration was to have a single
repository for tests. This makes it easy to control changes to
tests and is not intrusive on the SUTs.

The checker provides the ability to customize test setup by
invoking a user-written program that can ensure that ele-
ments outside of the test environment are set up correctly.
For example, it could check that NFS and DCE are running,
that the display is set correctly, and so on.

The factory TestCase provides the setup procedures that arise
when festing a CORBA-based distributed object system. It
creates the CORBA objects that reside in the CORBA-based
server TestCases and stores references to these objects for
use by the client TestCases. The factory TestCase class inherits
from the TestCase base class and the test developer wrifes a
class that inherits from the factory TestCase class. This allows
the test developer to customize the factory TestCase function-
ality for a specific test.

The test executor object starts the client TestCases through
the functionality inherited from the TestCase base class, It

© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Programming

Object-oriented programming s a set of technigues for creating cbjects and as-
sambling them into a system that prowsdes a desired functionality. An objectis a
softw of data and pperations

1S may mocei things such as queues, stacks, win-

Ki ol s i stast
AR 0D) ts operat alE used

produce the cesired results

The eventual goal of object-oriented programming is to reduce the cost of soft-
ware development by creating reusable and maintainable code. This is achieved
by using three features of object-oriented programming: encapsulation, polymaor-
phism, and inheritance. Encapsulation consists of data abstraction and data hid-
ing. Data abstraction is a process of isolating attributes or qualities of something
into an object model. With data hiding an object may contain its own private data
and methods, which it uses to perform its operations. By using polymorphism, an
ubject’s operation may respond to many different types of data le.g.. graphical and
textual). Finally, using inheritance, an object can inherit attributes from other
objects. The object may then only need to add the attributes, methods, and data
structures that make it different from the object from which it inherited its basic
characteristics

For the design of the object testing framework described in the accompanying
article, we used an object-oriented software design methodology called object
modeling technigue {OMT]. This methodology provides a collection of techniques
and notation for designing an object-oriented application.

One important aspect of object-oriented design, or any software design. is decid-
ing on who (i.2., module or object) is responsible for doing what. A technigue
provided in OMT involves using an index card to represent object classes. These
cards are called CAC (class, responsibility, and collaboration) cards. The informa-
tion on one of these cards includes the name of the class being described, a
description of the problem the class Is supposed to solve, and a list of other
classes that provide services needed by the class being defined

also reports back to the host daemon the success or failure
of a test start,

The cleaner upper cleans up after the tests have completed.
This may include removing temporary files, removing test
executables, and so on.

Process Management Subsystem

The two main objects in the process management subsys-
tem are the process controller and TestEnvironment objects.
The process controller has the overall responsibility to mon-
itor all test-related processes on the SUT. It can register or
unregister processes, kill processes, and report process sta-
tus back to the host daemon.

The TestEnvironment class provides the test developer with an
application programming interface to the OTFE. It provides
methods for aborting tests, logging test data and results,
checking for excepfions, getting environment variables, and
so on. The test developer gets access to these methods
through the base TestCase class, which has an association
with the TestEnvironment class.

Creating a test involves writing a class that inherits from
either the client TestCase or server TestCase base classes. The
initialization and setup functionality for the test would be
included in the test’s constructor. The cleanup required
when the test is done is included in the destructor. Finally,
an implementation for the inherited run_body() method is
included, which is the test executable that runs the test. The

OTF API is made available through the pointer to the TestEn-
vironment class provided by the base TestCase class.

Implementation Approach

Once the design was complete, an inifial investigation was
made to find an existing system that matched the character-
istics of the design. When no system was found, an analysis
was done to determine the cost of implementing the new
infrastructure.

It quickly became obvious that the transition to the new
infrastructure would have to be gradual since we did not
want to impact the HP ORB Plus product release cycle. The
flexibility provided by an object-oriented system enables
gradual migration and evolution through encapsulation,
inheritance, and polymorphism. Tests could be isolated from
the infrastructure so that new tests could be developed and
evolved without modification as the infrastructure evolved.
This flexibility fit nicely with the realization that the time to
replace the existing infrastructure exceeded an average
product life cycle.

Object-oriented encapsulation provided another advantage.
Once some basic changes were made to the existing test
infrastructure and tests had been converted to the new
object-oriented programming maodel, the existing test infra-
structure could be used to simulate some aspects of the new
infrastructure. This allowed our system testing efforts to
benetit immediately from the features of the new test
system.

The developmenti of the current version of the object testing
framework has taken place in two steps. which have spanned
three releases of the HP ORB Plus product. At each step we
have continued to apply the same design principles. This
work is summarized in the following sections.

First Step. For the first step, the goal was to consolidate the
best practices of three existing test infrastructures into a
single infrastructure that simulated as much of the major
functionality of the OTF as possible. So as not to impact the
ongoing HP ORB Plus software releases, another goal was
to minimize changes to existing test code. This resulted in
an infrastructure that consisted of a layer of shell scripts on
top of two existing test harness tools. This significantly re-
duced the effort needed to set up, administer, and update
the network of systems that were used to system test the HP
ORB Plus product, while the tests continued to use existing
APIs. It also confirmed that our design was indeed trying to
solve the right problems.

Second Step. For this step the goal was to deploy the test
developer’s API to the OTFE. The result was the implementa-
tion of the C++ TestEnvironment and TestCase classes described
above.

Additional classes were designed to connect the TestEnviron-
ment and TestCase classes to the existing infrastructure, but
their existence is hidden from the test developer. This pro-
vides a stable APl without limiting future enhancements to
the infrastructure. Once the new infrastructure was deployed,
we focused on porting existing tests to it

This framework has resulted in minimal changes to existing
tests and maximum increase in functionality for the tests.
Most of the work simply involved taking existing code and

December 1995 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

L

wrapping it in the appropriate class. All of our tests have
benefited from the features provided by the TestEnvironment
and TestCase classes and are insulated from changes to the
framework.

At this stage of its development the object testing frame-
work allowed the removal of intrusive test code required by
the old test APls. For example, many tests included code
that allowed a test to be reexecuted for a specific time pe-
riod. That code was removed from the tests because the
same functionality is now provided by the framework.

In addition to supporting the design shown in Fig. 2, our
current implementation provides the following functionality:
Iteration. A test can be executed repetitively, either by spec-
ifying a number of iterations or the amount of time.
Context-sensitive execution. The object testing framework
behaves differently depending on how it is invoked. In the
developer’s environment it is transparent and does not
affect test behavior. In the testing environment it is bound
to the test system. For example, in the developer environ-
ment, the C++ functions cerr and cout go to the terminal, but
in the testing environment they go to a file and the test re-
port journal respectively. This encourages developers to put
all existing tests into the framework because the test con-
tinues to work the way it did before it was ported.

Simple naming service. A naming service allows the user to
associate a symbolic name with a particular value such as
the path name of a data file. In a distributed system, it is
necessary for multiple processes to share values that are
obtained outside of the system—for example, object
references,

Automatic capture of standard output streams cout and cerr,
To simplify porting of existing tests, the cout and cerr
streams are mapped fo a file and the journal file
respectively.

Encapsulation of functions from the product under test. For
example, the parts of CORBA used by the tests are encapsu-
lated. As CORBA evolves and changes its C++ language
bindings, only a single copy of the bindings in the frame-
work has to change.

Inheritance and reuse. Inheritance allows the test case de-
veloper to describe similar tests as a family of test cases
derived from a common class (which in turn is derived from
the TestCase class). In this case, polymorphism allows test
code to be reused in multiple tests, while allowing changes
to specific operations and data when needed.

Example. Our experience with the current framework has
shown that the time to port existing applications tests to the
new APl is minimal. Fig. 3 shows an example of how test
code would look before and after being ported to the new
test infrastructure. This example is an implementation of the
client for an OMG CORBA program, which simply prints
“hello, world.” In this case, the phrase will be printed by the
say_it method provided by the server code. The following
descriptions point out some of the differences between the
two source files. The numbers associated with the descrip-
tions correspond to the numbers in Fig, 3.

1. Fig. 3b shows portions of the test code with TestCase and
TestEnvironment instrumentation. These classes are not in the
code in Fig. 3a.

80 December 1995 Hewlet-Packard Journal

L

2. Fig. 3b includes the class declaration and method defini-
tions of a HelloWaorldTest class and a macro to register the defi-
nition with the TestEnvironment. The HelloWorldTest class is de-
rived from the TestCase base class. Fig. 3a source has no
HelloWorldTest class,

3. The check_ev_and_ptr macro in the Fig. 3a source is greatly
simplified in the Fig. 3b source, thanks to the TestEnvironment's
print_exception and is_nil methods.

4. Fig. 3a has a main function, whereas in Fig. 3b, the main
function is replaced by the HelloWorldTest constructor, de-
structor, and run_body methods. This structure allows the
OTF to instantiate and run the test code as needed. The
constructor and destructor allow the test writer to separate
out “execute once” code if desired. The run_body method may
be executed more than once.

5. Fig. 3a uses a file to store the object reference string
created by the server. (Use of files is potentially difficult if
the client and server are on different machines.) Fig. 3b uses
the TestEnvironment’s naming service to get the object refer-
ence string.

6. In Fig. 3b arge and argv are not available as input parame-
ters and must be obtained from the associated TestEnvironment.

7. The int return parameter of the main function in Fig. 3a is
replaced by the TestEnvironment:Result of the run_body method
in Fig. 3b. The effect is the same, to return the success or
failure of the invocation,

Next Steps. The following is a list of items under consider-
ation for implementing the rest of the design and adding
more functionality to the TestEnvironment and TestCase classes.
User interface class. We are investigating the possibility of
encapsulating a graphical user interface that was designed
for one of the existing test infrastructures.

Test controller class. Here again we are looking at encapsu-
lating an existing test synchronization controller.

Memory leak detection. By adding this feature to the Test-
Environment and TestCase classes, all tests will get this func-
tionality through inheritance.

Integration with run-time debugging. This will improve
tracing and fault isolation in a distributed, multithreaded
environment.

Heterogeneous networks. The current object testing frame-
work handles networks of HP-UX* systems only. We need to
expand the framework to handle other UNIX™ systems as
well as PC operating systems.

Summary

The object testing framework is based on using object-
oriented technology to create a test infrastructure that is
based on a number of small, self-contained modules and
then developing these modules in a way that allows the test-
ing effort to proceed while the test infrastructure continues
to evolve. Each step of the evolution results in a usable test
infrastructure that keeps the test effort online and provides
critically needed support to product releases.

In addition to our overall commitment to complete this proj-
ect, and a desire to see it used in other organizations in HP
involved in distributed object fechnology, we will continue

© Copr. 1949-1998 Hewlett-Packard Co.

{/ Standard C++ headers // Standard C++ headers

#include <fstream.b> ginclude <fstream h>
#include <string.h> #include <string h>
{/ Header for CORBA HelloWorld object
I/ Header for CORBA HelloWaorld object. Sniode atshipeshis.
#include <helloTypes hh>]
/f List of error messages. // Header for Test Case object.
extern char *msgs{l #include “testcase.hh™
a e
// Simple macro to check for exceptions and valid pointers. // List of error messages. o
#define check_ev_and _ptriev, pir, errcode) \ extern char *msgs{].
/I First, check for exception.
if { ev.exceptioni)) { i // Simple macro to check for exceptions and valid pointers.
#define check_ev_and ptriev, ptr, errcode)
)
cemr << msgs{errcode] << ~ Exception returned.” << endi;\ | // Check for exception and valid puinte {3)
. } 1 L J
e @ if(te.print_exceptionfev) i teds_nillptr)]
/I Next, check for valid pointer. rﬂf‘;“'ﬂ (TestEnvi “‘::'h] W)
BstE user_code + del
if (CORBA:is_nillptr) }{ .
cerr << msgs|errcode] << “Pointer is null.” << endl;\ /I Declaration of HelloWorldTest class.
return errcode; \ J ;:Iass HelluWur!d':asl : public TestCase o
: 6 (2
|nt®1 ' public: =
mainlint arge, char *argv(]) ——@ HelloWaorldTest();
{ ~HelloWorldTest{); @
CORBA:Environmbatov: TestEnvironment:Result run_bodyl);
Lenvi s 3 { =
// Open a file which contains the object reference string for private: L
: : CORBA::0RB_ptr orb;
// the Hello interface. Read the string.
HelloWorld_ptr hello;
ifstream f{"hello_instance"}; } char *message; f @
i1 5 ;
cerr << "Could not open \"hello_instance\” file.” << endl; O DECLARE_TESTCASE FACTORY(HelloWorldTest)
return 1; [/ Definition of HelloWorldTest constructor.
1/ The following pieces of the test are considered set up.
} HelloWoarldTest::HelloWorldTest()
{
char soref[1024]; CORBA::Environment ev;
:{:rﬁs ;’ {' 0 // Get the abject reference string for
cerr << "Could not read the stringified object reference” I/ the Hall!:frilterface from the test ‘,,"'"tn"']‘a“" o
<< “from the \"hello_instance\" file,” string soref = te.get_object_string(“hello_instance”);
<< endl:‘ /! Initialize the CORBA environment, get pointer to ORB
return 2; orb = CORBA::0RB_init(te.argc, te.argy, CORBA:HPORBid, ev);
/l Initialize the CORBA environement, get pointer to the ORB. check_ev and_ptriev. orti, 31
CORBA:ORB_var orb = CORBA:ORB_initlargc, argy, g;‘;g;?;:i':i:f‘;:r':ﬁ:‘a““n:‘imﬂ Miphac et encs.
CORBA:HPORBid, ev) G -
heck o . orb, 3% = orb->string_to_object(soref.c_str{), ev);
cuisokc_ey. and_purisv orb, 3) check_ev_and_ptriev, hello_objref, 4);
|/ Convert object reference string to object reference. {{ Narrow the COBRA:: Object object reference to a HelloWorld one.
CORBA:Object_var hello_objref hello = HelloWorld:: _narrowlhello_ohjref, ev);
= arb->string to_object{soref, ev); check_ev and ptriev, hello, 5);
check_ev_and_ptriev, hello_obijref, 4); COBRA:: release(hello_objref);
- -
- -
™ -
CORBA:string_free(message); CORBA::string_free(message);
CORBA:release(hello); CORBA::release(hello);
CORBA:releaselhello_objref); CORBA:release{orh);
CORBA::release{orb);)
}
(a) (b

Fig. 3. (a) Test code before being ported to the object testing framework. (h) The same test after being ported.

to participate in standards organizations such as OMG and 2, K. Beck and W. Cunningham, “A Laboratory for Teaching Ohject-
X/Open to follow the work that is being done in the area of Oriented Thinking,” SIGPLAN Notices, Vol. 24, no. 10, October
testing. To date, we have evaluated and provided feedback 1989.
to the X/Open Consortium and have a representative moni- HE-UX 8.* and 10.0 for HP 3000 Serles 700 and 800 computers are X/Dpen Gampany UNIX 93
toring the activity at OMG. branded products

UNIX 15 a registered trademark in the United States and other countries, licensed exclusively
References through A/Open Company Limited
1. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson, X/Open 15 a registered trademark and the X device is a trademark of X/Opan Company Limited
Object-Opiented Modeling and Design, Prentice Hall, 1091, in the UK and other cauntries

(pen Suftware Foundation is a trademark of the Open Software Foundation in the .S, and
other countries

December 1995 Hewlett-Packard Jourmal 81
© Copr. 1949-1998 Hewlett-Packard Co.

A New, Lightweight Fetal Telemetry

System

The HP Series 50 T fetal telemetry system combines both external and
internal monitoring of the fetus in a small, lightweight transmitter that is
easy and comfartable for the patient to carry. It is useful for monitoring in
labor, monitaring of high-risk patients, monitoring in transit, antepartum

nonstress testing, and monitoring in the bath.

by Andreas Boos, Michelle Houghton Jagger, Giinter W. Paret, and Jiirgen W. Hausmann

Electronic fetal monitoring records fetal heart rate, uterine
activity, and fetal movements onto a trace, allowing obstetri-
cal clinicians to better assess fetal well-being and the ade-
quacy of fetal oxygenation.

In today's high-tech hospital environment it is easy to over-
look the fact that the majority of pregnant women who are
admitted to the hospital to give birth are not sick, but are
experiencing a natural event, the delivery of their babies,
With this in mind, many hospitals worldwide are anxious to
create a more friendly environment in their labor and deliv-
ery departments by reducing the amount of technology at
the patient’s bedside. This reduction in technology can pres-
ent a problem. Although patients want a more natural envi-
ronment, the nursing staff still wants to be able to oversee
fetal well-being during labor and delivery. There has to be a
balance between these two goals, and monitoring of the
fetus via telemetry offers a solution.

Telemetry monitoring of the fetus involves connecting a
patient to a radio frequency transmitter, which she is able to
carry (Fig. 1). This transmits the fetal information via UHF
radio frequencies to a receiver connected to a fetal monitor.
The monitor records the information as if the patient were

Fig. 1. The HP Series 50 T fetal telemetry svstem transmitter is
lightweight and comfortable to wear

82 December 1995 Hewlett-Packard Journal

connected directly to it. The fetal monitor and receiver can
be placed in a central location for the nursing staff to view
the fetal information, and need not be in the patient’s room,
thereby reducing the perception of technology at her bedside.

Fetal monitoring with telemetry has been available for the
past ten years. Until now, these telemetry systems only al-
lowed either external monitoring of the fetus such as ultra-
sound detection of the fetal heart rate, or internal methods
such as direct monitoring of the fetal heart rate by means of
a scalp electrode. Very few systems offered both of these
methods, and those that did were large and heavy for the
patient to carry, and had a very low battery life.

The Hewlett-Packard Series 50 T fetal telemetry system

(HP M1310A) is a new lightweight, space-saving telemetry
system. It combines both external and internal monitoring
of the fetus in a small, lightweight transmitter that is easy
and comfortable for the patient to carry. Because the patient
is not connected directly to the fetal monitor, a number of
additional clinical applications can be addressed, including
monitoring in labor, monitoring of high-risk patients, moni-
toring in transit, antepartum nonstress testing, and monitor-
ing in the bath.

Monitoring in Labor. The technology used in the HP Series

50 T ensures that the product can be used in the very earli-
est stages of labor, before the membranes have ruptured,
right up to and during the second stage of labor when the
baby is being delivered. This means that the patient is free
to move around from the onset of labor, while a reliable,
continuous fetal trace is available for overseeing fetal well-
being. Allowing the patient to walk around can be beneficial
for the patient, especially when the delivery is long, and can
even help reduce the pain of her contractions.

Monitoring of High-Risk Patients. When a high-risk patient has
been admitted to the hospital for observation before the birth
of her baby, it is often desirable to provide continuous moni-
toring of the baby to ensure its well-being. However, this is
not normally practical because it would mean connecting
the patient to a fetal monitor and confining her to bed for
long periods of time. Using the HP Series 50 T fetal teleme-
try system, the patient is free to walk around, and the nurs-
ing staff has a constant overview of fetal well-being

© Copr. 1949-1998 Hewlett-Packard Co.

Monitoring in Transit. Besides being compatible with all HP
fetal monitors produced since 1982, the HP Series 50 T fetal
telemetry system can use the standard transducers of the
HP Series 50 family of fetal monitors. This is useful, for ex-
ample, if an emergency occurs and the patieni needs to be
transported to the operating room for a Caesarean section.
In certain countries it is a legal requirement to provide con-
tinuous monitoring of the fetus from the time the patient
leaves her room to the delivery of the baby. By disconnect-
ing the transducers from the fetal monitor and connecting
them to the transmitter of the HP Series 50 T, continuous,
uninterrupted monitoring of the fetus is ensured.

Antepartum Nonstress Testing. Nonsiress testing is performed
during the patient’s regular visit to the clinic or hospital dur-
ing her pregnancy. By allowing the patient to ambulate and
record the fetal heart rate via ultrasound, nonsiress testing
can be performed without having to confine the patient to
bed, thereby allowing her freedom of movement and the
ability to socialize with the other patients.

Monitoring in the Bath. It is becoming more common for a
patient to be given a bath during labor to help reduce the
pain of her contractions. Before the introduction of the HP
Series 50 T fetal telemetry system, there was no safe way of
providing a continuous overview of fetal well-being while
the patient relaxed in the bath. This meant vital information
on the fetus could be missed. By using the HP Series 50 T in
conjunction with the standard watertight “blue” ultrasound
and TOCOT transducers from the HP Series 50 family of
fetal monitors, the nursing staff can be assured of a continu-
ous recording of fetal information even when the patient
decides to take a hath.

Fetal Monitoring Measuring Methods and Principles
The parameters measured in fetal monitoring applications
are fetal heart rate, fetal movements, and maternal labor
activity.

The fetal heart rate is continuously monitored on a beat-to-
beat basis and recorded together with the maternal uterine
activity and optionally the fetal movements on a fetal trace
recorder.

There are two established methods to measure the fetal
heart rate. One is to process the fetal ECG by using a fetal
scalp elecirode and measuring the time distance between
two QRS complexes. This method is invasive and ean only
be used if the membranes have ruptured and the fetal scalp
is accessible to attach the scalp ECG electrode. This is true
only for the last few hours before delivery.

The second method of measuring fetal heart rate is to calcu-
late the heart rate from a Doppler-shifted ultrasound signal
by measuring the time distance between two signal com-
plexes resulting from fetal heart motion. A 1-MHz pulsed
ultrasound signal is emitted towards the fetal heart and the
ultrasound waves are Doppler shifted by the moving parts of
the heart and reflected. The reflected and Doppler-shifted
signal is received again and demodulated by a 1-MHz clock

t T0C0 15 an abbrewation for tecograph or tocodynamometer, an instrumant for measuring
and recording the expulsive force of Wtering contractions in labor. 1t is usually written in
uppercase letters like the abbreviations for the other fetal measuring methods: US = ultra-
sound, ECG = electrocardiogram, IUP = intrauterine pressure.

signal. After filtering and amplification (by approximately 80
to 106 dB), only the low-frequency Doppler-shified signals in
the range of 100 to 500 Hz remain. These signals are fed to a
loudspeaker to give the user audible feedback about the
correct transducer positioning. Compared to the relatively
simple algorithms needed for the heari-rate calculation from
the ECG signal (the ECG signal is a well-defined, easy-to-
recognize signal) the algorithm for the ultrasound signal is
much more complex. The ultrasound Doppler signals con-
tain a lot of different pulses as a result of reflections from
different moving paris of the heart during one heart period.
These pulses change their shapes and amplitudes depending
on the angle between the ultrasound beam and the heart.
Therefore, a simple peak-searching algorithm cannot accu-
rately calculate the fetal heart rate from the ultrasound Dop-
pler signal on a beat-to-beat basis, so a more complex algo-
rithm using the autocorrelation function of the ultrasound
signal is used. The autocorrelation function determines the
similarity between all the pulses of two consecutive heart-
beats. The distance between two points of highest similarity
is then used to caleulate the actual fetal heart rate. This
method reaches a heart rate trace quality comparable to that
of a trace derived from an ECG signal (the ECG signal is
recognized as the “gold” standard for fetal heart rate moni-
toring). The advantage of the ultrasound Doppler method is
that it is a noninvasive method and can be used from the
twentieth week of gestation up to delivery and no direct
access to the fetus is necessary.

Fetal movements can also be detected from the ultrasound
Doppler signal. The fetal movement signals differ from the
Doppler heart rate signal in that they have a much higher
amplitude and a lower frequency. The higher amplitude is
because of the bigger size of the moving areas (e.g., the fetal
arms and legs) and the lower frequency is because of the
lower velocity of the fetal movements compared with those
of the fetal heart.

For measuring maternal labor activity (uterine activity),
there are two established methods, The IUP (intrauterine
pressure) method measures, as the name implies, the abso-
lute pressure in the uterus by inserting a pressure trans-
ducer into the uterine cavity. This can be a precalibrated
pressure sensor mounted in a catheter tip or a saline-solu-
tion-filled catheter with a pressure sensor connected out-
side. This method is invasive to the mother and can only be
used if the membranes are ruptured. The second method is
an external noninvasive method (external TOCO) which
measures the relative hardness of the abdominal wall and
the underlying uterine muscle. This method provides rela-
tive values and not absolute pressures like the IUP catheter.
The pressure sensor in both transducers is based on a resis-
tive bridge with four pressure-sensitive elements. The bridge
gives a high pressure sensitivity but needs differential ex-
citation and a differential signal amplifier.

Wireless Data Transmission

There are many possibilities for wireless data fransmission
from one location to another. Each method has its individual
advantages and disadvantages when analyzed for a specific
application. We looked at infrared and radio frequency
transmission and evaluated their advantages and disadvan-
tages for the fetal telemetry application.

December 19096 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

Infrared light is widely used as a data transmission method
because of its simplicity and the fact that no regulatory
approvals are necessary. However, for the fetal telemetry
application, its use is not possible because the transmitting
range is very limited and secure data transmission is only
possible on a line-of-sight basis. This means that the trans-
mitier cannot be covered by clothes or a bed cover and the
transmission range is limited to one room. These conditions
cannot be guaranteed during labor and delivery because the
patient can walk around and change her position freely. An-
other disadvantage from the technical standpoint is the rela-
tively high power consumption of an infrared system when
used in a continuous transmission mode, which is necessary
for continuous monitoring.

Radio frequency transmission, another very widespread
transmission method, overcomes most of the problems of
infrared transmission when it is designed carefully and an
appropriate frequency range is chosen. Frequencies below
100 MHz will result in large antenna dimensions (the wave-
length is 3 meters at 100 MHz) if high efficiency is needed
(this is a strong requirement because of the battery-operated
transmitter). On the other hand, frequencies above 1 GHz
result in a wavelength (<30 em) at which antennas become
more and more directional, signal generation requires more
space and power, and it takes special processes to build
printed circuit boards that can handle such high frequencies.

A major disadvantage of radio frequency systems is that
individual approval for each country is required and many
different requirements and boundaries are given by all the
national laws. These requirements must be fulfilled to obtain
country approvals and should be covered by one design to
avoid many special product options. Thus, the resulting de-
sign must meet the most stringent specification of all the
different national standards for each requirement. A positive
aspect for Europe is the upcoming harmonization within the
European Community (EC) where one standard will be used
for all European community members. At the moment, Ger-
many, France, and Italy have converted this standard into
national law (others will follow—a limit of two years is
given for all countries to convert this standard into national
law). This means that for these countries only one standard
is valid.

The decision was made to use radio frequency data trans-
mission.

The following items and specifications have been set up for
a telemetry design to meet all the requirements for world-
wide use:

¢ The frequency must be configurable in the range of 405 MHz
to 512 MHz.

* The radio frequency (RF) power must be adjustable in the
range of 1 mW to <10 mW,

* The spurious emissions must be < — 36 dBm for frequencies
<1 GHzand < —30 dBm for frequencies >1 GHz world-
wide, and must be < —54 dBm in Europe in the frequency
ranges 42 to 68 MHz, 87 to 118 MHz, 162 to 230 MHz, and
470 to 862 MHz.

* The RF bandwidth must be < 25 kHz worldwide and should
be <12.5 kHz for Japan (25 kHz would be acceptable but is
not preferred)

* The transmifter must be capable of sending a special identi-
fication code after power-up for Japan.

84 December

» The RF stability over temperature (— 10 to +55°C) and hu-

midity (5 to 95% R.H.) must be better than +3.5 kHz for the
U.S.A. and better than £ 2.5 klz for Europe and Asia.

However, to design and build a radio frequency transmitter
that meets all the above specifications requires extensive
engineering manpower, testing, and design iterations. There-
fore, we decided to reuse an existing RF transmitter and
receiver for our fetal telemetry application.

After examining all possibilities, we found a good candidate
in the RF parts of the HP M1400 adult ECG telemetry sys-
tem. The RF parts of this felemetry system had all the ap-
provals needed, and its highly modular design (RF parts
were strictly separated from the application-specific ele-
ments) allowed us to pick up only those parts needed for
our fetal application. The only modification needed was a
small adaptation of the receiver's digital control software
(which provides automatic frequency control—AFC—and
the bitstream recovery of the digital protocol used to trans-
fer the ECG waves). This software had to be modified to
execute only the AFC function when used for the fetal appli-
cation and not the bitstream recovery. It was even possible
1o modify the software so that it automatically switches to
the correct application so that the same software can be
used for the adult telemetry system and the Series 50 T. By
reusing the adult RF parts, we dramatically reduced the en-
gineering effort and only had to concentrate on the band-
width specification (which is mainly determined by the mod-
ulation) and the special Japanese ID code.

The reused parts are the voltage-controlled crystal oscillator
(VCXO) in the transmitter and as the local oscillator on the
receiver side, the line amplifier as a receiver RF preampli-
fier, the receiver module, and all antenna parts (antennas,
combiners, splitters, power tees),

Data Transmission and RF Modulation

To get low adjacent channel emission, the — 6-dB RF band-
width should not be wider than +8 kHz for a 25-kHz chan-
nel spacing. This gives a margin of +4 kHz for frequency
drifts caused by temperature, humidity, and aging.

The adult ECG telemetry system uses digital Gaussian mini-
mum shift keying frequency modulation (GMSK-FM) with a
9600-bit/s data rate. The resulting — 6-dB RF bandwidth is
approximately +8 kHz.

Because the processing power needed to calculate the heart
rate from the ultrasound Doppler signal is not available in
the telemetry transmitter, the ultrasound Doppler signal is
transmitted to a receiver, which feeds it to a connected fetal
monitor, which does all the signal processing. The telemetry
system only acts as a wireless analog front end for the fetal
monitor. The HP Series 50 fetal monitors sample the signals
at a 1.6-kHz sample rate with 12-bit resolution. To transmit
the ultrasound signal as a digital bitstream, the required data
rate is 12 bits x 1600 samples/s = 19200 bits/s for the ultra-
sound signal alone. Together with the uterine activity signal
and the necessary framing and checksum overhead a mini-
mum data rate of 22 kbits/s is required. This data rate does
not include any redundancy needed for error correction.

To fit into the 25-kHz channel bandwidth, this data rate must
be compressed to 9600 bits/s. This requires highly sophisti-
cated data compression circuitry. The data stream resulting

995 Hewlett-Packard Journg
105 Hewlert-Packard Journg o0 1949.1998 Hewlett-Packard Co.

from a sampled ultrasound Doppler signal does not contain
as much redundancy as the ECG, which does not change
rapidly except for the short duration of the ECG QRS pulse.
To fit into a 12.5-kHz channel spacing an additional data
reduction down to 4800 bits per second is needed.

We decided to transmit the heart rate signal (ultrasound
Doppler or ECG} with standard direct FM modulation. The
uterine activity signal together with some status signals—
battery status, nurse call function, serial number, and trans-
ducer modes (ultrasound or ECG and external TOCO or
[UP)—are transmitted as a digital bitstream. This informa-
tion is transmitted four times per second. Every data block
is secured with an 8-bit checksum (CRC). A data block al-
ways starts with the serial number of the transmitter. This
serial number,which is the same for the transmitter and the
corresponding receiver, is used by the receiver to synchro-
nize itself with the datastream and to verify that the data is
coming from its own transmitter. This ensures that signals
from two different patients using the same RF frequency are
not mixed. The overall data rate for the digital transmitted
signals is 200 bits/s. This data stream is transmitted as a
frequency shift keying (FSK) signal with a 1600-Hz signal for
a logic 0 and a 2400-Hz signal for a logic 1. This signal,
added to the heart rate signal, frequency modulates the RF
carrier. The amplitude of the composite signal determines
the required RF bandwidth and can easily be adapted to
meet the 12.5-kHz channel spacing requirements.

RF Bandwidth

The resulting RF bandwidth can be estimated as follows.
The modulation signal is composed of two components: (1)
the ultrasound Doppler signal or the ECG signal and (2) the
FSK subcarrier signal. The modulation spectrum is illus-
trated in Fig. 2.

The RF FM modulator has a sensitivity of 1.6 kHz/V, which is
the specification of the reused RF oscillator from the adult
ECG telemetry system. The ultrasound signal has a band-
width BWjg = 500 Hz and an amplitude of 1.875 V,,,, which
produces an RF carrier shift of 1.6 x 1.875 = 3.0 kHz. The
corresponding modulation index is f} = frequency

shift + modulating frequency = 3.0 kHz/500 Hz = 6. The ECG
signal has a bandwidth BWj; = 100 Hz and a carrier shift of

3 kHz, so the modulation index is j = 3.0 kHz/100 Hz = 30.

The FSK signal has as its highest frequency a 2.4-kHz sinu-
soidal carrier. Its amplitude produces an RF carrier shift of
1.5 kHz. The modulation index is j = 1.5 kH#/2.4 kHz =
0.625.

ECG
Ultrasound
z
£
[V
0 100 500 1600 2400

Fig. 2. Modulation signal spectrum of the HP Series 50 T fetal
telemetry systen transmitter.

For a modulation index less than one the RF bandwidth is
approximately BW,; = ZBWj. Only the Bessel functions of
orders () and 1 have significant values (>0.01), so they repre-
sent 999% of the RF energy, or in other words, outside this
bandwidth the signal is 20 dB down from the maximum at
center frequency. Thus, the —20-dB RF bandwidth of the
FSK carrier is 2 x 2.4 kHz = 4.8 kHz. For a bandwidth where
the signal is 40 dB down (99.99% of the RF energy is within
this bandwidth) the Bessel function of order 2 is also of in-
terest and the —4(-dB RF bandwidth of the FSK carrier is
4x2.4 kHz = 9.6 kHz.

For a modulation index greater than one, the RF bandwidth
is approximately BW; = 2(f+1)BW,; for a bandwidth where
the signal is 20 dB down. For a bandwidth where the signal
is 40 dB down this bandwidth doubles again: BW =
4(B+1)BWys.

With a modulation index of 6, the ultrasound signal pro-
duces an RF bandwidth of BW¢ (—20-dB) = 2(6+1)500 Hz =
14 x 500 Hz = 7 kHz or BW,y (—40-dB) = 4(6+1)500 Hz =
28 % 500 Hz = 14 kHz.

With a modulation index of 30, the ECG signal has an RF
bandwidth of BW { — 20-dB) = 2(30+1)100 Hz = 6.2 kHz or
BW,i (—40-dB) = 4(30+1)100 Hz = 12.4 kHz.

Thus, the overall RF bandwidth is mainly determined by the
ultrasound signal or the ECG signal and not by the FSK

signal.

The amplitude ratio between the heart rate signal and the
FSK signal was chosen so that as the field strength at the
receiver input goes down, the signal-to-noise ratio of the
FSK signal decreases before the heart rate signal is affected.
The receiver detects bit errors in the digital data stream and
suppresses the heart rate output signals to the fetal monitor
when errors oceur. Thus, the fetal monitor always shows
either the correct heart rate values or no value, but never
displays wrong values, which may lead to a misdiagnosis.

Telemetry Transmitter
Fig. 3 shows the components of the HP Series 50 T fetal
telemetry system.

A high priority for the felemetry system design was to sup-
port the same transducers as used by the HP Series 50 fetal
monitors. Customers can use the transducers they normally
use with their fetal monitors and can switch between stan-
dard monitoring and telemetry monitoring simply by replug-
ging the transducer connectors from one device to the other.
Repositioning and reapplying the transducers on the patient
are not necessary and the switch can be performed in a few
seconds. This compatibility was no problem with the ultra-
sound and uterine activity transducers, but the fetal monitor
ECG transducer required more detailed investigation to
design circuitry to handle this transducer in the telemetry
fransmitter.

The HP M1357A fetal ECG transducer is an active fransducer
in which the complete ECG preamplifier and its floating
power supply are incorporated in the transducer legplate.
Since the telemetry transmitter is battery powered, this
floating, highly isolated preamplifier is overdesigned for

December 1905 Hewlett-Packard Joumal 85

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3. Transmitter, transducers, and receiver of the HP Series 50 T
fetal telemetry system.

telemetry use. However, it is mandatory for use on a mains-
powered fetal monitor, since patient safety requires all
transducers that have direct contact with the patient via
electrical conducting electrodes to be floating.

The M1357A transducer requires a 10V peak-to-peak power
supply signal with a frequency between 100 and 250 kHz.
The ECG signal is transferred on the same wires by power
load modulation, which means that the transducer varies its
load on the driving circuit with the amplitude of the ECG
signal. A circuit had to be designed that is capable of driving
the HP M1357A transducer with a 10V peak-to-peak signal at
250 kHz, sensing the load current, and operating from a 5V
supply. A bridge driving circuit built with digital 74AC14
inverters running at 250 kHz was found to be capable of
delivering the required drive signal with enough power to
supply the transducer. The load current is sensed by a 5-ohm
resistor in the ground connection of the 74AC14 drivers.

Fig. 4 shows the ECG transducer driver circuit,

A major consideration when designing a telemetry system is
the power consumption of the transmitter. It runs from bai-
teries and therefore a goal is to make the operating time as
long as possible with one set of batteries. The low-power
design of the HP Series 50 T transmitter extends the operat-
ing time to more than 40 hours of continuous operating with
ultrasound and external TOCO transducers connected. The
power source is three AA alkaline cells. This is two to three
times longer than competitive fetal telemetry systems. When
used with NiCd batteries, the operating time is comparable
with competitive systems, but the weight of the HP Series
50T transmitter is only half that of the lightest competitive
transmitter.

In addition io weight and operating time, another major as-
pect of telemetry system design is transmitter size. To get
the best use of the available volume, the HP Series 50 T
transmitter uses double-sided surface mount technology on
the printed circuit boards. This reduces the board space by
40 to 50% compared to single-sided technology and makes
the HP Series 50 T transmitter the smallest and lightest of all
competitive fetal telemetry transmitters,

86 December 1995 Hewlett-Packard Journal

Fig. 5 is a block diagram showing all major functions of the
transmitter. A microconiroller is the heart of the transmitter.
This seemed to be the best solution, considering all of the
required features such as Japanese ID code transmission
after power-up, nurse call function, serial number handling,
analog hardware control depending upon the type of trans-
ducer (ultrasound or fetal ECG, TOCO or IUP), battery status,
and CRC calculation for every data frame. The microcontrol-
ler gives more flexibility than an ASIC and the development
time was shorter. With an appropriate controller it is pos-
sible (0 execute the fetal movement detection algorithm in
the transmitter, thereby saving transmission capacity of the
RF channel by transmitting only the movement detection bit
instead of the fetal movement Doppler signal.

Microcontroller Features

We chose the Mitsubishi M37702-M2 16-bit controller. This
controller has true 16-bit processing power and many inte-
grated peripheral functions, and is low in cost, It has 512
bytes of internal RAM and 16K bytes of ROM. There are
eight independent 16-bit timers. Five of these have their in-
puts and outputs accessible on pins, can individually select
the input clock from a predivider, and can run in several
modes including timer, counter, pulse width modulator, one-
shot, free-running, or friggered from input pins or software.
The controller also has an independent watchdog timer,

250 kHz

@

vy

i
®

i3

vy
vy

v
v

U174AC14 U2 74AC14

A\ 4 y
To HP M1357A ECG Transducer

U1 and U2 GND Connected to Driver GND.

Driver GND
(o]
L T —@ P ECG Signal
~ o~
\4 é’ v

Fig. 4. HP M1357A ECG transduecer driver.

© Copr. 1949-1998 Hewlett-Packard Co.

Ultrasound
Gating

Ultrasound

Driver Clk 1 MHz

24cmito 168
cm Depth

Heart Rate

Connector
Ultrasound

Receiver
Dynamic

s Compression
0 to 40 dB

Fetal
Maovement
Detector

FSK
Generator

L=16kHz
H=24kHz
A3

16 kHz '

TOCO 1000 Vp-p Battery | Nurse
Driver Statis Call
Connector Square Wave |
Marker

TOCO
Receiver

TOCO ADC

2Hz
Low-Pass

12 Bits

eight channels of 8-bit analog-to-digital converters, and two
independent synchronous or asynchronous serial communi-
cation channels. The package is a plastic quad flatpack with
80 pins. The rich set of integrated peripherals on the control-
ler chip allowed us to save a lot of hardware that would
otherwise be needed outside the controller.

The controller is available with 8-MHz, 16-MHz, or 25-MHz
input clock speed. The processing power needed in the HP
Series 50 T transmitter allows a reduction of the clock fre-
quency to 2 MHz. When running with the 2-MHz input clock
and all peripheral functions active, the M37702 controller
consumes only 1.5 mA with a 5V power supply.

Three timers (one in timer mode, two in one-shot mode) are
used to produce the gating signals for the pulsed ulirasound
Doppler channel. Fig. 6 shows the resulting gating signals.
With a sound velocity of 1500 m/s in human tissue, the re-
sulting ultrasound sensitivity over depth can be caleulated.
The minimum depth is determined by the delay time be-
tween the end of the ultrasound transmit pulse and the start
of the receive gate pulse, which is ty in Fig. 6. With t; = 52
us, dyin = (1500 x 109 x 32 x 10~ 9)/2 = 24 mm. The maxi-
mum depth is determined by the time between the start of
the transmit gate and the end of the receive gate, which is 12
+ 1y + Ly = 224 ps. The depth is then dyay = (1500 x 107

%224 % 107 9)/2 = 168 mm. The factor of 2 in these calcula-
tions results from the fact that the ultrasound wave propa-
gates first towards the reflecting object located at depth d
and then back again to the transducer.

© Copr. 1949-1998 Hewlett-Packard Co.

Impedance

Matching

Japan-1D
2MHz, 1 MHz
500 kHz, 250 kHz
EEPROM s
upply
+8V, +2.5V,
+85V,-35V

—

Service

Interface

Fig. 5. HP Series 50 T fetal telemetry
system transmitter block diagram.

Two timers are used to produce clock signals needed in the
ECG amplifier and the TOCO transducer excitation circuitry.
One timer is used to produce the 1600/2400-Hz FSK signal.
One timer in count mode, together with an external first-
order sigma-delta modulator (one comparator and one flip-
flop), forms a 12-bit analog-to-digital converter for the uter-
ine activity signal.

Timer 1
One-Shot

One-Shot S

Mode ‘
v v v
Frame Signal Transmit Receive
Gate Pulse Gate Pulse
1 Vi |
[%
Frame Signal _I | I
ty 1 1

Transmit Gate | I t .
e
= T S

Receive Gate

Framing Rate f,=3.2kHz
ty=t3=32ps

p=1g=96ps

Fig. 6. Ultrasourid Doppler gating.

December 1996 Hewlett-Packard Journal - 87

One serial communication channel in synchronous mode is
used to control a serial EEPROM to store the serial number,
some calibration constants, the country option codes, and
the power-up ID code for Japan. The second serial commu-
nication port is used as a production and service port to
read ouf internal signals, to program the EEPROM, and to
send messages during power-up if self-test failures are
detected.

The A-to-D converters are used to monitor the battery volt-
age. to measure the ultrasound Doppler or ECG signal am-
plitude to control the signal gain, to measure the fetal move-
ment signal amplitude, and to measure some test voltages
during the power-up self-tests.

Uterine Activity Measurement Circuitry

The uterine activity transducers are built with four pressure-
sensitive resistors in a bridge configuration. This bridge con-
figuration requires a differential excitation voltage and a
differential sensing amplifier. The bridge resistors are in the
range of 300 to 1000 ohms, The requirement of compatibility
with standard fetal monitor transducers did not allow the
use of a new transducer with a higher impedance to reduce
the drive power. The IUP transducers are active and need a
drive voltage of at least 5Vdc or 5Vac at > 1 kHz. The result-
ing power consumption for the 300-ohm type is then P =
VZ/R = 25/300 = 83.3 mW.

A circuit can be designed that reduces this power level to
45 mW. The disadvantage is a sensitivity reduction by 6 dB,

that is, the sensitivity is halved, This can be compensated by
doubling the gain of the sensing amplifier. A 5Vac excitation
at 1.6 kHz (half the repetition frequency of the pulsed ultra-
sound Doppler to avoid interference between the TOCO
drive circuitry and the ultrasound demodulator) was chosen
instead of a simpler de drive circuit because low-power op-
erational amplifiers running on 5V or less with high de preci-
sion have not been available for reasonable prices. The labor
activity signal, which is a signal with a bandwidth from de to
<2 Hz, is obtained by a synchronous demodulator running
at 1.6 kHz and a low-pass filter. By using ac excitation, the
sense amplifier can be built with simple and inexpensive
TLOG2A amplifiers.

Fig. 7 shows the implementation of this circuitry. The TOCO
excitation applies power (+5V and ground) for the first half
of a 1600-Hz square wave (50% duty cycle). During the sec-
ond half, the excitation drive is switched off. This halves the
power consumption of the TOCO transducer resistive bridge.
A differential amplifier senses the bridge signal, amplifies it,
and converts the differential signal into a single-ended sig-
nal. The input capacitors settle to the bridge output voltage
during the active drive phase of the excitation driver and
discharge to a middle value during the nondriving phase
through the bridge resistors, In this way, the sensing ampli-
fier input picks up a 1600-Hz signal with half the amplitude
compared to a full-bridge excitation driver. The signals are
illustrated in Fig. 5.

TOCO Sense Amplifier
TOCO Output
Signal
TOCO b
Transducer
— WA MA— aw
—
TOCO 3.2-kHz
Drive Clock

TOCO Driver

v

88 December 1995 Hewlett-Packard Journal

Fig. 7. TOCO driver and sense
amplifier.

© Copr. 1949-1998 Hewlett-Packard Co.

On o On

{al

(b)

(e}

(d)

Fig. 8. TOCO signal waveforms. (a) Excitation signal. (b) Sense
amplifier differential input (low bridge differential signal).

(¢) Sense amplifier differential input (high bridge differential
signal). (d) Sense amplifier differential input with true bridge
excitation.

Power Supply

An essential part of a battery powered handheld device is
the power supply. The fetal telemetry transmitter is designed
to run with three AA-size alkaline batteries or rechargeable
NiCd accumulators. The new and more environmental
friendly NiMH accumulators are also supported.

The input voltage is from 2.5 to 4.8 volis. The power supply
must provide the following output voltages:

+0V. Main supply voltage for all digital and most analog
circuits

+2.5V. Virtual ground for 5V single-supply analog circuits
+8.5V. Supply for some operational amplifiers and the ultra-
sound receiver preamplifier

— 3.5V, Negative supply for a few operational amplifiers to
increase the signal dynamic range.

The power supply is a switched-mode type delivering a
stable (£ 1%) +5V output from the batteries. All other volt-
ages, which need only a few milliamperes, are built with
charge pumps or simple buffered voltage dividers. The
switched-mode power supply runs at 250 kHz in a pulse
width modulation mode. The 250-kHz switching frequency
has the advantage that only small inductors are needed. Part
of the power supply is also the main crystal-controlled clock
oscillator running at 4 MHz. All other clock signals are de-
rived from this master clock. The oscillator and the power
supply are designed to start with input voltages as low as
2.0V. The efficiency of the power supply varies between 70%
for low (2.5V) input voltages and 82% with a 4.5V input.

Fig. 9 is a diagram of the transmitter power supply.

© Copr. 1949-1998 Hewlett-Packard Co.

Japanese ID Code

Japanese radio frequency laws require that a special identifi-
cation code be transmitted every time the transmitter is
switched on. The code bitstream is modulated on a subcar-
rier with a speed of 1200 or 2400 bits/s or is direct FSK or
GMSK modulation of the radio frequency carrier signal at
1200, 2400, or 4800 bits/s for FSK and 2000, 4000, or S000
bits/s for GMSK modulation. The bit rate must be accurate
within a tolerance of £ 200 ppm. The code is compaosed of
(1) = 100 bits of alternating ones and zeros. (2) a 31-bit max-
imum-length pseudorandom noise code sequence, (3) 51 ID
code bits (provided by the regulatory agency, this code is
unique for every transmitter and contains information about
the device manufacturer and the product, and a unique se-
rial number that has nothing to do with the normal product
serial number), (4) a 12-bit checksum calculated from the 51
code bits by a special polynominal division.

In the HP Series 50 T transmitter, this code is stored in the
EEPROM during the production final test. During a pow-
er-up sequence, this code is read by the transmitter micro-
controller and transmitted as a 1200-bit/s FSK signal before
starting normal transmission. The code in the EEPROM is
also secured by a checksum. If this checksum is corrupted,
the transmitter will not start normal transmission as re-
quired by the regulatory agency. This feature is only active
for Japanese options (also stored in the EEPROM) and is
ignored for all other countries.

Modulation Circuits

The modulation circuits have a twofold responsibility. One is
controlling the RF bandwidth with its amplitude and fre-
quency characteristics and thus maintaining conformity
with RF regulatory requirements. The other is making the
best use of the available RF bandwidth to get the best pos-
sible signal-to-noise ratio for the transmitted signals,

Fig. 10 shows the modulation circuits. The circuitry consists
of three subcircuits: a programmable-gain amplifier, a lim-
iter, and a low-pass FSK shaping filter.

The programmable-gain amplifier adjusts the heart rate sig-
nal amplitude to a value that corresponds to 60% of the max-
imum allowable RF bandwidth. The margin of 40% is to ac-
commodate the often rapidly changing signal amplitude,
especially for the ultrasound Doppler signal. The gain of the
amplifier is controlled by a regulator algorithm implemented
in the M37702 controller. The current signal amplitude is
measured with one of the integrated A-to-D converter chan-
nels, and from this value an appropriate gain is calculated
for the programmable-gain amplifier. This amplifier consists
of an operational amplifier with an 8-bit multiplying D-to-A
converter in its feedback path. So as not to change the gain
too much during one heart period (which could lead to a
wrong heart rate calculation for the affected beat), the new
gain value is adjusted linearly over two seconds. Therefore,
the 400 margin is provided so that the amplifier does not
overdrive the signal too often,

The limiter circuit following the programmable-gain ampli-
fier clips the signal to well-defined limits in the case of a

December 1995 Hewlett-Packard Journal - 89

§ kHz J. o425V
IDI.. Battery Eisa o g
— 4MHz == > —
< ;; AA Cell

—AMA— &
&
]
4_‘1
3o
o

=i

v

&
<MW

Fig. 9, Transmitter power supply.

suddenly increasing input signal to the programmable-gain the composite signal (FSK and heart rate signal) by an analog
amplifier. The low-pass filter, which also acts as a bandpass bandpass filter with 1400-Hz and 2600-Hz corner frequencies.

filter and a summing amplifier for the square wave FSK sig- The recovered sinusoidal FSK signal is converted into a

nal, removes the overtones resulting from the clipping and square wave by a comparator. All subsequent recovery tasks
thereby ensures that the modulation has a well-defined RF are implemented in a Mitsubishi M37702-M2 microcontroller
bandwidth. (the same type as used in the transmitter).

Digital data recovery can be divided into two main tasks:
I"'SK signal demodulation (recovering the single bits from
the 1600/2400-Hz input signal) and synchronization with the

Telemetry Receiver
The recovery of the digital bitstream in the FSK signal is the
main task of the receiver. The FSK signal is extracted from

Programmable Gain Amplifier Limiter FSK Filter

Ultrasound Doppler or
ECG Input Signal

L

Gain +5V
Crontrol +85V

From
v +25V é

Peessesst Modulation

<HHE
<HlFH

$25V ey

Signal

2
b
A€ 1A

Fig. 10. Transmitter modulation circuits.

90 December 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

transmitted data frames. Fig. 11 shows the FSK signal de-
modulation scheme, which is completely implemented in the
microcontroller.

The pulse period measuring circuitry is composed of two
microcontroller timers. The first timer is configured as a
refriggerable 250-us one-shot and the second is configured
for pulse period measurement. The incoming FSK square
wave signal first triggers the one-shot, which suppresses
very short periods between two positive edges in the incom-
ing signal and triggers the pulse period measurement timer.
The timer generates an interrupt whenever a new pulse
period measurement is complete. For noise rejection, the
period values are low-pass filtered and all period values that
are outside the limits for a 1600-Hz or 2400-Hz input fre-
quency are rejected. This greatly improves the signal recov-
ery for noisy input signals.

The integrate and dump block sums all of the incoming
period values. After five milliseconds, which is one bit time,
the sum is reset by a dump signal delivered by the bit clock
recovery digital phase-locked loop. Before reset, a compara-
tor decides if the received bit was a logic one or a zero.

The phase-locked loop block recovers the bit clock from the
incoming data stream and generates the sample and dump
signals, which are phase synchronized with the incoming
data clock. Only input sequences consisting of one or two
equal bits (bit patterns 010, 101, 0110, and 1001) are used for
the phase tracking. The one- or two-bit detector produces a
reference signal whenever one of the four bit patterns is
detected in the incoming bitstream. The detector measures
the time befween changes in the incoming period signals
and checks to see if this time falls within the limits for one
or two bit times (4 to 6 ms for one bit and 9 to 11 ms for two
bits).

To extract the individual frames from the recovered bit-
stream, the structure shown Fig. 12 is used. The recovered
bits are shifted into a 50-bit-deep serial in, parallel out shift
register, which is the length of one frame. A complete frame
can be stored in this shift register and all of its bits analyzed
at once.

The header search algorithin looks for a valid header pattern
in bit positions 36 to 48. The header pattern is derived from

FSK
Measuring ‘
‘ Noise Integrate
utput
[
Dump Sample
Gated Phase-
Flag

4 ____One or Two Bits Detected

Noise
Rejection

Fig. 11. FSK signal recovery scheme implemetited in the HP Series
A0 T fetal telemetry system reeeiver,

One- or Two- |
Bit Detector

Bit Input dats 50-Bit Input Shift Register FYNCOWNIN T
NewBit —® >k Serial In, Parzllel Om
Flag

Header
Search

CRC
Calcolation

Bit Counter

Timeout
Comparator

Sync Lost

Fig. 12. Data stream recovery in the HP Series 50 T fetal telemetry
system receijver.

the system serial number (fransmitter and receiver have the
same serial number stored in their EEPROMS). Bits 49 and
50 are used to identify whether a frame has been scrambled
before transmission. The scrambling is done if the original
frame did not contain enough single or double bit patterns
for the clock recovery phase-locked loop. The scrambling is
done by inverting every second bit in the frame.

If a valid header (original or scrambled as indicated by the
scrambling identification bits) is found, the complete frame
is checked for a good CRC pattern by the CRC ealculation
block. If the CRC is OK, the complete frame is deassembled
into the original information and saved, the header search is
disabled for a complete frame, and a synchronization done
flag is set.

If the CRC is not OK for more than two frames, the header
search is enabled again and the synchronization lost flag is
set. The time since the last correct CRC is measured by a bit
counter. If more than 100 bits are received without a correct
checksum, the synchronization process is restarted.

Test Strategy

To ensure maximum reliability and safety, extensive sell-
tests are executed each time the transmitter and receiver
are powered up. Not only are the easy-to-test digital parts
checked, but also most of the analog hardware. This is done
by generating artificial signals, feeding them into the differ-
ent analog signal paths and measuring the response of each
path. All these tasks are performed by the onboard M37702
controllers in the transmitter and the receiver. The results
obtained are checked against limits. If any deviation is de-
tected, a clear failure message is sent out over the integrated
service port (RS-232 line) to assist in troubleshooting, and
the transmitter or receiver tries to restart. This ensures that
a faulty device does not go into normal operation and that
no incorrect data is transmitted or displayed by the attached
fetal monitor. Tests have shown that about 80% of all part
shorts or opens are detectable in the analog processing
parts. This is a very high number for power-up analog tests.
Achieving such a high error detect rate was only possible
through the use of a powerful microcontroller. The software

December 195 Hewlet-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

for self-test and service support is about 40% of the com-
plete software package.

Production testing of the transmitter and receiver is divided
into two parts: single component or board testing before
final assembly and final test of the completely assembled
device.

The loaded boards are tested by an automatic test systen.
Connection to the circuitry on a board is made by a needle
bed adapter which allows stimulation and measurement of
every net and every component on the board. The goal of
this test is to verify that all components are loaded correctly
and have the right values. If a component fails, the tester
reports the component, its location and the detected failure.
For surface mount boards, most failures are bad solder
joints and shorts between pins. To test complex parts like
RAMs, A-to-D converters, microprocessors, and microcon-
trollers, a library model of the part describing its behavior
on predefined stimuli is required. To check for good solder
joints, a model that toggles every pin of a component as
input or output is sufficient. Unfortunately, such a model
was not available for the M37702 controller. which is an
80-pin device in a quad flat package. To test this component,
we implemented special software in the controller itself,
which can be activated by the test system by pulling a pin to
+5V. This pin is checked by the software during the pow-
er-up cycle and the special test software is entered if the pin
is pulled high. The special software mirrors the input pins to
the output pins. The test system only has to apply a test pai-
tern to the inputs and then check for this pattern on the cor-
responding output nets,

The HP Series 50 T fetal telemetry system uses the same
final fest equipment as the Series 50 fetal monitors. Most of
the final specification tests are similar or identical to the
Series 50 fetal monitor tests. Therefore, we implemented a
production and service interface identical to those of the
fetal monitors. Only a few tests had to be added to cover the
telemetry-specific specifications. The test itself is highly
automated and controlled by a workstation computer. This
computer controls the measurement equipment, performs
the measurements, prints the results and stores the results
in a database. This allows continuous production process
control by calculating the Cpk value (a value that describes
the production process capabilities) for each test specifica-
tion to check the stability of all production processes. This
also makes it possible to detect test result drift resulting
from part changes before a test result completely fails the
specification. This process control procedure is supported
by ISO 9001 and EN 46001 certification rules, and it really
increases the product quality and stability, which the cus-
tomer can directly see.

Support Strategy

The HP Series 50 T fetal telemetry system can be used as a
standalone unit with a local antenna, or the receiver can be
connected fo an existing antenna system. When connected
to an antenna system the coverage area is increased. The
design of antenna systems and the connection of the Series
50 T to an antenna system is the responsibility of HP cus-
tomer engineers. For standalone systems the system is de-
signed to be installed by the customer (plug-and-play).

92 December 1895 Hewlett-Packard Journal

The accepiance tests needed to ensure proper functionality
are built into the firmware and can easily be performed by
the customer. In case of any problems the customer can call
the HP medical response center. The response center engi-
neer has the ability to give troubleshooting instruetions and
find the defective assembly.

All of the low-frequency assemblies can be replaced onsite
or on the repair bench. The RF assemblies (400 to 500 MHz)
can only be repaired on the repair bench because high-preci-
sion RF instruments are needed to do RF tronbleshooting.
Special service software is available to assist in trouble-
shooting. This software provides check data for transmission,
monitors field strength, and transfers serial numbers when
needed for repair,

The support features were implemented with minimal effort
because the support requirements were discussed with field
support personnel and their inputs were considered by R&D
in the design phase.

Error Detection and Display

The HP Series 50 T is designed to show any software mal-
function through the use of red LEDs in a certain sequence.
Hardware failures can be troubleshot by the response center
by telephone by following certain procedures and noting the
resulfs.

The processor boards of both the transmitter and the re-
ceiver run self-test routines after power-on to test hardware
functionality and software integrity. After power-on, the re-
ceiver switches on all LEDs for one second to test them, and
then returns to normal operation. If the power-on test fails,
all LEDs stay lit, indicating an error condition. After
power-on, the transmitter switches on a red LED hidden
behind the positive connection on the middle battery inside
the battery compartment. This LED stays on for three sec-
onds, and if everything works it is switched off. If there are
any errors this LED stays lit. All this visible information is
very helpful to the response center engineer checking for
system malfunections via telephone with the customer. A
defective section can be located in a very short time with
high accuracy, helping to ensure low cost of ownership for
the user.

Troubleshooting Tools

Troubleshooting tools are built into the system to provide an
internal error log, reporting on settings and failures. This log
can be accessed by software running on a standard PC via
an RS-232 connection to the receiver or transmitter. The
software log is detailed and includes an interpretation of
each error message, so no manual is required.

Should a fetal telemetry system need repair, the software to

test the internal functions and do simple troubleshooting is

built into the unit. On the repair bench, during onsite repair,

or during biomedical testing, it is only necessary to connect

the system to a standard PC and start the service sofiware

to have the built-in troubleshooting help available. The con- |
nection between the PC and the transmitter or receiver is a |
3-wire RS-232 interface. All transmitter and receiver re-

sponses can be tested. For hardware replacements, such as

the transmitter or receiver CPL board, the serial number of '

© Copr. 1949-1998 Hewlett-Packard Co.

the system needs to be written to the new board using the
service software. To avoid typing errors, we decided to read
the serial number from the nondefective unit (transmitter or
receiver) and transfer it to the new unit (receiver or trans-
mitter). In the case of intermittent failures the PC running
the service software can be connected to the system and the
PC can collect the error log overnight. The service sofiware
is designed to be totally seli-describing with all reported
messages interpreted, thereby avoiding error codes, which
require error tables to find the problem description. The
main screen of the service software shows the following
information:

* % % &

@ & F = M1310A Service Software Rev.A.01.0
* MAIN MENU

* ~ Program S/N to Transmitter

- ~ Program S/N to Receiver

¥ ~ Power On Selftest

o ~ Show last errors/warnings

y ~ Check Transmitter

i ~ Check Receiver
%

*
*
*
#*

E 2
£

* W W W ¥

*

~ Read SerNum and Revisions
~ Reset Serial Number

~ Read country information

~ EXIT

EE R EE EE R R R kR ko

@ W o % % B #

Select with <up>, <down>, <enter>
& ok Aokl K EokE E kokiki® % kokk & koK W Bk

*

The following represents the first screen to program the
serial number to the transmitter;

* k% % * MI1310A Service Software Rev.A.01.00 * * # # *
* Program S/N to Transmitter i
#
® ~ follow the steps <ENTER> #
* =51} plug cable to RECEIVER ks
i (2) READ S/N from RECEIVER »
* RCVR-S/N is : ..oec.e. #
* (3) plug cable to TRANSMITTER 4
® checking XMTR-S/N ”
* (4) WRITE S/N to TRANSMITTER v
* XMTR-S/N is 1 ce..cecee. *
*
* ~ Return to MAIN ¥

ok o ok ol ook odf & ok ok K % ok okock & ok ok B ook ok % BB

* Select with <up>, <down>, <enter> *
Bedod B ¥ koK R ok &k % F %k ok R kR oR g ko # R %

The user is guided step-by-step through the program; no
manual is needed.

Installation Acceptance

After installing the fetal telemetry system the performance
of the system should be tesied. The installation acceptance
test is built-in. Overall transmission between the transmitter,
receiver, and fetal monitor is checked by creating a synthetic
signal. This is a simple operation that can be done by the
customer.

The synthetic signal for the acceptance test is generated in
the transmitter and shows a test pattern on the fetal moni-
tor. One heart rate transducer and one TOCO transducer can
be connected to the transmitter, and the acceptance test
gives the appropriate output for the transducers connected.
The acceptance test is started by pushing and holding down
the nurse call button while switching on the transmitter
power. The test runs as long as the nurse call button is
pushed, On the fetal monitor a heart rate is measured and a
TOCO triangular waveform shows the proper functioning of
the overall system. This acceptance test verifies the overall
transmission from the transmitter to the receiver via radio
frequencies and the transmission from the receiver to the
fetal monitor via cable connection. If all the signals are
transmitted as expected the fetal telemetry quality is
acceptable.

The acceptance test is designed to avoid any need for exter-
nal test tools or measurement equipment. Because it is easy
to perform and no external equipment is needed, this test

helps save installation costs and reduces cost of ownership.

Acknowledgments

Although it’s not possible to mention everyone who contrib-
uted to the success of this project, our gratitude and thanks
go to Andrew Churnside, product manager, Traugott Klein,
transmitter mechanics and tooling, Siegfried Szoska, receiver
mechanics, Erwin Miiller, software engineering, Stefan
Olejniczak, hardware and software engineering, Dietrich
Rogler, design, Herbert Van Dyk, regulations, and Peter Volk,
manufacturing. Thanks also to the HP M 1400 adult telemetry
system development team, especially Mark Kotfila, product
manager and Larry Telford, software implementation.
Finally, thanks to the other members of the erossfunctional
team who contributed to the success of this project.

Diecember 1905 Hewlett-Packard Journal -~ 93

© Copr. 1949-1998 Hewlett-Packard Co.

Zero Bias Detector Diodes for the

RF/ID Market

Hewlett-Packard’s newest silicon detector diodes were developed to meet
the requirements for receiver service in radio frequency identification
tags. These requirements include portability, small size, long life, and low

cost.

by Rolando R. Buted

Tracking of products and services is critical in today’s highly
competitive and rapidly growing world of manufacturing
and service industries. To succeed in these industries, accu-
rate and timely information is required.

Two widely used tracking methods are bar code readers and
magnetic stripe. Although commonplace, they are both lim-
ited in their range and their operating environment. For ex-
ample, bar codes require a direct line of sight within a few
inches and a relatively clean and benign environment to
operate reliably.

In contrast, a radio frequency identification (RF/ID) system
uses radio signals to communicate. Line of sight is not
needed and the system can operate in hostile environments
characterized by water, oil, paint, and dirt. It can even be
used for communication through cement, glass, wood, or
other nonmetallic materials. These wireless systems are
being successfully used to identify and track cattle, house-
hold pets, cars passing through toll booths, supermarket
carts, railroad cars, and personnel entering and leaving
secure facilities.

An RF/ID system is composed of two components: a reader
(interrogator), which contains both transmitter/receiver and
decoder/control modules, and a tag (transponder), which
typically contains an antenna and a receiver cireuit. Since a
system normally has only a few interrogators but many tags,
the most severe design constraints are on the tag. These
constraints include portability, small size, long life, and low
cost. Hewlett-Packard's newest silicon detector diodes
(HSMS-285x) were developed to address these constraints.

RF/ID Technology

RF/ID tags can be active or passive. Active tags have an on-
board power source (a battery) so that less power is needed
from the reader, and usually have a longer read range. How-
ever, they have a limited life span and are generally more
expensive to manufacture.

‘assive tags do not need a separate external power source.
They derive their operating power from the energy sent by
the interrogator. Passive tags are lighter and cheaper than
active tags and have virtually unlimited lifetime. Some pas-
sive tags coniain a battery to maintain internal memory in-
formarfion in read/write applications. The trade-off is that
passive tags have a shorfer read range than active tags and

94 December 1895 Hewlett-Packard Jouwrnal

require a much higher-powered reader to supply the energy
needed to operate them.

RF/ID tags can be read-only or read/write. Read-only tags, as
the name implies, can only be read, but can be read millions
of times. Read/write tags allow the data stored in them to be
altered in addition to being read.

Whether the tag is passive or active, read-only or read/write,
it requires a receiver circuit. Receiver circuits can be of two
types: superheterodyne or crystal video (Fig. 1). Because
the superheterodyne receiver contains RF and low noise
amplifiers, its detection sensitivity is typically —150 dBm.
The crystal video receiver, on the other hand, is limited to
only about -55 dBm. However, it is simpler and much
cheaper than the superheterodyne receiver, so the RF/ID
industry has adopted it for use in tags. The superheterodyne
receiver is used in interrogators.

The crystal video receiver of Fig. 1 can take different forms,
depending on the application. Four common configurations
are shown in Fig. 2. The single-diode circuits offer simplicity
and low cost, whereas the voltage doubler circuits provide a
higher output for a given input. Each type can be designed
with conventional n-type Schottky diodes or zero biased
p-type Schottky diodes. If n-type diodes are used, an external
de bias source is needed for detection operation at low input
power levels (<1 mW) because of the low saturation cur-
rent. The p-type zero bias diode does not need a bias source
because it has a relatively high saturation current. In addi-
tion, it offers the lowest possible cost, size, and complexity,

| Antenna Antenna
Schottky
Mixer Diode
T —P Videa e[& > Video
! Dut Out
Local E i
Oscillator
__._

fa) b

Fig. 1. (a) Superheterodyne receiver. In RF/ID applications, this
receiver type is used mainly in interrogators. (b) Crystal video
receiver. This type is used in RF/D tags.

© Copr. 1949-1998 Hewlett-Packard Co.

Backscatter RF/ID Systems

Aytomatic vehicle identification (AVI) is one aspect of

1 example of the use of

egraied into

One of the key requirements of these systams is that the siationary reader
(interrogator) be able to discnminate between individual tags passing the toll
booth without interference from other tags or other transmitters that may be
gperating at the same freguency, Backscatter modulation technology is one
methad that can be used for such an application

A hlock diagram of a typical ransponder (tag) for backscatter technology is shown
in Fig. 1. The interrogator [reader) sends a modulated RF signal that is received by
the tag. The Schottky diode detector demodulates the signal and transfers the
data to the digital circuits of the tag. The radar tross section of the tag is changed
by a frequenty shift keying encoder and switch driver so that the reflected (back-
scattered) signal from the tag is modulated and ultimately detected by the reader’s
receiver anienna, Thus, communication between the 1ag and reader is established.

By using backscatter technolagy, interferance from nearby transmitters can be
avoided, since the reader controls the frequency of operation and can shift it if
nearby transmitters are operating at the same frequency. Also, the reflected signal
strength from the tag is proportional to the incident interrogator signal, so tags
outside the incident beam focus area will reflect a weaker signal that the reader
antenna can reject.

Backscatter
Mismatch

Swilch
Driver

Data
Encoders/
Decoders

Fig. 1. Typical transponder block diagram for backseatter RF/1D techinology.

and usually exhibits the lowest flicker noise. It is therefore
the diode of choice for RF tag applications.

The performance of an RF/ID system is directly related to
the frequency range in which it is used. The higher the fre-
quency, the faster the data transfer rate and the longer the
read/write range. The tag's capture window is more focused
at higher frequency. Metals absorb low-frequency signals
more than high-frequency signals, whereas obscuring mate-
rials such as dirt and grease absorb high-frequency signals

DC Bias
E
——M— e
— DC Bias

{a) (b

Fig. 2. Different crystal video receiver configurations. (a) Zera
bias Schottky diodes, (b) Conventional n-type Schottky diodes.

more than low frequency signals. Most RE/ID systems oper-
ate in three basic frequency ranges. The high-frequency
ranges include 850 to 950 MHz and 2.4 to 2.5 GHz. The low
frequency range is 100 to 500 kHz, close to the range of AM
radio stations. Some applications, such as auto toll collec-
tion, also use 5.86 GHz and 10.5 GHz.

Device Theory

A Schottky diode is simply a metal layer deposited on a
semiconductor such as silicon, To improve its performance
and reliability, it can be passivated with silicon dioxide or
silicon nitride or both.

The equivalent circuit of a Schottky diode is shown in Fig. 3,
along with package parasitic elements. In the diode chip, Rq
represents the series resistance of the diode, which includes
bulk and contact resistances. Junction capacitance Cj is
determined to a first-order approximation by the metal used,
the silicon doping, and the active area. R; is the junction
resistance, often called the video resistance Ry, and is a

Fig. 8. This model deseribes an SOT-23 packaged Schottky diode
Lo 10 GHz with good accuracy.

December 1995 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

function of the total current flowing through the device. Low
. Ry, and Ry are desired for an efficient detector diode.

The total current I flowing through a Schottky diode is given
by:

I = Lfexp(Vy/nVy) — 1] ,

where Ig is the diode saturation current, Vi, is the voltage
across the Schottky barrier, n is the ideality factor, and V, is
the thermal voliage. The voltage across the Schottky barrier
is equal to an applied voltage V, minus any voltage drop
across the series resistance Hg, that is, Vi, = V, — IR, At low

T

bias levels, R can be neglected, so Vi, = V,,.
The video resistance is R, = dV,/dl, so for small L;:
R, = nVy/I1.

For the zero bias condition, V,, = 0, at room temperature
with n = 1. the video resistance simplifies to:

Ry = 0.026/1.

By increasing L, the video resistance of the diode at zero
bias is minimized. I is increased by proper selection of the
metal type and the semiconductor doping. For silicon, p-type
generally gives a higher I than n-type. However, p-type sili-
con has higher Ry than n-type silicon with the same doping.
Increasing the silicon doping to lower the Ry also increases
Cy, which degrades the detector performance. N-type
Schottky diodes are seen in mixer applications because of
the lower R, and the fact that R, can be kept low by using
high local oscillator drive levels.

Design Goals

An important performance characteristic used to describe
video detector diodes is voltage sensitivity, or y. This param-
eter specifies the slope of the curve of output video voltage
versus input signal power, that is:

Vo = yPyy -

Neglecting parasitic and reflection losses, voltage sensitivity
can be defined as:

vy = B/(al/av) ,

where [} is the current sensitivity and has a theoretical
value! of 20 A/W. Using the diode equation (with ideality
factorn=1):

al/av = 1/0.026 .
Therefore,
vy = 0.52/I .
For zero bias detectors, v= (0.52/15.

This simple analysis of a perfect detector gives a poor
approximation to the actual data on existing diodes. To
bring the analysis closer to reality, effects of diode junction
capacitance, diode series resistance, load resistance, and
reflection loss must be considered.

Diode Capacitance and Resistance. In most cases, the junction
impedance associated with R, and C; is much greater than

96 December 1985 Hewlett-Packard Journal

R, especially at low frequencies. However, at high frequen-
cies, the junction impedance is reduced so that the RF
power dissipated in Ry is comparable to that of the junction.
Incorporating the effects of the diode capacitance and resis-
tance on the current sensitivity,? the voltage sensitivity for
the zero bias diode becomes:

v = 052/(1(1 + 0*CIRRy)) .

where w = 2nf, Cjis junction capacitance, L, is diode satura-
tion current, Ry is the series resistance, and R, is the junction
resistance.

Load Resistance. The diode resistance R, at zero bias is usu-
ally not small compared to the load resistance Ry, If the
diode is considered as a voltage source with impedance R,
feeding the load resistance Ry, the voltage sensitivity will be
reduced by the factor Ry /(R + Ry), or:

12 = vi|Ru/(Ry + Ry)) -

For example, a typical load resistance is 100 kQ. If Ry, is
5 k€L then

va = 11(0.952) .

Reflection Loss. Further reduction in voliage sensitivity is
caused by reflection losses in the matching circuit in which
the diode is used. In Fig. 3, the package capacitance Cy
and package inductance Ly, can be used to determine the
packaged diode reflection coefficient. If this diode termi-
nates a 50€2 system, the reflection coefficient p is:

p=[Zp - 50)/[Zp + 5O},

where Zp) is a function of frequency and the package parasit-
ics. If there is no matching network, the voltage sensitivity
can be calculated as:

¥3 = '1’2“ = PZJ -

The chip, package, and circuit parameters all combine to
define an optimum voltage sensitivity for a given applica-
tion. Our design goal was o develop a diode 1o operate in
the frequency range used in RF/ID tags. Using the voltage
sensitivity analysis described above, we hoped to produce
an optimum, low-cost, manufacturable part in the shortest
time possible.

Implementation and Fabrication

Hewlett-Packard’s preeminent zero bias detector diode
(HSCH-3486) already provides excellent detection sensitiv-
ity in an axially leaded glass package, particularly at high
frequencies. To meet our design goals, the project team
decided to leverage the HSCH-3486 technology.

We chose the plastic SOT-23 package because of its low
manufacturing costs for high-volume products. Using the
SOT-23 package, several modifications were possible that
we hoped we could take advantage of. Before building
prototype devices, we made a detailed device model for the
HSCH-3486. The model helped us fabricate an optimum de-
vice with minimum design iterations.

© Copr. 1949-1998 Hewlett-Packard Co.

Two-dimensional process and device simulators were used
to model and predict the performance of the HSCH-3436.
Diode parameters such as silicon doping, area, epitaxial
layer thickness, metal pad size, and passivation thickness
were included to study the effects that these process param-
eters had on diode electrical performance and ultimately on
detector performance. A typical sensitivity analysis (Fig. 4)
showed the effect of contact area and epitaxial thickness on
voltage sensitivity y3. assuming an ideal matching circuit.
The model was also used to check for sensitivity to parame-
ters that are not directly measurable during processing, such
as surface states and recombination velocities. The model
was good for trend analysis but could not be used to predict
absolute values until devices were fabricated and tested.

Using the various equations for voltage sensitivity, it is com-
mon to plot v as a funetion of the saturation current I, as
shown in Fig. 5, for given values of Cj, Ry, and Ry.. Since C;,
Rs, Ry, and I, interact with one another, it is not simple to

w.—

]

Valtage Sensitivity 1, (mV/uW)
5

-
=
|
T

Increasing Epitaxial Layer Thickness (0.2 pm/div)

Voltage Sensitivity 1, (mV/uW)

20 ! ; i 1]
Increasing Contact Diameter (1 um/div)

Fig. 4. Elfects ol epitaxial layer thickness and contact area on
voltage sensitivity, £ = 5.8 GHz. Ry, = 100 kQ.

Voltage Sensitivity -,r:{mw;:\'.‘]

10 GHz
1 4 - -

10-2 107 10% 10

Saturation Current I, (A)

Fig. 5. Voltage sensitivity as a function of saturation current

lower Cj, say, without increasing Re. By using the model, we
were able to select the best combination of these parame-
ters to maximize the voliage sensitivity at a given frequency.
The process model ensured that our design was within the
limits of our existing manufacturing capability. In this way,
we were able to minimize development costs and time to
market.

The fabrication process is relatively simple. Using a heavily
doped silicon wafer subsirate (to keep Rg low), an epitaxial
layer is grown with tight contrels on the doping level, thick-
ness, and doping transition width. After silicon dioxide and
nitride passivation, photolithography is used to define a con-
tact window. A well-controlled metal process is used to de-
posit the metal, which defines many of the critical parame-
ters, The metal is etched to an appropriate size for bonding
in the plastic package. The wafer is cut into individual die
and attached to a leadframe using a silver epoxy. It is then
maolded into the final plastic configuration. Fig. 6 shows the
device cross section and die layout.

Trilayer
Passivation
Schottky Silicon
Contact Substrate
and Epitaxy
- Backside Metallization
{a}
|
|
| I! \
NS I
(b)
Fig. 6. (a) HSMS-2850 diode eross section. (h) Die layout.

December 1995 Hewlett-Packard Journal -~ 97

© Copr. 1949-1998 Hewlett-Packard Co.

m—-

100 +

2.45 GHz

5.8 GHz k

10 GHz

Voltage Sensitivity) (mV/uW)
=
1

0 T T t t 1
10-% 108 107 106 10°5 104

Saturation Current + Bias Current (A)

Fig. 7. Calculated voltage sensitivity for zera bias Schottky
diodes having Rq = 55Q and C; = 0.15 pF. Ry, = 100 k€2, Dots
show measured values for 930 MHz, 2.45 GHz, and 5.8 GHz,

The packaged device can be 100% tested for various de pa-
rameters such as forward voltage bias Vi and breakdown
voltage Vi,. Many of the de parameters have been correlated
with high-frequency parameters, thus ensuring the perfor-
mance of each part and eliminating the high costs associated
with high-frequency tests.

Performance

The initial lots that were processed after being designed in
the process and device simulator performed very closely to
the predicted values. Minimal model changes were neces-
sary. In fact, the results were sufficiently good that no
design iterations were necessary and the data sheet specifi-
cations were set using those lots. Although we did not expe-
rience the normal kinds of process variation that we would
expect over a long period of time, our confidence in the
model accuracy allowed us to simulate these variations to
show that the specification would still be met. In addition,
we could use the model to determine what process and de-
vice parameters could be changed for future improvements
to the diode.

100 +

10 +

Voltage Sensitivity 2 (mV/ W)

3———

o 1 2 3 4 5 6§ 7 8 8§ 10 1
Frequency (GHz)

Fig. 8. Calculated voltage sensitivity of the HSMS-2850 zero
bias Schottky detector diode. Dots show measured values.

98 December 1995 Hewlet-Packard .I(:umél)l

HSMS-2850

Voltage Sansilivilnz (mV/uW)

07

Frequency (GHz)

Fig. 9. Comparisan of two zero bias Schottky diodes.

Figs. 7 and 8 show actual voltage sensitivity compared to the
calculated values.

For comparison with the HSCH-3486 glass package diode,
Fig. 9 shows y as a function of frequency. The different val-
ues of Cj, Rg, and I of the two diodes cause the HSMS-2850
to provide greater performance at frequencies less than 3
GHz while the HSCH-3486 is superior above 3 GHz. Because
of its simpler packaging and testing, the HSMS-2850 is much
lower in cost than the HSCH-3486.

Conclusion

Hewlett-Packard's newest silicon zero bias detector diode
has one of the best price/performance ratios on the market.
We feel that these diodes will become an integral part of
many tag applications being designed today and will be con-
sidered in future designs and technology. They provide ex-
cellent voltage sensitivity for many of the frequency ranges
being used in the RF/ID industry at a very low cost.

Acknowledgments

Other members of the project team were Ray Waugh, David
Salustri, Bill Lypen, Jatinder Kumar, and Alan McGee, Many
other individuals contributed to the successful completion
of the project. Special mention should be made of Remedios
Solis for wafer process development and testing, Natalia
McAfee for packaging in SOT-23, and Vy Frederick for testing
the many devices in the SOT-23 package.

References

1. H.A. Watson, Microwave Semiconductor Devices and Theiv Cir-
cuit Applications, MeGraw-Hill, 1969, p. 379.

2. H.C, Torrey and C.A. Whitmer, Crystal Rectifiers, MIT Radiation
Laboratory Series, Vol. 15, McGraw-Hill, 1948,

Copr. 1949-1998 Hewlett-Packard Co.

Authors

b DCE Client/Server Computing

Michael M. Kong

. and naming
Praviously at HP he
tware engin —‘l:[
and chnical write
DCE (Distributed Computing Environment) and
work Computing System (NCS] proc
to HP in 1989 when Apollg Can
He attended the California t
Is @ violinist, a pianist, and an av
musician

16 Adopting DCE Technology

Paul Lloyd

An information technology
function consultant at HP's
corporate offices, Paul Lloyd
has worked on application
netwarking solutions and
the technical architecture of
' internal infrastructures. He
‘1 [\» I'” I 15 !j|;.‘r|-.'r‘..li‘,rrt}.‘;,’1rl'15|hir: for
' £ ! HP's DCE infrastructure at
the corporate offices. He is professionally interested
in distributed computing and computer secunity. Paul
gamed a BS degree in mathematics and a BS degree
in computer science at the New Mexico Institute of
Mining and Technology He worked as an intern with
the federal government before coming 1o HP in 1965

Samuel D. Horowitz

A manager at H
Network Serviges

Ha 'r‘.xlf' 5C 'JHr—'IIl'v manag

A “ ina the team that is investi-
gating enterprise use of
public

yptography and
networked s 25 includi ekt
jsly at HP he was a
Itant, Professional Services
trict mane
transfer s
Apallo 1
tem t"'f'lljlllhl'|||;r| |.’[r||'\.|| manager at Apollo. Prior to
that he worked at Data General for twelve years in a
variaty of engineering and support positions including

or tec
Organization dis
I application data

23 DCE Directory Services

Michael M. Kong

Author's biograghy appears elsaw

in this section

David T. Truong

i Truong joined HP's
mation Networks Divi
n in 1988 and worked on

,—I_hl' ty with other X.400 ven-
dors, new feature enhance-
_ ments, and governmant

" certification. In 1992 he
transferred to the General Systems Divisian where he
joined the X.500 directory project and was responsi
ble for porting GDS software to the HP-UX operating
system. He is currently warking on a DCE security
application. Befora coming to HP, he worked as a nat
work systems manager on VAX systems and DECNET
software at a hiotechnology company. David is pro-
fessionally interested in netwarking products and
graphic applications. He farded a BS degree in
COMPUTEr SCIE rom San Jose State Uni Y mn
1984 Born in Saigon, Vietnam, David is married and
has twa children. He enjc
valleyball, and table tennis and all family activities
neluding eamping and hiking

28 X/Open Federated Naming

Elizabeth A. Martin
Liza Martin joined Apollo
puterin 1984, which

acquired by HF in 1

em (NCS) and was the te

I-nllw in I|I naming

bt |||.|f1\, of the ide
in the XFN spec

15sion are present
; 4 worked on the
DCE security server, particularly its replication com
ponent. S 15 HP on the XEN architectyral
team. At HP. she Is currently investigating naming

© Copr. 1949-1998 Hewlett-Packard Co.

books about NCS. Born in Bryn Maw
Liza was awarded a BA degree in human biology

from Brown University in 1963. She is married and is
a member of the local Democratic ward _umrn-'

tehing dance p—'mv Mances, Jl"d rennvating
her Intu_.'sc and garden

34 HP Integrated Login

Jane B. Marcus

Jane Marcus was awarded
a BS degree in voice (1980),
an MA degree in German
literature {1883), and an MS
degree in computer science
(1986) from Indiana Univer
sity at Bloomington. After
graduating, she joined the

She has worked an DI I prodt |||\ nt |||-|,|\|
msford SYSIEMS SOTiwe b and is cur-
onsible for the HP DCE account manager
stem administration toal. Jane s marned and has
two daughters. She studied opera in Vienna, Austria
and enjoys church music, singing, and gardening. she
at her children’s elementary school

5 €

teaching t

nn CE COncepts

18 students computer

Navaneet Kumar
Born in Luckpow, UP. India

BNQINE I'II"-I| in 1885 from the
Indian Institute of Technol
ngy. He did graduate work at

the University ¢

and was awardet
degree in mechanical
angineering in 1968 and an MS
science in 1989. H fess
distributed computing
Software Division in

2 He has worked in the

December 1995 Hewlett-Packard Journal 99

Chelmstord systems software fab on tools for DCE
admimstration and ms management Before
joining HP he 1 at AT&T Bell Labs developing
VOICE transaction systems and at SyncSort Inc. d
aping file restructuring software for index files He s
married

Lawrence J. Rose

B ,__”[J-i[u;.lJ- W

Systems Sof

gmulation praducts.and inte-
grated SNA. He has cantrib
nent of

uted to the develo
OCE admimstration wols and 1s currently working on
OpenView integration: Befare Apailo, he was a saft-
ware engineer at Adage, Inc. and at Wang |_J|JI’JI
res, Ine. Larry was born in Norwood, Magsach
Hl;; 15 -'"v\JHILd, Ndas ong L,|i|||| .I-]|| one on'the Wy, an
is a Little League toach in Chelmsford

t

41 DCE Security Services

Frederic Gittler

Buorn in Antwerp, Belgium,
Frec Gitter gradusted
from the ko MNat
la Statistigue et de | Admi-
nistration Economigue in
1984 and fram the Ecole
Nationale Superieure des
Telecommunications in
R 15985, Both institutions are in
Paris, France: Fredenc had a dream of working at HP
since he was sixteen, which he realized after gradu-
ating from college. In 1988 he joined the HP Colorado
Netivorks Division, where he developed sottware for
X.25 and wide-area networks. He transferred 1o the
Cheimsford systems software lab n 1990, where he
managed networking and distributed computing proj-
ects tor tour years. He 1s currently a senior engineer
in the Dpan Systems Saftware Division and is work-
ing on distributed security products. Frederic is mar-
ried and has two baoys. He spent one year n the

h Navy as a :
arts and traveling a |-Jv accompany
wife in her outdour activities. Frederic also has
sion for automobiles and high-tech gadgets

ede

-

Anne C. Hopkins

Anne Hopkins came
Open Systems Softwa
Division when Apallo Com-
puter was a Il'-'IJ in 1989
She has worked pn th
sign and developm
DCE security services for t
past six years, including a
brief interlude as the techni-
d for the HP BCE 8000 1.1 releas

is currently working on the HP CORBA sec
ficatit III and is HP< lDrInu[al re |"| ssentative to the
8]

100

Decembier 1995 Hewlett-Packard Journal

Ine. developing O8I nerwork software and at Imag)
Tek leu'u‘.g electronic prepress publishing soft-

ha 1s @ member of the [EEE Anne w
o @ BA degree from Dartmouth College |
), where she majored in computer scienc

43 DCE Authorization Services

Dehorah L. Caswell

A system architest
HP Laboratories faor the
second time in her history at
) swell 15 cur
2 for the

warking

future server architecture
praviding residential broad-
band services She joined HP
in 1981 and worked as a
quality assurance engineer at the Commercial &
Divisian ‘-.I = II..Jn conr | uprc—\l the HP .ohwdrv rnEI

niuctize HLE an the HP U.-'\
was moved 1o the

are lab. She wrote this HP
jorking far the Network Sys
up where she codeveloped the
xamples that are shippad with
iP5 DCE product and was a member af the HP
DODCE design and prototyping team She is profes-
stonally interested in distributed computing and is a
member of the IEEE. She has coauthored a book pub-
lished by Prentice Hall on software metrics. She
garned a BA degree at Dartmouth College 1n 1981
and an MS degree in computer science at Stanford
University in 1986. She was a summer intern at Bel
L aborataries in Murray Hill and worked on the
interface for GetSet (an integrated terminal and tele-
phanel Born in Summit, New Jersey, Debbie s mar-
tigd and is mmr'clml in videography and home im
[rovemants s.country
skiing, and '\rnJI'r:||IIL]

e |:|I.I‘>IIII] o
|J|al1f|r'1| belore t 'H:[0]

55 HP DODCE

Mihaela C. Gittler

Born in Romania, Mickey
Gittler earned a Diploma of
Electrical Engingering in
1974 from the Polytechnical
Institute of lasi In 1984, she
completed her masters d
gree in computer scien

y in Colorado, She joined
the Desktop Computer D.-- ision in 1978 allrJ 5 TIOW

HP ir |L.||'_,||'gl P
current project She
he HP ODDCE registry
n—lp- | to make the HP OODCE protatype a {_'[-3{.!-_;_'.

© Copr. 1949-1998 Hewlett-Packard Co.

She continugs to enhance HP 00DCE ar |‘J to do traim
ing-and consulting with employee
the product. Mickey is ma [3.1 and
likess putdoor activits 5 1ennis, Cross country
skiing, and backpacking. She is interested in the ants,
traveling, and eight-fingerad Norwegian tralls who
like chocolate

Michael Zhijing Luo

1o 15 a soflware
IIL_]I'1EL:I in the Chelmsford
systems software lab at HP's

Open Systems Software
Divisinn He completed a BS
degree in physics in 1887 at
the Zhongshan University in
Guangzhou, China and an
WS dearee in computer sci
ence in 1990 at the University of Massachusetts
Aftar graduating, he jomed HP and has worked on the
development of OSF/1, OCE, and HP OQDCE. He is
currently developing cross-platiormclient/sarver
development toals for Micrasaft Windows™ and
HP-UIX*

Luis M. Maldonado IlI

Luis M. Maldanado lll gradu-
ated from the Massachu-
setts Institute of Technology
in 1992 with a BS degree in
computer science and engl-
neering. He 15 professionally
interested in distributad sys-
tems, While in school he
campleted an internship at
Digrtal Equpment Corporation which involved the
development of distributed applications. After grady-
ating, he joined the Chelmsford system software lah
at HP's Open Systems Software Division. He has
worked on DCE application development toals, DCE
DL, DCE RRC, and the e+ compiler. He is currently a
DCE RPC engineer. Born in New York, New York, Luis
i5 an automobile enthusiast and enjoys sports such
as snowboarding, mountain biking, fencing, and vol-
leyball

61 HP Encina/9000

Pankaj Gupta

A software engineer at the
General Systams Division
since 1988, Panka) Gupta
contributed to MPE/XL
transaction management,
MPE/XL online backup, HP
B Encina/XL, and HF Encina/
g‘ 8000. He represents HP at
— the X/Open™ transaction
gamed a BS de
gree in electrical engineering in 1981 from the P.m;ah
University in India. He completed hus PhD in computer
science in 1988 at the State University of New York
in Stony Brook

processing working group. Par

75 Object-Oriented Testing

Mark C. Camphell

Marcus Campbell

SCience friom

them Essex College in
1889 and is currently com-
pleting his BS degres in
computer science at Boston
University. He joined HPs
Dpen Systems Software Division in 1889 when
Apollo Computer was acquired by HP As a software
design engineer, his contnbutions include testing
work on DCE, software test development for HP
CORBA projects, and designing the object testing
framewaork. More recently he has worked on HP ORB
Plus and is currently doing development on the [atest
version of this product. Before coming to HP, he
waorked at Lobb Software maintaining business appli-
cations for hospital reimbursements. Marcus is
married and has five children. His hobbies include
swimming, fishing, and boating,

David K. Hinds

A software engineer in the
Chelmstord systems soft-
ware lab at the Open Sys:
tems Software Division,
David Hinds came to HP in
1989 when Apollo Computer
was acquired. He has been a
reliability engineer for
Apollo workstations and a
software enginesr responsible for testing DCE and
the OSF/1 operating system. He is also responsible
for the design and implementation of system testing
for HP CORBA, He is a member of the [EEE and |5 pro-
fessionally interested in sottware testing. David
graduated with a BS degree in electrical engineering
from Northeasterm University. He is married, has two
children, and enjoys skiing and sailing.

Ana V. Kapetanakis

Born in Boston, Massachu-
setts, Ana Kapetanakis was
awarded a BS degree in
electrical engineering at the
Warcester Palytechnic Insti-
tute in 1991 and an MS de-
gree in computer stience at
Boston University in 1995.
She joined the Open Sys-
tams Software Division in 1992 as a software design
engineer, She has worked on DCE testing, HP ORB
Plus testing, and the object testing framework
design. She is currently participating in the develop-
ment of HP ORB Plus. Ana is married and enjoys golf
and sailing

Stephen J. McFarland

Joining HPs Open Systems
Software Division in 1959
when Apolio Computer was

wirked gs a sysier

£nginesr, a‘r*..« e inte:
gralion enginegr, and a hardware h.puﬂf‘ enginger
Before working at Apolio Computer, he-was a hard-

wara systems enginegr at Computervision. Steve was
awarded a BS dagree in electrical enginsering
1984 from Northeastem University. Born in Everett
Massachusetts, he is married and his hobbies include
woad canving and gardening.

David S. Levin

[avid Levin was bam in Phil-
adelphia, Pennsylvania. He
joined the Chelmsford sys-

* tems software lab at HP's

~ Open Systems Software

* Division in 1389 when HP
acquired Apollo Computer,
While at Apollo he was the
marnager of software inte-
gration, and before Apollo he worked at Software
Arts and Honeywell's Cambridge Information Systems
lab. He is currently the technical lead at HP for the
distributed computing systems testing team. He pre-
viously worked on systems test and the development
of a CORBA interface repository for one of the HP
CORBA projects. David graduated with a BA degree
in philosophy from Clark University in 1972 He is a
member of ACM. He is married and has twa sons. His
habbies include bicycle commuting, woodwarking,
and skiing

David J. Miller

Dave Miller joined HP's
Open Systems Software
© Division in 1989 after HP
- acquired Apollo Computer.
~ He is currently working on
. software system testing for
distributed computing prod-
ucts. He has contributed to

= - the development and testing
of HP ORB Plus and contributed to the design and
implementation of HF's OMG compliant event object
service. Before coming to HE he was the manauer of
graphics hardware at Apollo and workstation proces-
sor development at Computervision. He earned a
BSEE in 1971 and an MSEE in 1975 at Northeastern
University in Boston, He is a member of the |EEE
Born in Hazleton, Pennsylvania, Dave served in the
Massachusetts National Guard. He is married and
has twa sons. His hobbies include gardening and
figuring out crosswaord puzzles

J. Scott Southworth

J. Scott Southworth joined

HP in 1989 when Apollo

Computer was acquired. He
L t HP's Massac

onling help systems for distributed obj
His previous contributions at HP have included tech-
nical writing for distributed object software, compiler
linking, and RISC reqister usage. He has also devel-
oped online help systems, coded text analysis and
index analysis software tools, and created a master
index for 175 documents. J. Scott was awarded a BS
degree in urban studies from the Massachusetts
Institute of Technology in 1972 and an MA degree in
counseling from Beacon College in 1979. He worked
as a technical writer at Digital Equipment Corpora-
tion and Apailo Computer before coming ta HE Heis
a member of the [EEE, the Boston Computer Sacigty,
and the Society for Technical Communication. Profes-
sionally interested in onling help systems and text
analysis tools, he has published five technical ar-
ticles spanning distributed object computing, hyper-
1ext, and indexes. He has also written & book about
high-tech careers. J. Scott is married, has twa chil-
dren, and enjoys jazz and science fiction writing

82 HP 50T Fetal Telemetry System

Andreas Boos

Andreas Boos is an R&D
engineer at the Patient Mon-
itoring Division. Asa techni-
cal project lead, he has been
responsible for the enginegr-
ing of fetal monitoring sys-
tems, aspecially signal pro-
cessing hardware and
software and the support of
clinical trials. He is also responsible for ASIC devel-
opment and project documentation. His work has
produced two patents involving the enhancement of
ultrasound signal processing and the operation of
medical equipment using bar codes. Andreas was
born in Zwalbach, Germany, He was awarded a Di-
plom Ingenieur in electronics in 1985 by the Univer-
sity of Kaiserslautern. Upon graduating, he joined the
HP Bisblingen Medical Division. Andreas is married,
has two children, enjoys listening to all kinds music
from classical to pops, and likes to play volleyball

© Copr. 1949-1998 Hewlett-Packard Co.

December 1905 Hewlett-Packard Joumal 101

Michelle Houghton Jagger

Michelle Jagaer 1s a markat-
ing communications special-
ist at the Patient Monitaring
Division, She is responsible
for worldwide marketing
cammunications for obstetri-
cal and neanatal products
within the Medical Products
Group. She came to HP in
1992, joining the Boblingen Medical Division. As a
learning products enginear, she was responsible for
the technical documentation for fetal monitors and
telemetry. Then as a marketing communicatians spe-
cialist, she was responsible for the product position-
ing and launch of the HP Series 50 T and of HP Series
50 OBTraceVue. Born in Bristal, England, Michelle
has a BA degree in modemn languages and informa-
tion systems. She is a member of the British Com-
puter Society. She participates in sports of all kinds,
aspecially skiing and tennis. Traveling is also a favor-
ite because she enjoys learning different languages
and being exposed to different cultures

Giinter W. Paret

Gunter Paret |5 the project
manager for fetal monitoring
R&D at the Patient Monitor-
ing Division and managed
the development of the
Series 50 T fetal telemetry
system. Previously, he
worked on the development
of the hardware, software,
and service support tools for the HP 80404 and HP
BO41A fetal manitors and was the project lead for the
development of the HP M13504, HP M13514, and HP
M1353A fetal monitors. He is named as an inventar
in two patents involving an algorithm that detects
coincidences in heart rates from different transducers
and a service tool that activates tircuits of electronic
devices far program modification. Giinter joined the
Bablingen Medical Division in 1980 after earning an
electrical engineering degree from the University of
Stuttgart. He was born in Santiago, Chile, 1s married,
and has two children. He enjoys playing music on the
electronic organ, is interested in videa techniques,
and loves "to go awandering” in the Black Forest and
the Alps.

i

Jirgen W. Hausmann

A technical marketing engi-
neer at the Patient Monitor-
ing Division, Jurgen Haus-
manrn provides technical
support and strategies for
fetal monitors and fetal te-
lemetry systems. He was
born in Neuhausen, Gar-
many and was awarded a
Diplom Ingenieur in electronics from the University of
Stutigart in 1982, He joined HP at the Bablingen
Medical Division in 1982. Jirgen is married and has
two children. He enjoys outdoor sports such as sail-
ing on Lake Canstance, skiing, and hiking. He also
spends his free time designing electronic circults to
automate his house.

94 Zero Bias Diodes

Rolando R. Buted

Born in Honolulu, Hawaii,
Rolando Buted earned a
BSEE degree at the Univer-
sity of Hawail in 1981, After
graduating he joined HP's
Microwave Semiconductor
Division and 1s now a mem-
_ her of the technical staff at
n— = the Communications Compo-
nents Division, Since coming to HP he has worked as
an R&D engineer on product and technology develop-
ment for discrete and IC components for wireless
communications, and as a manufacturing engineer
responsible for yield enhancement and product and
process improvements for discrete diodes. He was
the project leader for development of the HSMS-2850
Series dindes and was responsible for the product’s
release to manufacturing. He is currently responsible
for developing an improved detector diode. He is also
working on a high-frequency p-i-n diode switch and
on a technology library expansion for the ISOSAT
process used for |C components. Rolando is active in
the East Side Academics Mentor program and volun-
teers in the Newark Unified School District science
programs. He enjoys outdoor activities such as vol-
leyball, golf, and skiing.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 comput
ers are X/Open Company UNIX 93 branded products

X/Open is a registered trademark and the X device is a trade-
mark of ¥/0pen Company Limited in the UK and other coun-
tries

Windows is a US. registered trademark of Microsoft Corpo-
ratian

102

December 1985 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

PACKARD

L
X

UFU

Part 1: Chronological Index

February 1995

Broadband Frequency Characterization of Optical Receivers Using
Intensity Noise, Douglas M, Baney and Wayne V. Sorin

1.55-um Fiber-Optic Amplifier

Erbium-Doped Fiber Amplifier Test System, Edgar Leckel, Jiirgen
Sang. Rolf Miiller, Clemens Riick, and Christian Hentschel
Multi-Quantum-Well Ridge Waveguide Lasers for Tunable External-
Cavity Sources, Tirumala R. Ranganath, Michael .J. Ludowise,
Patricia A. Beck, Dennis J. Derickson, Willinm H. Perez, Tim L.
Bagwell, and David M. Brawn

Measurement of Polarization-Mode Dispersion, Brian L. Heffner
and Paul R. Hernday

Jones Caleulus

The Poincaré Sphere

The HP 8509A/B Lightwave Polarization Analyzer

A New Design Approach for a Programmable Optical Attenuator,
Siegnar Schowidt and Halmo Fischer

Precision Reflectometer with Spurious-Free Enhanced Sensitivity,
David M. Braun, Dennis J. Devickson, Luwis M. Fernandez, and
(ereg . LeChenvinant

High-Power, Low-Internal-Reflection, Edge Emitting Light-Emitting
Diodes, Dennis J. Dervickson, Patvicia A, Beek, Tim L. Bagwell,
David M. Braun, Julie B, Fouguel, Forrvest G, Kellert, Michael J.
Ludmwise, William H. Perez, Tirumala B. Ranganath, Gary R
Trott, and Susan R. Stoan

Jitter Analysis of High-Speed Digital Systems, Christopher M. Miller

anied Davvied oJ. MeQuate

Automation of Optical Time-Domain Reflectometry Measurements,
Frank A. Maier and Harvald Seeger

Design and Performance of a Narrowband VOO at 282 Thz,
Peter R. Robrish, Christopler 1. Madden, Rory L. VanTuyl, and
Willicem R. Trutna, Jr.

Surface Emitting Laser for Multimode Data Link Applications,
Michael R.T. Tan, Kenweth H. Halen, Yo-Min D. Howng, aod
Shih-Yuan Wang

Generating Short-Wavelength Light Using a Vertical-Cavity Laser
Strueture, Shigeru Nokagawa, Danny E. Mars, and Novilide
Yaomada

A New, Flexible Sequencer Architecture for Testing Complex Serial

Bit Streams, Robert E. MeAuliffe, Jumes L. Benson, and Christopher

B. Cuain

Shortening the Time to Volume Production of High-Performance
Standard Cell ASICs, Jay D. MeDougal and Williom E. Young
A Framework for Insight into the Impact of Interconnect on
0.85-mm VLSI Performance, Prasad Raje

Volume 46 anuary

1005 throainh Plac ar 1005
395 through December 133

Synthesis of 1008 Delay Fault Testable Combinational Circuits by
Cube Partitioning, William K. Lam

Better Models or Better Algorithms? Techniques to Improve Fault
Diagnosis, Robert C. Aitken and Peter C. Muawell
Bridging and Stuck-At Faults

Potential Detection

April 1995

A Low-Cost, High-Performance PA-RISC Workstation with Built-In
Graphies, Multimedia, and Networking Capabilities, Roger A.
Peqrson

The PA T100LC Microprocessor: A Case Study of 1C Design Deci-
sions in a Competitive Environment, Mick Bass. Palrvick Knebel,
David W, Queind, and William L. Walker

Design Methodologies for the PA T100LC Microprocessor, Mick
Bass, Terry W. Blanchard, D. Douglas Josephson, Duncan Weir,
and Dawiel L. Halpervin

An VO System on a Chip, Thomas V. Spencer, Frank .J. Lettanyg,
Curtis R, MeAllister, Anthony L. Riccio, Joseph E Orth, and
Brian K. Arnold

An Integrated Graphics Accelerator for a Low-Cost Multimedia
Workstation, Paul Martin

HP Color Recovery Technology, Anthony . Bavkans

True Color

Real-Time Software MPEG Video Decoder on Multimedia-Enhanced
PA TI00LC Processors, Ruby B. Lee, John P2 Beck, Joel Lamb, and
Kenneth E. Sevevson

Overview of the Implementation of the PA 7T100LC Multimedia
Enhancements

HP TeleShare: Integrating Telephone Capabilities on a Computer
Workstation, S. Paul Tucker

Caller-1D

Call Progress, DTMF Tones, and Tone Detection

Produet Design of the Model 712 Workstation and External
Peripherals, Avlen L. Roesner

Development of a Low-Cost, High-Performance, Multinser Business
Server System, Dennis A, Bowers, Gerard M. Enkerlin, and Karen
L. Murillo

HP Distributed Smalltalk: A Tool for Developing Distributed
Applications, Eileen Kevemilsis and Tan J. Fulley

Object Management Group

A Software Solution Broker for Technical Consultants, Manny
Yousefi, Adel Ghoneiny, and Walf Relider

HP Software Solution Broker Accessible Products

December 1995 Hewlett-Packard Journal 103

© Copr. 1949-1998 Hewlett-Packard Co.

Bugs in Black and White: Imaging IC' Logic Levels with Voltage
Contrast, Jaek D. Benzel

Component and System Level Design-for-Testability Features
Implemented in a Family of Workstation Products, Bulent I.
Dervisaglu and Michael Ricchetli

June 1995

Capillary Electrophoresis: A Product of Technological Fusion,
Robert R. Holloway

A New High-Performance Capillary Electrophoresis Instrument,
Fred Strokmeier

Capillary Electraphoresis Applications

HP CE Technology Transfer

Industrial Design of the HP CE Instrument

A High-Sensitivity Diode Array Detector for On-Column Detection in
Capillary Electrophoresis, Patrick Kaltenbach

Capillary Handling in the HP Capillary Elecirophoresis Instrument,
by Hins-Peter Zimomernann

Rapid Prototyping for the HP CE Project

Sample Injection in HP CE, Werner Sclneider

HP CE Separation Control Electronies and Firmware, Fritz Bek,
Franz Bertsch, and Klaus Will

A User Interface for Capillary Electrophoresis, Alwin Ritzmann
and Klaws Witt

Development of a Common ChemStation Architecture
Reproducibility Testing of the HP CE Instrument, Ulrike Jegle

The Impact of Column Technology on Protein Analysis by Capillary
Electrophoresis: Surface Coatings and Analytical Approaches for
Assessment, Sally A, Swedbery and Mowilo Dittneann

A New High-Sensitivity Capillary Electrophoresis Detector Cell and
Advanced Manufacturing Paradigm, Gary B. Gordon, Richard P
Tella, and Henvique AS. Martins

HP Disk Array: Mass Storage ault Tolerance for PC Servers, Tom
AL Skeie and Michael R. Rusnack

An Overview of Raid Technology

COBOL SoftBench: An Open Integrated CASE Environment, Cheryl
Carmichael

Development and Use of Electronic Schematic Capture in the
Specification and Simulation of a Structured-Custom ASIC, Dapid A.
Burgoon

Design and Development of a 120-MHz Bus Interface Block Using
Standard Cells and Automatic Place and Route Tools, Robert E.
Ryan

August 1995
Introduction to 100VG-AnyLAN and the IEEE 802.12 Local Area
Network Standard, AMlan B, Albvecht and Patricia A, Thaler

Cable Types
Other Network Technologies

Demand Priority Protocol, Afan R, Alhrecht, Michael P. Spratf,
FPatricia A. Thaler, and Gregory C.A. Watson

Network Protocol Layers

Physical Signaling in 100VG-AnvLAN, Alistair N. Coles, David (5.
Cunningham, Joseph A, Curcio, Jv., Daniel J. Dove, and Steven (5,
Methley

Cross Talk in Unshielded Twisted-Pair Cables
Multilevel Signaling

Cross Talk Analysis

Optical-Fiber Links for 100VG-AnyLAN

104 December 1995 Hewlett-Packard Jourmal

Coding in 100VG-AnyLAN, Siman E.C. Crouch and Jonathan
Jedwal

IEEE 802.5 and 502.5 Frame Formats

Polynomial Arithmetic and Cyelic Redundancy Checks
Multimedia Applications and 100VG-AnyLAN, Johin R. Grindietm
and Michael P. Spratll

Remote Bridge Example

Higher-Level Protocols

Related Projects

100VG-AnyLAN 15-Port Hub Design, Lisa S. Brown

Invalid Packet Marker

HP AccuPage 2.0: A Toolkit for High-Quality Document Seanning,
Steven L. Webh, Steven (. Henry, Kevin S. Burke, and (feorge
Prokop

An 11.8in Flat Panel Display Monitor, David J. Hodge, Bradiy ..
Faster, Steven JJ. Kommorusch, and Tom J. Searby

Liquid Crystal Display Technology

Product Design of the HP S1010A Flat Panel Display

A Note About VRAMs

Applying an Improved Economic Model to Software Buy-versus-
Build Decisions, Wesley H. Higaki

Benchmark Standards for ASIC Technology Evaluation, Antonio A,
Martinez, Aloke S. Bhandia, and Henry HW. Lie

October 1995

LIP PE/SolidDesigner; Dynamic Modeling for Three-Dimensional
Computer-Aided Design, Klaus-Peter Fahlbusch and Thomas I,
Roser

User Interaction in HP PE/SolidDesigner, Berthold Hug, Gerharid
J Walz, and Markus Kiihl

Enhancements in Blending Algorithms, Stefan Freitog and Karsten
Opilz

Open Data Exchange with HP PE/SolidDesigner, Peter J. Schild,
Wolfgang Klemom, Gerhard J. Walz, and Hevinann J. Ruess

Providing CAD Object Management Services through a Base Class
Library, Claws Brod and Max R. Kublin

Exception Handling and Development Support
Freeform Surface Modeling, Michael Metzger and Sabine Lismann

Common Lisp as an Embedded Extension Language, Jens Kilian
and Heinz-Peter At

Boolean Set Operations with Solid Models, Peter H. Evnst
Fighting Inaccuracies: Using Perturbation to Make Boolean
Operations Robust

A Microwave Receiver for Wide-Bandwidth Signals, Robert ..
Armantrout

Firmware Design for Wide-Bandwidth [F Support and Improved
Measurement Speed

The HP 89400 Series Vector Signal Analyzers

An [F Module for Wide-Bandwidth Signals, Robeirt J. Avmanioud,
Terrence B. Noe, Christopher E. Stewart, and Leonard M. Weber
The Log Weighted Average for Measuring Printer Throughput, John
J. Cassidy, Jr.

December 1995

DCE: An Environment for Secure Client/Server Computing, Michael
M. Kong

Adopting DCE Technology for Developing Client/Server Applica-
tions, Paul Lloyd and Samuel D. Horowitz

© Copr. 1949-1998 Hewlett-Packard Co.

DCE Directory Services, Michael M. Kong and David Truong
X/Open Federated Naming. Elizabeth A. Martin
HP Integrated Login, Jane B. Marcus, Navanee! Kumar, and

Lawrence J. Rose

Object-Oriented Perspective on Software System Testing in a
Distributed Environment, Mark C. Campbell, David K. Hinds, Ana
V. Kapetanakis, Stephen J. McFariand, David 8. Levin, David J.
Miller, and J. Scott Southworth

The Object Management Group's Distributed Object Model

The DCE Security Service, Fredervic Gittler and Anne C. Hopkins

Object-Oriented Programming

An Evolution of DCE Authorization Services, Deborak L. Caswell

An Object-Oriented Application Framework for DCE-Based
Systems, Mihaela C. Gittler, Michael Z. Luo, and Luis M.

Mualdonado

HP Encina/0000; Middleware for Constructing Transaction

Processing Applications, Pankaj Gupla

A New, Lightweight Fetal Telemetry System, Andreas Boos, Michelle

Part 2: Subject Index

Subject Page/Month
0-9
JOBasRT «omvavizas se s isenn 6/Aug.
100Base-T oo aiiiorminmns 10/Ang.
100VG-ANYLAN . . i ccviviviinn e, 6/Aug.
100VG-AnyLAN hub 3%Aug.
5B/6B coding scheme 27/Aug.
TO-MHz down-converter 83, 98/0ct.
HTTHOAR s v smmsoiy o Tl Apr.
A

BUOR o e e i e G5/Dec.
ADOYE PEOOVELY « oo v v v vvvrennnn 65/Dec.
ApsEneticlasd., ..o vnar e GO/Dec.
AbSract BRIVET ... vvvvenonrones Ab/Dec.
Access control list (ACL) 49/ Dec.
Accessdelay 16/Aug.
Accuracy problem coe A0t
BOIY . oo o oo r e eios s g GA/Dee.
P S ey T (A s o e T/0ct.
ACLdatabaseccovvuus S0/Dec.
At roNbINes i s e 14/00t,
ACHVERAES v e s 94/Dec.
Adaptive thresholdo0u0 48/Aug.
Aggregatesoiiooeaids LiDec.
AIM (advanced interconnect

modeling) 497/ Feb.
Algebraie factorizations 108/Feh,
ARBEOIUHRS ..., e smamranin 25/Dec.
Amplified spontaneous emission

CASE) L viov s comms 7, 13/Feh.
Amplifier testsel 15/Feb.
Amplifier, L55-pum fiber-optic 9Teb,

Amplitude compensation circuit .. 91/0¢t.

Analogvideovnns. B2/Aug,
Analyticblends 26/0¢t,
Analyticsurface coone 25/0¢t.
Analytic surface type detection . . . 66/0ct,
Antireflection coating 25, 45, 68/Feb,
Apexcreatlonnnne e ST 32/0¢t,
APl o s 24, 28, 28, 32, 42/Dec.

Application namespace 23/MDec.
Application server G9/Dec.
Approachvalues TTOet.
Arbitration il O 38/Apr.
Architectural model, 8/Aug.
ASIC design 91/Feb., 88, $2.June
ASIC DFT designrules 107/Apr.
ASIC technology evaluation G8/Aug.
5 B B e e R 10/Aug.
ALDMIC NAME " « ok il s vl 209/Dec.
Attenuator, optical 34/Feb.
Attributes 53/0ct., 24, 29/Dec,
RO s R S 8/Apr.
Audio interface ...ovoiiiiiiaeas 40/Apr
AUMHRE o e s 47/Dec.
Auger recombination 23/Feh.
Authenticated RPC 11, 47/Dec.
Authentication protocol 38, 43/Dec.
Authorization,«.cveeens 42, 49/Dec,
Automatic place and route 92/June
Automatic scaling Ab/Aug.
Automatic scan insertion 94/Fehb.
Automatic vehicle identification _

CAMTY oo s saaie v mithio s 95/Dec.
Autosamplercooinuin 14, 304Iune

B

BACIC POFOR - csaci00 i v ssmrairsiare S52/Aug.
BadkIBt Saver ..o csiemisms Sl/Aug.
Backscatter RF/AD 95/Dec.
Bandwidth, LAN 15/Aug.
Bandwidth allocators 37/Aug.
Bandwidth guarantees.. 35/Aug.
Bandwidth sharing S6/Aug.
Base classivenininnn G0/Dec.
Baseclasslibrary A1/0eL.
Base development environment . . G3/Dec.
Basic local operation (B-LOP) ., ... 8/0e¢t,
Behavioral modeling 91/Feb.
Behavioral simulation 26/Apr.
Benchmark circuits 67/Aug,
Béziersplinesoveevinnns B2/0ct.
Belrnaes o T R S G2/ Apr.

© Copr. 1949-1998 Hewlett-Packard Co.

Houghton Jagger, Gitnter W. Parel, and Jitrgen W, Hausmann
Zero Bias Detector Diodes for the RF/ID Market, Rolando R. Buted
Backscatter RF/ID Systems

L T e 29/Dec.
Birefringence 28/Feh.
BIST implementation 106/Apr.
Bit processor0000..n T8/Feb.
ol S S M e N 934 une
Hlanietews] ko s e e 53/Ang.
Blend surface creation 20/0ct.
Blepding: oo v diisa i 24, 61/0ct.
Block codes: - oosmiivcvvaaan 2T/ Aug.
Block move S R H/Apr
Bloeletransfer . .. coinnveniaids L3 Apr.
Blockwrite ..o ciiemsive i 48/Apr.
B-LOP (basic local operation) S80c¢t
BluaBaht .. onman casnvinsaan T2/Feb
Booleanengineovnaeans T4/0ct.
Boolean factorizations 108/Feh
Boolean set operations 7,8, T4/0ct.
Boundary representation (B-rep)

PRRIBIETS oo it o sk wls Al TOct.
Boundeddelayc... J/Aug.
Branch data architecture T3/ Dec.
B-Rep model: i< vovsiunne e win T4/0ct.
B-Rep (boundary representation)
TAORBNRES - = a7 o S s i T/Oet.
Bridging defects 112/Feb.
Bridging fault model 112/Feb.
ST e s s 26, 62/0ct.
B-tree clustered file 67/Dec.
Bubble el o car i 14, 63/June
Bubblefactorvviionas 14, 64/ une
BubbleWorld ... conunssianssses 66/ June
BB <o e eraasisign s Glune
Bulletinboardcv0 000 .0 0900t
BRIESEBIIOT 2w < oo onnpnsiioms 30/Aug.
Business Serversoco00nn THApr.
Bus interface block 92/une
BUussifngcccvvnnsonnnanes B4 une

C

CSoftBenchoovvevinnn. 82June
CHd vvvnvnnnnsmassasrronssses DHDEC.
Ca+ elass library ..., .. i Dec.
Ce+ SoftBench ..o S20une

December 1995 Hewlett-Packard Jourmal - 105

Cable e o daini ssisdmsnin TIAUg.
Cache (Model 7Y) coaveimmss G/Apr.
Cache organization (PA T100LCY . . 16/Apr.
CAD object manager B1/Oet.
Calibration attenuator 94/0et.
Calibration. optical receiver 6/Feb.
Call progressvoovees 68, T3/ Apr.
Canal SOEfaees’ < o o i 26/0¢t.
Caller D uviivivanrismeni 649, T2/Apr.
Capillaryiveoviseion 6, 11, 25, 57/ June
Capillary cooling system27June
Capillary electrophoresis Gllune
Capillary electrophoresis

detectorcell oo civnins G2/ une
Capillary electrophoresis

Tt n b 13005 1] A NS R LA 104 une
Capillary gel elecirophoresis Ghhune
Capillary handling 25/ June
Capillary temperature control 414June
CAPPINGE < oo s s mmrmnmanimnis 68/0¢t.
Capture window 95/Dec.
Carvier itetime .. cooiumusnanns HO/Oet.
Carry lookahead adder G6/Apr.
Cascaded controlcoc00a. 42 une
Cascaded hubs.coovinn 14/Aug.
CABERTES v v icmrarsraiisins G woRe o ohios 250une
EREf DI o o imenmpnTma GO/Dec,
Catch information ..,........... 15/0¢t.
CDEAAVEHEIET. . v s epopns 26/Dec.
CDS directory structure 26/Dee.
Cell Direclory Service (CDS) 23 Dec.
Cell managerovveeweunuan GO/ Dee.
(aramic resonator ..., H2/0et,
Coannel filters 83, 98/0¢t.
(arge-coupled device (CCD) 45/Aug.
Child pointersccroivaais 26/Dec.
CHIPTEST instruction 108/Apr.
Chiral analysisoooouioioia 12Mune
Chunlesize it iy oo T8/ une
Circuit domain. . .. cvoacsieaa 47/Feb.
CAGBA ovnnsan i eRE A GOMee.
Clearinghouses:oovevevnaans 26/Dec.
Client classes vivemsio SDBC
Client proxy ohject55Dec.
Client/server binding 10/Dec.
Client/servermodelc00:000 GMec.
Clock tree synthesis and

verifieation ..o cmiinsaaan Y94/Feb.
Cluster managerooen s al, H6/0ct.
COBOLSoftBench <ooooon. ..t A2 June
CODED o meiinsseieams s THApr.
Coding in 100VG-AnyLAN 27/Aug.
COFABIOT i v v ompiimm bismisin s e 106/Feb.
Color lookup tables 49/Apr.
Color precision cvsceavsns 52/Apr.
Color tREBEY «.v.vov s ommorwmnayses 52/Apr.
Command-line interface (CLI) TI/Dec.
CORMIEL ..o ceweeainn s o massames s 65/Dec.
Common ACL management module
TALEFEA0E o assnimimmmsrasina s i 51/Dec.
Commontisp ... v amevmmeiii 63/0ct.

Common Object Request Broker
Architecture (CORBA) 86, 95/Apr., T6/Dec.

106 Decembe - 1995 Hewlett-Packard Journal

Complex interfaces T7/Feb.
Complexsignals00.... 87/0ct.
Composite name 30/Dec,
Composite video signals H2/Aug.
Compound nameo..00 20/Dec,
Computer visionoo.... G684 June
Concretedataclassccoven- GO/Mec.
Constant-radius blends 25/0ct.
Constructive solid geometry (CSG)

TOUEIeS v e e T/Oet.
Comstructors .. vooosnnasmnimanes GO/Dec.
Containment values TT0ct.
Catext .o ovsnmars s nve s 20/Dec.
Context implementation 28/Dec.
Control gignaling .. o.conveesmnss 24/Aug,

Conversation or session keys 43/Dec.
Corporate centralized data

arehitectire comovnausar e TaDec.
Cost-benefit analysis 64/Aug.
CPU partitioning (PA 7T100LC) 14/Apr
Crash FRCOVELY ... vicvmimmsinans 65/Dec.
Critical path testingq. 108/Feb.,
Crosstalle o .onevrvnsamanas 19, 21/Aug.
Cross talk analysis ... qovesevsaes 22/Aug.
Cross-tangent curves 28/0¢t.
Cryptographic keys 11/Dec.
CHBE o v e 106/Feb.
Cube partitioning 105/Feb,
Current measurements 41 hune
Cyelic redundaney checks, 31/Aug.
D
Data access arrangement 69, T1/Apr.
Dataencryption .,.............. 43/Dec.

Diata encryption standard (DES) . 43/Dec.
Data exchange,

HP PE/SolidDesigner 35/0ct.
Data structure manager 51/0c¢t.
Database Servero.o.... G1/Dec,
DCAM . T1/Dec.
DCEcellvvvvvmeiernones 7, 68/Dec.
DCE directory services 23/Dec.
DCE infrastructure 19/Dec.
DUE naes v s mnvibasninidiai i 23/Dec.
DCE namespace 13, 23/Dec.
DEE redistyy - v i 38/Dec.
DEBERPC oo comsmnrmmnsmaiiiass S/Dec.
DCE security Service:iv... 41/Dec.
BCEthreads . .oonviissmmuizsve T/Dec.
Deal v s s s i 44/Dec.
dpi (dotsperinch) 45/Ang.
Debug and test (PA TI00LC) 32/Apr.
Debugging serialtests 87/Feb.
Delay fault testable circuits 105/Feh.
Delay modeling:cocnvemene 99/Feh.
Pelayealith ... cocememomasiss aee 10:/Feb.
Delay versus wire layer 102/Feb.
Demand priority protocol 8, I'¥/Aung.
Derived class, G0/Dec,
Design methodologies

CEATIOICY cniramesmmiamisrass 23/Apr.
Design process (PA TI00LC) 13/Apr.

© Copr. 1949-1998 Hewlett-Packard Co.

Design rules, ASICDFT 107/ Apr.

Design rules, metal width 101/Feb.
Design rules, Inpg testing 33/Apr.
Design-for-testability features ... 107/Apr,
Deskiop scanners 43/Aug.
PISSEROELONS .« sorm s e v G0/Mee.
Detection, CE 114une
Detector diodes 94/Dec,
Detector linearity error 97/0ct.
Detector module ..., 104une
DFS client components 14/Dec.
DFS server components 14/Dec.
DFS token management 14/Dec.
Differential group delay 29/Feh.
Differential quantum efficiency ... 253/Feb,
Digital video standards GO/Apr.
Dimension-driven modifications .. 12/0ct.
Diode array detector 20/ June
Diode array spectrograph 11 une

24, 25/Tec,
. 24/Dec,

Directory information base . ..
Directory service interfaces

Directory Services ... ouves s 23/Dec,
Directory system agent (DSA) ... 25/Dec,
Directory user agent (DUA) 25/Dec.
Discrete cosine transform GO/Apr.
Disk array controller 71 une
Distance learning seminar 38/Aug.
Distinguished name 25Mec.
Distributed computing application
management (DCAM) Tl/Dec.
Distributed Computing Environment
(DCEY g sy Nusssnssmnmsgss B/Dec.
Distributed file service (DFS) 13/Dec.
Distributed time service (DTS) ... 12/Dec.
Distributed system testing T6/Dec.
DRREY & cosvos s H2/Apr.
Dither table shape AH6/Apr.
DNA analysis . ..cooviesinneinns 12/June
Document scanning 43/Aug.
Dot elock regeneration 53/Aug.
Double-balanced mixer 99/0¢t.
DHvIng valnes ;.o ovv s s 12/0¢t.
DTMFLONES ..oovernnennennnnns T Apr
DTSEIETIE o vesieimimaisnsmc oy iocecs 12/Dec.
DTS SEIVEIE . v sonsns s s 12/Dec.
DUAcache ... oo n... 25/Dec.
DUal I88U€ . . oovvmin e e smmr s 20/Apr.
Dual-tone multifrequency
EDIMIEY ooe vvmrmammmamaiens see GY/Apr.
Dynamic modeling 6, 7/0c¢t.
Dynami¢ Fange0neeeereans 22/June
E
Economicmodel 61/Aug.
Edge emitting LED (EELED) 13/Feb.
Edge nonmanifold _............. 75/0¢t.
EISA-to-SCSI controller Tl e
EIRALONAG: -4 o sitimmanionieis sm@iie 76 June
Eleckrodes:, o ssmnmaaiiraa i 26/hune
Electrokinetic injection 154hune
Electronie schematic capture 88/June

Electroosmetic flow 6June
Electrophoresis _.........ccc000: 6/ June
Embeddedclocks............... T7/Feb.
EMC and EMI control 10/Apr.
Encapsulation...............u 95/Apr.
Encina®000toolkit 62/Dec.
L T e e e 658/Dec.
Endto-enddelay ias e SATANE
Enterprise namespace 23/Dec.
Entity manager: 51, 53/0ct.
Entry-sequenced file 67/Dec
Erbium-doped fiber amplifier
7 e e e PRI 9/Feb.
Erbium-doped fiber amplifier
LeSLSYSIEM ... ovvevnennnnnnns 13/Feb.
Errordetection................. 27/Aung.
Ethernet (IEEE8023) G/Aug,
Euleroperators 25/0ct.
Evaluating performance claims . .. 67/Aug.
Exvalaation (oo s s siies 43/ June
Event notification S8/Apr.
Exception handling H5/0ct., 6vDec.
Exceptionmodel 8/Dec.
Extended lighipath capillary 14/ June
Extended privilege attribute
certificate (EPAC) o vivw v 42/Dec.
Extended registry attribute
(20 S i SO 42, 45/Dec.
Extension language G9Y0ct.
F
Failing test vectors 110/Feb.
Failure notification S0/Iune
Failure recoveryooovveaaaas S0/une
Fallback security technology S6/Dec.
Farend cross talk (FEXT) 19/Aug.
Fasbberll oo o S i A/ Apr.
Fault diagnosiso00coiia. 110/ Feh.
Panltmoaels . oo cnsrnacaaiiis 111/Feb.
0]) o e T e B 10/Aug.
Feature recognition 10/0Oet.
Federated naming 28/Dec.
Fetal monitoring measuring
(T e R R AR R e 83/Dec.
Fetal telemetry system 82/Dec.
Fiber test system, automatic 57/Feb.
Field programmable gate arrays
(FPGAS) «vvvvivinnananannennns S0/Apr.
L e T e 15/Dec.
T (507, s e R £y S S 25/0¢t.
Filter function logic, ST/Apr.
Filterpolegail i hiaiiiis s 95/0ct.
Finger information 35/Dec.
Firmware, CE .« .. ioos cociiog oo 36/ une
Fixed analyzer method J0/Feb.
Flat panel display 51/Aug.
Floating-pointunit 1/ Apr.
LTS (111 SR P e Rt 1215 11111)
FM demodulator. 82/0¢ct.
FM discriminator H3, 88/0¢t1.
FM OuPUES < v H8/0et.
Forward differencing G1/Apr.

Framebalfor.ccictomiers 43Apr.
Frame buffer architecture 56/Aug
Frame buffercontrol 58/Aug.
Frame formats ...: 2iiessianads 30/Aug.
Frame rate matching 56/Aug.
Frame rate synchronization 5%/Aug
Framing algorithms 78/Feb.
Framework classes 56/Dec.
Free solution capillary electrophoresis
Lo b S e e e A et f/dune
Freeformblends 26/0¢ct.
Freeformsurfaces 61/0¢t.
Frequency response, optical
TeCeIVEISooronnanrrnnrnn G/Feb.
T e 100/Feb.
FYOREDOrel . s S nis 52/Aug.
Frontal analysisccc00ns 59/ June
fr (transition frequency) 9T/Oct.
Fused silica CE capillary 6, 57/une
Fusionmethod <o 99ApTL.
G
GDScomponents0000 25/Dec.
Generic model, serial
communication systems T8/Feb.
Generic Security Service API .. 42, 47/Dec.
GEOMERY . it s aeese T6/Oct.
Geometryengine 0.0 61/0ct.
Geometry selection 10/Oct.
Global Directory Agent (GDA) 23/Dec.
Global Directory Service (GDS) . . . 23/Dec.
Global namespace 23/Dec.
Graphics accelerator A3 Apr.
GIEDRICSOID oo v A3/ Apr
GSC (general system connect) bus
............................ 6, 80/Apr:
GO interface oo ol i L e s J6/Apr.
Guaranteed performance 15/Aug.
H
Halfword instructions G4/Apr.
Hardware cachesc..0.0. 84/0ct.
Hardware description
language (HDL)ccocvvnves O1/Feb.
Hardware RAID architectures T3/June
HCRX-8 graphics device 52/Apr.
Hierarchical bit streams T/ Feb.
Highprionty o sl posaiiae duil L3/ Aug.
High-voltage control 40/June
High-Q resonators 91/0¢t.
Histograms and thresholds 48/Aug.
History-based systems TOct.
HINE oiiaaessaniassisamamams H7/Feb.
Hot-plug........ & i vovws THJune
HP-ACCHPage . v vnvviniasinns 43/ Aug.
HE CE Instrument. ... vosssne ovs 10 Tune
HP ChemBtationocvivanas 10, 44/ lune
HP Color Recovery 49, 51/Apr.
HP Distributed Smalltalk 86, 95/Apr.
HPPAD o i i 5w viv o wimepmmemas TO/Apr,
HP-PB bus converter S0/Apr.

© Copr. 1949-1998 Hewlett-Packard Co.

HEYNE - ot o B S s 52/Aug.
Hubdeskm ..., ivcsssevrsscs 39Aug
111 AR e o e R 13/Aug.
!
Ippg implementation IVApr
IDL compiler (idl+=+) 55/Dec.
BERRIIIT . e 6/Aug
L P T 36/Aug.
IF bandwidth filter o 80t
IPWMOAEE .oveviinneasass 82, 89/0ct.
EPEERTRE . .« ocivamoranaeronia srarararasats 61/Apr.
IGES - avimesasamons svas sma 38/0¢ct.
I-LOP (intelligent local operation) .. §0ct.
Imaging, voltage contrast 102/Apr.
IMPEISENOIEE & . oo e e 21/Aug.
In-cireuit emulation VApr.
Index guided laser 20/Feb.
Indexedcolor 52/Apr.
Information technology 16/Dec.
Inheritance 97/Apr.
[T s T Y e it S A2MJune
Injection control algorithm 41/June
Integrated login 00000 34/ Dec.
Integrated login library
(libauth Thrary)n 35/Dec.
Intelligent local operation (I-LOP) .. 8/0ct.
Intensitycovnvunnnanns 45/Aug.
Intensity noise technigque t/Feb.
Interarrival-time jitter 356/Aug.
Interconneet ::un. . e aine 97/Feb
Interface Definition Language
A1) 3 R A R5/Apr., 6, 56/Dec.
Interface repository HT/Apr.
Interferometric method 30/Feb.
Interline capacitance, .. 100/Feb,
Internal sampling B4/Apr.
Interpolation profiles G3/0ct,
Interpolation subtraction
e s s e e 13/ Feh,
INterrogalorcooveaia. S4/Dec.
Interrupt controller F9Apr.
Intersection graph T5/0et.
Intracoded frames 61/Apr,
I-0) down-converter 83, 102/0c¢t.
Isoelectric focusing Gillune
Isotachophoresis GAlune
Iterative prototyping O/ Apr.
ITU-T narrowband ISDN B6/Aug.
J
Japanese IDcode 89/Dec.
Jitter analysis: ... oo roonaai 44/Feb.
Jitter tolerance b5/Feb.
Jitter transfer b5/Feb.
Jonescalculus.ooiin 28/Feb.
JONBSTRAETIN 2o 5 el ranadavanins 27/Feb.
JRBG: w5 s v itmaiemmsania GO/Apr.
JTAG (IEEE 1148.1) o vovvmvienn 42/Apr.
JURCEONIS i 5 5 v m i wamm e i 26/Dec.

December 1095 Hewlett-Packard Journal -~ 107

K

Kerberosg ..invemsmaaiass e a8, 41/Dec.
Key distribution center (KDC) 45/Dec.
T 43/ Dec.
L

LAN Megacell . ..omemaensssins A1/ Apr.
Laser narrowband G3/Feb,
ST) (EL S T2/Feb.
Laser, multi-quantum well ridge

wavegmde ..o vmnans v e s 20/Febh.
Laser, surface emitting 67/Feb.
Laser; vertical-cavity ..c.coevviis T24/Feb,
LASI (LAN/SCSI) chip 6, 36, B0/Apr.
Legacy environment 1 Dec.
LUt BRTATY © oo oo mimsp smnms son g SIS0
Lifetime, session I6/Dec.
Linear aceuracyccov..n. 48/0et.,
Linear detector ¢ireuit 06/0ct.
Link initialization 15/Aug.
Liquid erystal display (LCD) 51/Aug.
Liquid crystal display technology . 58/Aug.
Liquid-phase analysis , S/June
Local area network technology 6/Aug.
Local operations: .. .viivisersens S/0ct.
Locking service G4/Dec.
Lo oo v s S T G1/0ct.
Log weighted average 104/0¢L.
Logicsynthesis .. .ooaoaacocon 91/Febh.
Logical channel identification 79/Feb.
Logical data volumes 64/Dec.
EOgIN oo smsmemsansn i st 34/Dec.
Login expirations 37 Dec.
B v i R s S 8/0¢t.

M

Malan/Wentzel model G1/Aug.
Mapifold Seligs). ccvmmemrassosrry THOet,
Marching algorithm 26/0ct,
Master/slave replication T2Mec.
Matcheriteria THApr.
Media aceess control (MAC) 18/Aug.
Media recovery Gh/Dec.
Member functions G0/Dec.
Memory controller (PA T1I00LC) .. 15/Apr.

Message digest 5 (MD5) algorithim 43/Dec.

Metal migration analysis S4/une
Method execution37/une
Micellar electrokinetic

chromotography G/ June
Microglass lathe 63/ June
3 0 n 47 L R e e 66 June
Microwave receiver S0/0et.
Middleware:; . ..iivisiimdiiia G1/Dec.
MIECOTIAE: | o b a2 e i 72/Dec.
Migration time reproducibility 501/ June
Mixed-language debugging S64une
Mixed-languagemodel s6/June
Modeling resolution THIOet.

Modular measurement system
(MMB). . s msmiisaimiass T B81/0ct.

108 December 1995 Hewlett-Packard Jourmal

Movementcontrol 104 une
MPEG compression GHApr.
MPEGdecoding GB/ApY.
MPEG decompression Gi3/Apr.
MPEG] coveanvsvamoiseta s GOMApr.
MPower 2.0 . coossesausmssians GO/Apr.
MEOTARY s sz e 15/Apr.
Multicell configurations 47/Dec.
Multilevel signaling 21/Aug.
Multilevel synthesis 107/Feb.
Multimedia applications 33/ Aug.
Multimedia instructions, .. 21/Apr.
Multimedia workstation GApr
Multiple interfaces TT/Feb.
Multiplexingot 209/Aug.
Multithreaded processes, ... G9/Dec.
Multi-quantum-well ridge
waveguide lasers 20/Feb.
N
WEAME oo Feaeriaeos 23, 29/Dec.
Name-based authorization 42/Dec,
Name service independent (NSI) API
............................ 11, 24/Dec.
NAmMEERACE: cawvivanbova s i 23, 29/Dec.
NamURE <oovonoesmsi e sas 88/Apr.
Naming convention 20/Dec.
Naming federation 28/Dec.
Namingpolicycccviiinnen 25/Dec.
Naming service covvvevs 28, 29/Dec.
Naming symtax ... vpeveeerrises 28/Dec.
Naming systems 23, 28, 29/Dec.
Narrowband laser i3/Feb,
NelYVOy oo G3/Feb.
Near-end cross talk (NEXT) 19/Ang.
Nested transaction ., G5/Dec,
Net present value , ., G2/Aug.
Network Computing Architecture
L S — 8/Dec.

Network Computing System (NCS) . 8/Dec,
Network data representation

NBRY cicocmammmiensase s 10/Dec.
Network interface card, 41/Aug,
Network protocol layers 15/Aug.
Network time protocol (NTP) ... 12/Dec.
Network topologyooounn S/Aug.
Next-naming-system pointer 30/Dec.
Node manager 69/Dec.
L 22/ June
Nondeterministic bit streams . ., . . T7/Feb.
Normal priority 13/Aug.
NURBS (nonuniform rational

B-SpHAE) .onvioimnimi comeimme o 25, 61/0¢t.

L) 51 oo (R G0/Dec.
Object ¢lass ... 24/Dec.
Object entriesoooo.. 26/Dec.
Object identifier 26/[Dec.
Object management group

CEIMATY o minnscncmvinms:e 85, 86/Apr., T6/MDec.

Object management services 51/0ct.

© Copr. 1949-1998 Hewlett-Packard Co.

Ohject-oriented application

framework Bb/Dec.
Object-oriented development
environment 0. BA/Apr.

Object-oriented programming 79/Dec,
Object request broker

(ORBY vmawesmsniass 85/Apr., T6/Dec.
Object technology -............. 97/Apr.
Object testing framework

COXTRY v S 75, Ti/Dec.
OCR algorithms . ..o0i oo e 46/Aug.
OCERengine :....unmomiviaain vz 47/Aug.
Offsetsurfaceooicoveiiinas 27/0¢ct.

Oligonueleotide failure sequences . . 84June

OMMPE: cnammmnssszinanss 22, 44/Feb.
QODBBMS: ... coonsre cines smsm v 8T/Apr.
OODEE :vnvsmmsminssmeaes v 5h/Dec.
Optical atfenuator 34/Feh.
Optical character recognition i
(OCR)) .unmssmansmmaaaireiims 43/Aug.
Optical connector endface
characterization 40/Feb.
Optical isolator
characterization0vs 41/Feb,
Optical low-coherence
reflectometryoooiiiiiaan 43/ Feb.
Optical receiver
charaeterizationoooo ivenn 6/Feb.
Optical sampling rate 45/Aug.
Optical system Sd/Apr., 204Iune
Optical time-domain
Reflectometryo ovvnn.. B7/Feb.
ORB (object request broker)
......................... S/Apr., T6/Dec.
Order fulfillment .., S3/Apr.
Organic acid analysis 12/June
OTDR SYBLEM « v vy cvem v puinnn 57/Feh.
Override filecoveirrmons 38/ Dec.
P
Paced byte wide ST/ Apr.
Paced word wide 3T/ Apr.
Packed bytewide ST/ Apr
Pagemode Gisoiieimnainmeianiss 47/ Apr.
Page segmentation 47/Ang.
Parallebport ool oo o s S9/Apr.
Parallelisre conssmaarmnsas TT/0ct.
Parasold voanasnnssssrmumaas: T/Oet.
PA-RISC multimedia
ISEPUCEONS o bmr i emms & s sias G4/ Apr.
PA-RISC PA T100LC
PIOUEESOF . ovvmenscammmes G, 12, 23/Apr.
Partial Booleans T 0et.
Passive tags i 94/Dec.
Passwords, 3/Dec.
Password strength checking
ALGOFRINS oo cvis s sssnsmonese 3T Dec.
PERESTHIE o vvmspimmvmmmspmmne 45/0¢t.
Peak area reproducibility Al4June
Peak purity measurement 13June
Peer-to-peer communication G7/Dec.
Peptide mapping SJune
| L T e o T0/Dec,
FPersonality ...uiciinarsains 18, 21/0¢t,

Personality modules 82Feb.
PoparBaliomcovsaacien s T80ct.
e TR O W T G2/Apr.
Photoreceiver characterization 6/Feb.
Physical layer (PHY) 18/Aug.
Physical medium

dependent (PMD) sublayer 18/Aug
Physical medium

mdependent (PMI) sublayer 18/Aug.
Physical specifications 78/Feb.
PEnaaes - oosvne s e s 93/0ct.
PHUSHROYAY | coauavcrvasaes s 14/Apr.
Pinned dialog boxes 15/0ct.
PLA methodology 23/Apr.
Place and route 93/Feb., 92hme
Poincaré sphere ,............ 27, 20/Feb.
POIBBHSBOW: ..« .ovvevminsnmmins Trhune

Polarization dispersion vector 28Feh.
Polarization extinction method . . . 14/Feb.

Polarization-mode
OEDRIRION. oo n s soseiries 27, 41/Feb.
Palieychainov0vsvvesaisaas S0/DEC
Polyethylene glycol surface
SORUDEE- i < sl e e ¥ June
POlymiprphismi - s sy 9T/Apr.
Polynomial arithmetic 31/Aug.
Portable Operating System Interface
(POSE) s daaseans T/Dec.
Postsilicon verification 26, 29, 31/Apr.
Potential detection 115/Feh.
ppi(pixelsperinch) 45/Aug.
Precision reflectometer 39/Feb.
PEOPANR. oo i wws s i bateiisia g 65/Dec.
Preselector centering H5/0ct.
Presentation/semantic split ... 88, 97/Apr.
Presilicon verification 26, 28/Apr.
Pressure injectionoc.eio.un 154June
Pressure measurements 414June
Primary [0gin . covviroi s onne o 3BDEC
Primary storage000.00 T2/une
L) 3o I D 42/Dec,
Principal keysoooiuininnn. L Dec.
Printer throughput 104/0et.
Privilege-based authorization 42/Dec.
Privilege service, 45/Dec.
PRODBX coecnncsnsnssnss 45/0¢t,
Product design (Model 712) T5/Apr.
Product design (HP S10104) 57/Aug.
Product stewardship TT/Apr.
Program animation 85/June
Programmable gain block 95/0¢t.
Programmable optical
attenuator 34/Feh.
25 |t O - R 45/0ct.
Protein analysis STMune
Protocol data unit (PDUT) . 10/Dec.
Paeado.color . covi diiinin s veis SAApr,
Pulse detectionocvvevin. 96/0et.
Q
AL e R A T e A e s SOet.
Quad flat pack (QFP) 14/Apr.

Quantumwell 21, 68Feh.
Quartet signaling vese 20/Aug.
R

Radlio frequency identification

BEIDY o M Dec.
RAID technology Tl, T4June, 72Dec.
Railroad e 20000t
Randomitesting 29Apr.
Rapid prototyping 2% une
ROAEEE . - oicaivsera s 101/Feb.
BB ECUT, s s siaiereisation 94/ Dec.
Read-only 1agscvenvennsene M4/Dec.
Read/writetags 94/Dec
Realtimeclock 39/Apr.
Receiver characterization,

OPICAL . - o s e i/Feb.
Receiver, microwave S0/0Oct.
Recoverable queneing service 68/Dec.
Rectangulararea fill A4/ Apr.
Refeount entities 53/0¢et.
{172 (2t 1 Ty O SRR S s 29/Dec.
Reflection of solids 78/0ct.

Reflectometer, precision optical .. 39/Feb.

Reflectomelry, optical

low-coherence,c..oounen 43/Feb.
Regional centralized data

architecture T T Dec.
REFISEIY oo miliir i b e 37, 41/Dec.
Relationsolver 7, 13/0¢t.
REIREIONS s v0m s i aiins o 53/0et.
Relative distinguished name 25/Dec.
Rolutiveftle oo oo oo v G7/Dec
Relative intensity noise (RIN) 8/Feb,
BB e s sns sy 25/0¢t.
Remote bridge 35/Aug.
Remote procedure call (RPC)
....................... 86/Apr., 8/Dec.
Remote procedure call (RPC)

7117 i e R O SN S 28/MDec.
Repeaterchip oo ..oovvvainiaaas 40/Aug.
Replenishment control 414 une
Replenishment system 14, 34/hune
Reproducibility testing 504Tune
Requestwindow 14/Aug.
Resolution . mi i s s s 45/Aug.
BEmodule . voivovinvineav 81/0¢t.
Bidgelamar L. oo s st 239/Feb
Ridge stroctitre . ..s «oauvm s v v 43/Feh.
Ridge waveguide laser........... 20/Feh.
RLC tanle et < o oo s o v vn s sinsns 91/0et.
Robustly path delay fault

testable (RPDFT) .. oooovnvuins 106/Feb,
Rolling ballblend 25/0¢t,
BOMUINS . oo s s vm e sy Ti0et.,
Root of a namespace 29/Dec.
ROODIMY iaiasoiianiss samanins sae 14/Aug.
Round-robin node selection 13/Aung.
TIN50 44 reios wrrmarcs 24, 25/0¢t.
RPONSIAPL. .. civamsicusns 11, 24/Dec.
BPODPIOtOCOIS <oiveviiivomessine 10/Dec.
RPC serverentries 26/Dec.

© Copr. 1949-1998 Hewlett-Packard Co.

S

Sample and electrolyte handling .. 28/June

Sample injection 32 June
Saturation arithmetic __ G/Apr.
Saturation logic BG/Apr.
S A R G T e 49, 55/Aug
Scannersoftware_ .. E RN
SCSI megacell 4VApr.
Second-harmonie generation T2 Feb.
Secondary storage T2hume
T R R P PR 41/Dec.
Secure communication . .- -- 45/Dec
SeCHBLY « .o s s eais Y Apr., 34/Dec.
SeCUrily SEIVEE .- ..vccvisverinss 41/Dec.
Security technologies 34/Dec.
Semantic/presentation split ... 88, 97/Apr.
SONEIEIVIEY .« cvovn v nraenvnerenns 22/June
Sensitivity gain, bubble cell GAJune
Separationcontrol S June
Separation environment L June
Separation principle GiJune
Separationsubunit A8 dune
Separationumitcoiieinaan 10/June
Sequencer architecture Ti/Feb.
Serial device test sequencer T6Feb.
Bemial ek eard oo inde Sl T6/Feh.
Serial Test Language 76, 85/Feb.
Serial test sequencer 82/Feb.
SeIVHECIAsEEs . < v suniE R 55/Dec.
Service teket - .. vive e s 12/Dec.
BIEENTIO ot arsrabhttsicn o s A o 39/ June
STV v sl ewreraraat i a2 AR SR T5/0ct.
Short-wavelength laser T2/Feb.
SIMple average . .covv e anvsivee 104/0et.
Simpleditheringcv00ien. HZ/Apr.
Simple weighted average 104/0¢ct.
Single sign-on problem 39/Dec.
Single-step login 34/Dec.
Singularity 28, 32/0ct.
Sinusoidal jitter ... oo 53/Feb.
Skinning ... GR/Oet,
Small point-size characters A/ Aug,
Smalltalk .. .cc.oivvnnnrrnnns 85, O4/Ap
Smoothoperator, 106/Feh.
TN L G R R e A 20/Dee,
Software buy-versus-build

AeCIBIONS .. vy vnnreannesseasaass 61/Aug.
Software caches 85/0ct.
Software RAID architectures 73/ June
Software Solution Broker 93/ Apr,
Software testing T5/Dec.
Software video support, ... 48/Apr.
Solid modeling design system B0t
Source codecontrol g3Lune
Spectral libraxyooooa0vinn 124une
Spectrum analyzer 0/0¢t.
Spiderdiagram0 SI/Apr
Sphe ucessiaarioa B SE R 2710t
(20§ T e e e A G20t
Spline library ...covviiaaas v 64/0¢t,

December 1995 Hewleti-Packard Journal 109

Spurious responses, EELED 44/Feb.
Standard cells 91/Feb.. 92/une
State manager o8/0ct.
Stepgains: it siiasie e 95/0¢t.
STEP (standard for exchange
of product model data) 43/0¢t.
Stop register/split transfer 47/Apr.
StrayBeht0cnnnse caipsines 22/Tune
SRPESEE . . vy s el 77 June
Stuck-atfanalts ... vcicaiaa 110/Feb.
Structured file system00 0 67 Dec.
Sibeoniext siseviasiiiEEE s 209/Dec.
Superscalar execution ., 20/Apr.
Surface coatingsou 57/ une
Surface emitting laser 67/Feb.
Surface modeling o0 G1/0et.
Surface modified capillaries 58 June
SWeepIng . vvvoviivinn e coosw B8/0CL
SWALChING. siconnmmpinawsess cuis 10/Aug.
Symbol synchronization
abgorithras:. . viimareemssinss T8/Feb.
Synchronously tuned filters 89/0ct,
Synthesis and routing 23/Apr.
System administration T0/Dec.
System administration manager
GRAM) coe sy s TR T T1/Dec.
T
THE L e s R 94/Dec.
Tangential intersections 28, 32/0ct.
TAP/SAP controller ... oo 108/Apr.
Target transmission time 37/Aug.
Technological domain 97/ Feb.
Technology constant 67/Aug.
Telemetry receiver H0/Dec.
Telemetry transmitter cvas 85/Dec.
Telephany - ::vviceversvinoinens S/Apr.
Teleservices project . .. cooveises A8/ Aug.
Temperature control 38/ Iune
Test developers T6/Dec.
TS HATIOSE .o vvnn s svipmmmm e To/Dec,
Test management subsystem T8/Dec.
Test system, EDFA 13/Feb,
Test system, optical fiber 57/Feb.
TestCase class . . - o oovvvnnrrnnnenas T8/Dec.
TestEnvironmentccoees T7/Dec.
Testing complex serial bit
BETEAMIS, s v vy srsine 4w mmierenie s winms T6/Feb.
Thread-to-TIDoooon... 63/Mec.
Threadsoiuiiiiunnnn. T/Dec.
Three-tiered architectures 62/Dec.
Threshold 45/Aug.
Throw statement- G0/Dec.

110 December 1995 Hewlett-Packard Journal

Ticket-granting ticket (TGT) 42/Dec.
Time-delay discriminator 99/0ct.
TED s v mesinn i b ow wves 18/Apr.
TLB (translation lookaside
buffer) Ssocubbauiisiesas 18, TO/Apr.
TMER: - esvoaisinmmanem v 25/Feb.
IREBA ocmnnmmammmiias e 64/Dec.
TOCO drbver - onmnmamevsvaiiss 88/Dec.
Token ring (IEEE 802.5) 6/Aug.
Tonedetection i vsmmana T Apr.
Pookbody: .camsmnminn s daanae 7, 50,
Topology 25,29, 63, T6/Oct.
Transaction(s) 58/0t., B5/Dec.
Transaction manager Ga/Dec.
Transaction processing 61/Dec.
Transaction processing monitor . . 68/Dec.
Transactional RPC- G3Dec.
Transceiver chipv0vermveoe. 41/Aug.
Transformation algorithms T49/Febh.
Transition curves 31/0¢t.
Transition frequency (fp), a7/0ct.
Transponder 94 95/Dec.
Trimmedmode 39/0ct.
Trimmed parametric mode 40/0ct.
TSN oo T AR 28/0¢t.
Tryptic digest analysis 124 une
Trae color s iih cu viivimvammm 52/Apr.
Teybloek v saimmes s s G0/Mec.
Tunable laser sources 20/Feh.
Two-level eircuit e 106/Feb.
Two-phase locking 65/Dec.
Two-tiered architecture i1/Dec.
u
Unbiased roundingc.oo0oan 64/Apr.
Undooperationsooovviin 59/0ct.
Unforgeable identities 50/Dec.
Universal unique identifier
(UHID) oisasasam o 9, 23, 41/Dec.
Unpaced byte widec00 3T/Apr.
Unpaced word wide AT/Apr.
Unshielded twisted pair (I'TP) . 6/Aug,
Untrimmed mode00.00. 39/0ct,
Update handlers 59/0ct.
Upgrading existing networks 10/Aug.
User interface builder 22/0¢t.
User interface, capillary
electrophoresis.. 44/June
User interface,
HP PE/SolidDesigner 14/0ct.
Uterine activity measurement 88/Dec.
Utility classes :.iccssammmniisi HMec.
LIV/Vis absorption detection 11/hune

© Copr. 1949-1998 Hewlett-Packard Co.

v

Varactordiodesc.o0. 00 93/0¢t.
Variable-bandwidth design HY/Oct.
Variable-radius blends 25/0¢1.
VEQ: 2825THY cunssaasmnr s G643/ Feb.
Vector signal analysis 83/0ct.
Vector signal analyzers 87/0ct.
Verification methodology 26/Apr
Vertex nonmanifold 75/0ct.
Vertex regions oo 25, 31/0cL
Vertical-cavity laserco0.v. 72/Feb.
Vertical Yetrace . . . cowemosvnasvas 52/Aug.
Videostandards ..--..ioeeenenqs GO/Apr.
Virtual functionsocooveis G/ Dec.
Virtualshelfooviviennnn S Apr
Vision, computer G8/June
VisualWorksooiiennnnn- 93/ Apr.
Voice mode operation T2/Apr.
Voltage contrast imaging 102/ Apr.
Voltage, current, or power control . 40/June
Voltage measurement 40 une
Voltage sensitivity0.. O6/Dec.
VRAMSE . i 43/Apr., 56, bAug.
VBYNE s o i v s aas e sy HA/Aug,
w
Wall srccininanicasssnmsmms 102/Apr.
Wavelength seanning method 30/Feh.
Window accelerator 43/Apr.
Wire capacitance 100/Feh.
Wire geometryovoveineas 98/Feb.
Wire load models 92/Feb.
Wireframemodeooeinveiis 41/0et.
Workplanesetc.oovevnens 64/0¢t.
Workstation, multimedia GB/ApT.
Write-ahead logging 63, 65/Dec.
XYZ
KBAR: ... v ooy nsonssnies 69, T0/Apr.
e 25/Dec.
XDSXOMAPIS . ..ovvvvinnennnnns 24/Dec.
2.4 e 1. 7 R ——— 20/Dec.
XFN enterprise policies 32/Dec.
XFN protocolsco.c0. 30/Dec.
X/Open Federated Naming (XFN) . 28/Dec.
YOBUI= . - v deases paviiiarsmise 62/ Apr.
YIG-tuned filter (YTF) 81/0ct.
Zerohiasdiode 000 94/Dec.
Zero injection effect h2dune
ZARPIRG | ooos s 26/0ct.

Part 3: Product Index

COBOLSoftBenchocoiiiineann. . June HE' TR —acoipasesza L c Sire b aie s NP
COBOLICSORBench ... ivivnnsnsiasonesaes June HP IHV100VG Selectable 1SA, EISA, and

COBOL/C++=SoftBenchot June PCl Adapters (HP J2573A. J2577A, and J25854) Aug

T e P . Aug. HP 100VG-AnyLAN/S000 (HP J2645AA, J2655AA) . . Aug.
HP _\t-t-l,p;,g.; 20 Aug HP 100VG-AnyLAN Development Svstem (HP E24634) .. Aug
HP AdvanceStack 100VG Hub 15 (HP J24104) viie s AUg HP 510104 Flat Panel Display vosennsss . AUG

HP AdvanceStack 100VG SNMP/Bridge Module (HP J24144) . Aug. HP G1600A CE Instrument ... SRR Sime
D eSO i = s S e s e E o e . June HP 3000 Series 908, 918, 928 and 938 amaae s AP
HIP DESK AFEAY . o o et June HP 3070 Board Test Family ST ISR, Feb.
HP Distributed Smalltalk Apr. HP 8156A Optical Attenaator Feb,
HP Encina/M000 oo Dec. HP 8168C Tunable Laser Sourcecovvuinnan. Feb.
BIR Intemrabed Lot == 5 it o b s e e R e Dec HP 8504B Precision Reflectometer Feb.
HP (X Jﬁ{'E T ____________________________________ Dec. HP 8509A/B Lightwave Polarization Analyzer Feb.
HP PE/Complementary Application Program (CAP) Oet. HP 9000 Series 700 Models 712/60 and 712/80 Apr.
HP PE/DDS-C oo oo e Oct. HP 8000 Series 800 Models E25, E35, E45, and E55 Apr.
2 Bl . § ol 1 Oet. HPHBHAIF Module: . o vocivemmnaemne e smess s pomsiasowis Oct.

HP PR . oo 0o e co s e e Ot HP 715018 Jitter and Eye Diagram Analyzer Feb.
HP PESheetAdVISOr ... oo Oet. HP 71910A Wide-Bandwidth Reeelvero oo 0. Oct.
HP PESOIADESIENTot Oct, HP 81600 Series 200 EDFA Test Systemoo0on.. Feh.
HP PE/SurtaceStyler oo i sosisiasaimas o emaees Oct. HP 81700 Series 100 Remote Fiber Test System Feb.
HP PE/WorkManager . . ., . .. < ivaasvs s vsse i ssnosasesos Oct. HP 8940) Series Vector Signal Analyzers Oct.
HP Precision Engineering Systems Oct. HSMS-285x Silicon Detector Diodes ..., Dec.

HP Series 50 T Fetal Telemetry System (HP M13104) Dec. ServiceGuard/UXooooiiviiiiiiiiii o Dec.

HP Software Solution BIoKero e Apr. SRLChOVEIUX vvr vgmmmsn mmm g s ce e e e o e s Dec.
Part 4: Author Index

Aitken, Robert C. eb. Butke, KeWiliSiq oo vassivvosiaians Aug. Freitag, S omawenmiiivaanss Oet.
Albrecht, Alan R, .ooviiiianiias Aug. Buted, Rolando R. Dec. Pullem AN - oo enieniy g Apr.
Armantrout, Robert.J. Oct. Cain, Christopher B, Feb. Ghonetmy, Adel, Apr,
Arndr, Heinz-Peter, ... O¢t. Campbell, Mark C. Dec. Gittler, Frédérievovvvevveaanas Diee.
Aol BB .. v vmmnscssairass Apr. Carmichgel, Cheryl o000 June Gittler, Mihaela C. .ooviinniniann, Dec.
Bagwell T E . oo meeovmoim e o Felb. CassidyJobnddr cosconnonizaa et Gordon; GaryB: ... i g June
Baney, Douglas M.o.o0oo 0t Feb. Caswell, DeborabiLs . ..oiiviiiian Dec. Grinham, Johm R. Aug,
Barkans, Anthony C., .. Apr. Coles, Alistair No ..o .o Aug, Gupta, Pankajcovvniaan Dec.
B MR . v s e Apr. Crouch, SIOn B.C. «.cvovuniavnis: Alg Hahn, Kenneth H.ooiviiaiian Feh.
Baverle, Martin. . .. cowevewinann June Cunningham, David G, Aug Halperin, Paniel L.o i Apr.
Beakpdohn'P, <o sosssiinaaiay Apr. Curcio, Joseph A, Jr. Aug Hanson, Dell ... cciiiiessncanangos Aug
Beck; Patriciad. ..o covimnnneannn Feb., Derickson, DennisJ. IFeb, Hausmann, Jirgen W, Dec.
Bek, Fritz. oo, June Dervisoghi, Bulentl.cocviiviis Apr. Hetfner, BrianLs : ivoos nvasie conaa Feb.
Benson, JamesL.cooviia.. Feb. Bnter, Raottlvovi v June Henny, Steven Q. .- v.ovvainaiiig Aug.
Bengeldaek Do conensinasno o 2 Apr. Dittmann, Monika June Hentschel, Christian Feh,
Bertsoly, Franz: . i siivensssses s June Daove, Daniel J. Aug Hernday, PaulR. Feb.
Bhandia, Aloke 5. Aug. Eisinaiin, SABIG o vaw e aimmmamesin Oet. Higalki, Wasley H: . connimsvneasss Aug.
Blanchard, Tery ..oz vesvmissames Apr. Enkerlin, Gerard M. Apr. Hinds, David Koo ininircinia Dec.
Boos: Andress ..o nsinnnyig Dec. Birat, POerH: . cow s viananmairs oreg Oet. Hoidge, David J.: cosssncainariaiis Aug.
Bowers, Dennis A. Apr. Fahlbusch, Klaus-Peter Ot Holloway, Robert R0 . June
Braun, David M. ..o . .. Feh. Fernandez, Luis M. Feb. Hopkins, Anne C.0ocveeenanas Dec.
B Gl « v s vomm v e s s Oet, Fiseher TG . .o s smmosesisis Feb. Horvowitz, Samuel B, oo oo Dec.
Browm, LiSaS. i cuensneviine i Aug, Foster;, Bradly 4. e snn caunauan Aug. Houng, Yu-Min D. Feb.
Burgeon, Daviddic c.ooiessaiiass June Fouquet, JulieE. Feb. Hug, Berthold Ot

© Copr. 1949-1998 Hewlett-Packard Co.

December 1995 Hewlett-Packard Journal - 111

Ishak, Waguih. co.o v siseinis Feb.
Jagger, Michelle Houghton Dec,
Jedwah; Jonathaneeie0s Aug.
Jegle, UIAKe v avnmmamcmssmanaans Junie
Josephson, D). Douglas Apr.
Jungerman, Roger ., Feh.
Kaltenbach, Patrick June
Kapetanakis, Ana V. Dec

Kellert, Forrest (.coc.ovus Feb,
Keremitsis, Eileen Apr.
Kilian, Jens Oet.
Klemm, Wolfgang Oet.
Knebel, Patrick ... oo o mnniin Apr.
Kommrusch, StevenJ. Aug.
Kong, Michael M. Dec.
Kubliny, Max B ccnsemsansaommamie Oet.
Kihl, Markus oo oasi st Ot
Kumar, Navaneetoo0.oo0 o000 Dec.
Loam, William K. Feb.
Lamb,Joel Apr.
LeCheminant, Greg). Feh.
Leckel, Bdgar «vovviimmmsaarin s Feh.
Lo BB oovcismisannsnn it Apr.
Lettang, Frank J. Apr.
Levin, David 8. .. .c.oviviisveisinens Diee,
Lie, Henry HoWoovarem s s Aug.
Lloy@y Panl: oo iioniiida v pviisgne Dec
Ludowise, Michael J. Feb.
Luo, Michael Z.cvvvvpeernnvnnn Dec.
Madden, Christopherd. Feh.
Maier, Frank A. ..o s s Feb.
Maldonado LuisM. Dec.
Marcus, Jane B. Dec
Mars, DAROY B ovvvimmsnsse e s s Feb,
Martin, Elizabeth A:o 00 Dec.
Marting Paol oo s ieg Apr.
Martinez, Antonio A,, Aug,
Martins, Henrique AS. June

HEWLETT-PACKARD

JOURNAL

5964-3557E

Mento: dlredl . i s dab P i June Sangidirgen oy Feb.
Maxwell, Peter C. Feb. Schild, Peter J.ocoevinnnannn. Oet.
McAllister, Curtis R. .. vovvvvvvvcs s Apr, Schmidt, Slegmaroovseessassns “eh.
McAuliffe, Robert E. Feb. Schneider, Wernerii:000. June
MeDougal, Jay D, v s Feb. Searby; Tomd, ioiuiicsissviniioagd Aug.
MceFarland, Stephend,, .. Dec, Seeger, Harald Feb,
MeQuate, DavidJ, Feh, Severson, Kenneth E. . Apr.
Methley, Steven G, Aug Skete, TOMLAL: oo uvemmseietams o Iune
Metzger, Michael ..o Oet Sloan, Susan'R. .o Feh.
Miller, ChristopherM. Feb. Sorin, Wayne V. “eb.
Miller, David.). Dee, Southworth, J. Scott Dec
Miiller Boll .o osmmsnimsmams snmv 550 Feh. Spencer, Thomas V.o JApr
Murillo, Karen L coccinmsiaoneins Apr. Bpratt; Michael B coveoaunaniis ’Aug.
Nakagawa, Shigera Feb, Stewart, Christopher E., Oet.
Noe, Terrence R. ..o .. Oet. Strohmeier, Fred June
Opike; Karsten . ..cvvsmms v s svvses Ot Swedberg, Sally A,o0cvhann June
Orth, Joseph B oocovvninivia v Apr, Tan; Michael R oo Feb.
Paret, Ginter W. o0 i Dec. Tella, Richard B ..o oiniiviiin. i Tune
Pearson, Roger A, Apr. Thaler, Patricia A, Aug.
Perez, William H. Fely PO G B vooor vmmmerenssise e Feb.
Prokop, Georgec0.00... Aug Truong, Bavid semmsimimg Dec.
Quint, Bawtd W oo omamsmmmssas Apr. Trutna; Jr,; Willtlam R.: .. Feb.
RaitePrasad soiiiinesnnn s sasans Fel. Tucker, S. Paul Apr.
Ranganath, Tirumala R, Feb. VanTuyl, Rory L.nn. Feb.
Rehder, Wallf ', ..o vivenmimns cos oo Apr. Walker, William L. ccvmmavnmimasss Apr.
Ricchetti, Michael000000. Apr. Walz, GerhardJ: oouamesammmmiia Oet.
Riecio, Anthony L . vovas, avisaans Apr. fang, Shih-Yaanocivvaiinas Feb.
Rice, Thomas A, O 3. Watson, Gregory C.A.ovnnnnn. Aug.
Ritzmann, Alwino. June Webb, Steven L. . vvvnirnrsansss Aug.
Bobrsh, Pater R . cueasnsmaen s Feb. Weber, Leonard M.cvnnninines Oect.
Roesner, ArlenL. ... Apr. Wty DURGATY 2 s G o sl Apr.
Rose, LawrenceJ,ccovvunvnen. Dec. Wiederoder, Herbert June
Roser, Thomas D. Oet. WIHE, BIANE . . .o vio cvininievimsmioniosas June
Ritek, Clememscovviviiians Felb, Yamada, Norhidecoovviinnn. Feb.
Ruess, Hermannd. Oet. Young, Willlam E.cocoaiesi.. Feb,
Rusnack, Michael R. Tune Yousefl, Mannyc.oiaiiineiiies Apr.
Ryan, Robert ., .,« Tune Zimmermann, Hans-Peter Tune
[ﬁ] HEWLETT"
P2 pACKARD

© Copr. 1949-1998 Hewlett-Packard Co.

	DCE: An Environment for Secure Client/Server Computing
	Adopting DCE Technology for Developing Client/Server Applications
	DCE Directory Services
	X/Open Federated Naming
	HP Integrated Login
	The DCE Security Service
	Glossary
	An Evolution of DCE Authorization Services
	An Object-Oriented Application Framework for DCE-Based Systems
	Glossary
	HP Encina/9000: Middleware for Constructing Transaction Processing Applications
	Glossary
	Object-Oriented Perspective on Software System Testing in a Distributed Environment
	The Object Management Group's Distributed Object Model
	Object Oriented Programming
	A New, Lightweight Fetal Telemetry System
	Zero Bias Detector Diodes for the RF/ID Market

