SERVICE INSTRUCTIONS

Synthesizer 1
342.5410 .12
5. Service Instructions for Synthesizer 1 5.1
5.1 Circuit Description 5.1
5.1.1 Auxiliary Synthesizer n x 100 MHz 5.1
5.1.2 Main Synthesizer 5.3
5.2 Checking and Adjustment Procedures 5.3
5.2.1 Current and Voltages 5.7
5.2.2 Checking the Oscillator Presetting 5.7
5.2.3 Checking and Adjustment of the Pulse Generator 5.7
5.2.4 Checking and Adjustment of the $\mathrm{n} \times 100-\mathrm{MHz}$ Oscillators 5.7
5.2.4.1 700-to-800-MHz Oscillator 5.9
5.2.4.2 900-to-1200-MHz Oscillator 5.9
5.2.5 Adjustment of the Main Coupling Loops of the n x $100-\mathrm{MHz}$ Oscillators 5.9
5.2.5.1 Coupling Loop at the $700-$ to $-800-\mathrm{MHz}$ Oscillator 5.9
5.2.5.2 Coupling Loop at the 900-to-1200-MHz Oscillator 5.9
5.2.6 Checking the Buffer Amplifier in the $n \times 100-\mathrm{MHz}$ Synthesizer 5.10
5.2.7 Checking the Loop Amplifier, the Lock-in Identification and the Search Generator in the $\mathrm{n} \times 100-\mathrm{MHz}$ Synthesizer 5.10
5.2.7.1 Checking the Search Generator 5.10
5.2.7.2 Checking the Lock-in Identification 5.10
5.2.8 Frequency Adjustment of $\mathrm{n} \times 100-\mathrm{MHz}$ Synthesizer 5.10
5.2.9 Checking and Adjustment of the $110.7-$ to-210.7-MHz Amplification Section 5.11
5.2.9.1 Adjustment of the $220-\mathrm{MHz}$ Low-pass Filter 5.11
5.2.9.2 Checking the Gain of the $110.7-$ to $-210.7-\mathrm{MHz}$ Section 5.11
5.2.10 Frequency and Level Adjustment of the First Oscillator 5.11
5.2.10.1 689-to-1010-MHz Osci11ator 5.11
5.2.10.2 1010-to-1330-MHz Oscillator 5.11
5.2.10.3 Level Adjustment in the Frequency Range 689 to 1330 MHz 5.11
5.2.11 Adjustment of the Output High-pass and Low-pass Filters and Checking the Gain of the Oscillator Amplifier 5.12
5.2.12 Checking the Gain at the Reconversion Output and at the Buffer Amplifier Output 5.12
5.2.13 Checking the Loop Amplifier, the Lock-in Identification and the Search Generator in the Main Synthesizer 5.12
5.2.13.1 Checking the Search Generator 5.12
5.2.13.2 Checking the Loop Amplifier and the Lock-in Identification 5.13
5.2.14 Frequency Adjustment of the Main Synthesizer 5.13
5.2.15 Checking the Oscillator Output Power 5.13
5.2.16 Checking the Level at the Phase Discriminator 5.13 .1
5.2 .17 Checking the Power at the Oscillator Reconversion Output 5.14
5.2.18 Checking the Sideband Noise of the First Oscillator 5.14
5.3 Troubleshooting 5.15
Parts list
Circuit diagram
Components location plan

- (See circuit diagram 342.5410 S and block diagram Fig. 1)

5.1 Circuit Description

The synthesizer board 1 consists of the following functional groups:

- pulse generator $n \times 100 \mathrm{MHz}$;
- two VCOs for generation of frequencies $n \times 100 \mathrm{MHz}$ comprising loop amplifier, lock-in identification and search generator;
- first oscillator comprising loop amplifier, lock-in identification and search generator;
- buffer amplifier for the first oscillator;
- mixer for mixing the output of the $n \times 100-M H z$ synthesizer and the first oscillator;
- 110.7-to-210.7-MHz filter and amplification section;
- mixer N5 acting as a phase comparator and finally
- logic circuit which selects the appropriate oscillator range from the control signals.

The block diagram of synthesizer 1 is shown in Fig. 1.
5.1.1 Auxiliary Synthesizer n $x 100 \mathrm{MHz}$

The control signal $100 \mathrm{MHz}(3 \mathrm{dBm})$ is applied to the pulse generator via X 153. V1 boosts the power to 15 dBm . The required high-power pulse is produced in the step-recovery diode V2. C7, L3, C8 and L4 act as impedance transformer to the low internal impedance of the diode. The operating point of $V 2$ is set with R900. The spectrum is attenuated by 10 dB and is available at X152 for measuring purposes. The high-pass filter consisting of C10, L5, C11, L6 and C12 has a cut-off frequency of 500 MHz and attenuates the first four insignificant spectral lines which keeps the load on the following mixer N1 low.

The auxiliary synthesizer frequency $n \times 100 \mathrm{MHz}$ is produced in two oscillators covering the ranges 700 to 800 MHz and 900 to 1200 MHz . The oscillators are connected in a Colpitts circuit with V24 and V31 as active elements. They are switched on by means of V25 and V26 or V32 and V33, respectively. V22, V23, V 29 and V30 act as tuning diodes. The oscillator power is brought out via two
coupling loops per oscillator i.e. one for synchronization of the oscillators and one for down-conversion of the frequency of the first oscillator. The coupling loops are switched over by means of the switching diodes V2O, V21, V27 and V28.

The gain of the buffer amp1ifier connected between X 4 and X 2 is 0 dB . The reverse transmission is $<30 \mathrm{~dB}$. RF amplification is accomplished by V 16 and V35 whose frequency response compensation is ensured by C39 and C154.

The ring mixer N 1 functions as a phase comparator. The mixer is match-terminated with C27, C25, L13, L14 and R22 for high frequencies.

The low-noise loop amplifier N6 provides an oscillator signal of high spectral purity. The PIP controller N6 features a DC voltage gain of 33 . The output voltage at pin 6 is applied via R20 to the varicaps of the oscillators. V17 with the dropping resistor $R 20$ prevents the varicaps from being connected with the wrong•polarity. The bandwidth of the PLL is about 1 MHz .

Normally a VCO is not at the desired nominal frequency at switch-on. Since the phase comparator N 1 is only phase-selective but not frequency-selective first a search action of the oscillator must be initiated. This is accomplished by beating the DC tuning voltage at the oscillators with a $200-\mathrm{Hz}$ AC search voltage. The $200-\mathrm{Hz}$ generator is a FET oscillator with double T feedback. The search voltage is added at contact 2 of N6. The criterion for switching on the search generator is derived from the presence of an AC voltage of up to 50 MHz at the IF port of N 1 . The AC output voltage of N 1 is boosted in V11 which is followed by a low-pass filter with a cut-off frequency of 50 MHz . V13 detects the signal and the resulting DC voltage is applied to the comparator N3. If the oscillator is out of lock, N3 switches on the search generator via V3 and pin a20 open-collector output of X151 is taken to ground via V14.

For pretuning of the VCOs, a DC voltage is used which is added at N6, pin 2. A potentiometer with associated switching transistor V53 to V58 is provided for each frequency range between 700 MHz and 1200 MHz in steps of 100 MHz for frequency presetting of the VCOs. The signal of the $\mathrm{n} \times 100-\mathrm{MHz}$ synthesizer is applied via a high-pass filter with a cut-off frequency of 500 MHz to the mixer N 2.

- The oscillator signal is available at the output X 155 with a level of 17 dBm via a high-pass filter with a cut-off frequency of 650 MHz and a low-pass filter with a cut-off frequency of 1350 MHz as well as a $3-\mathrm{dB}$ attenuator. At X156 the signal of the first oscillator attenuated by 32 dB is available.

The signal of the first oscillator attenuated by 33 dB through R135, R139, R138,
R137,R140 and R149 is coupled out at the input of the 3-dB attenuator for down-conversion. This is followed by a further two-stage buffer amplifier V67, V65. V66 and V64 stabilize again the operating point of V67 and V65. The amplifier features a broadband constant gain of 16 dB over the frequency range 680 to 1350 MHz .
The oscillator signal is applied with a level of -20 dBm via an adjustable attenuator R426, R427, V72 (-8 to -12 dB) for the phase control at phase discriminator N 5 and a fixed attenuaior R 125 to $\mathrm{R} 127(-10 \mathrm{~dB})$ to the mixer N 2 where it is down-converted with the signal of the auxiliary $\mathrm{n} \times 100-\mathrm{MHz}$ synthesizer to 110.7 to 210.7 MHz .

The filter following the IF gate of the mixer N 2 c an be disconnected by removing the link X8. Termination for high frequencies is provided by R107, R108 and C160. Signals with frequencies below 230 MHz are applied to X 9 via a low-pass filter. This is followed by a two-stage buffer amplifier with V61 and V63. Broadband frequency response compensation is ensured by C70, R114 and C161, R106. The high-pass filter C162, L37 and C71 features a cut-off frequency of 100 MHz determining the lower frequency limit of the $110.7-$ to $-210.7-\mathrm{MHz}$ amplifier.

Following the amplifier V63, a part of the signal is coupled out with a high impedance and rectified with V59. The rectified voltage thus obtained is buffered by N11/I and compared with the reference voltage at pin 5 of N11/I. The control amplifier $N 11 /$ II sets the attenuation of the attenuator $\mathrm{R} 426 / 427$, V72 by the current injection of the PIN diode so that the level of the 110.7 to $210.7-\mathrm{MHz}$ signal at the phase discriminator N 5 remains constant $(-12 \pm 3 \mathrm{dBm})$ for all frequencies of the 1 st oscillator. $A 3-d B$ attenuator and another $100-\mathrm{MHz}$ high-pass filter are connected between V63 and X11. The overall gain of the 110.7 -to- $210.7-\mathrm{MHz}$ section is 16 dB .

A frequency between 110.7 MHz and 210.7 MHz depending on the desired first oscillator frequency is fed into X154. This frequency is down-converted to 0 in N5 with the signal from the $110.7-$ to $210.7-\mathrm{MHz}$ amplification section. The IF port of N5 is match-terminated with C103 and R160 for high frequencies. The low-frequency or DC voltage component is applied via X15 to the loop amplifier N7. The low-noise loop amplifier ensures a signal of the first oscillator of high spectral purity. The PIP controller N7 features a DC voltage gain of 55. The output voltage at pin 6 is applied via R182 to the varicaps of the oscillators. V120 with the dropping resistor R182 prevents the varicaps from being connected with the wrong polarity. The bandwidth of the PLL is about 2 MHz .

Normally a VCO is not at the desired nominal frequency at switch-on. Since the phase comparator N5 is only phase-selective but not frequency-selective first a search action of the oscillator must be initiated. This is accomplished by beating the tuning voltage at the oscillators with a $200-\mathrm{Hz}$ AC search voltage. The $200-\mathrm{Hz}$ generator is a FET oscillator with double T feedback. The search voltage is added at contact 2 of $N 7$.

The criterion for switching on the search generator is derived from the presence of an $A C$ voltage of up to 100 MHz at the IF port of $N 5$. The $A C$ output voltage of N 5 is boosted in V79 which is followed by a low-pass filter with a cut-off frequency of 100 MHz . V82 detects the signal and the resulting DC voltage is applied to the comparator via V85 and pin b20 open-collector output of X 151 is taken to ground via V83.

For pretuning of the VCOs , a DC voltage is used which is added at N7, pin 2. A potentiometer (R903, R910 to R917) with associated switching transistor (V52, V92 to V99) is provided for each of the $100-\mathrm{MHz}$ ranges (see Table 1) for frequency presetting of the VCOs.

The digital chip $N 8$ and a switching diode array decode the $B C D$ information present at X 151 , pins b 27 to b 30 into the decimal equivalent for controlling the oscillators. N9 is a full adder which adds 0 to the $100-\mathrm{MHz}$ digit applied at b27 to b30 if al9 of X 151 is at high level or 5 if a 19 of X 151 is at low level. With a30 being at high, N8 is disabled and the frequency information must be applied via $a / b 8$ to $a / b 10$.

All RF connections to and in the synthesizer 1 are of $50-\Omega$ design facilitating adjustment of the synthesizer 1 with standard measuring instruments.

- a19 of X151 at high level.

Adjust the series inductance of $V 22$ and $V 23$ such that the frequency range 550 to 950 MHz can be covered with R904. Subsequently adjust the coupling loop between V21 and R45 such that the level over the frequency range 700 to 800 MHz is $2 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
5.2.4.2 900-to-1200-MHz Oscillator

- a19 of X151 at high level.
- b28 of X151 at high level.

Adjust the series inductance of V29 to V30 such that the frequency range 800 to

1300 MHz can be covered with R906.

Subsequently adjust the coupling loop between V28 and R51 such that the level over the frequency range 900 to 1200 MHz is $2 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
5.2.5 Adjustment of the Main Coupling Loops of the
$\mathrm{n} \times 100-\mathrm{MHz}$ Oscillators

Remove the link $X 6$ and connect a spectrum analyzer to the oscillator output of X 6 .
5.2.5.1 Coupling Loop at the $700-$ to $-800-\mathrm{MHz}$ Oscillator

- a19 of X151 at high level.

Adjust the coupling $100 p$ between $V 20$ and R 43 such that the level over the frequency range 700 to 800 MHz is $2 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
5.2.5.2 Coupling Loop at the 900-to-1200-MHz Oscillator

- a19 of X151 at high level.
- b28 of X151 at high leve1.

Adjust the coupling loop between V27 and R58 such that the level over the frequency range 900 to 1200 MHz is $2 \mathrm{dBm} \pm 2 \mathrm{~dB}$.

- Remove the 1 inks X2 and X4.
- Connect a network analyzer to X 4 and X 2 such that the signal is fed into X 4 . Gain over the frequency range 650 to 1250 MHz $0 \pm 2 \mathrm{~dB}$
5.2.7 Checking the Loop Amplifier, the Lock-in Identification
and the Search Generator in the $\mathrm{n} \times 100-\mathrm{MHz}$ Synthesizer
- Remove the link X6 and connect a spectrum analyzer to A1 of X6.
- X153 must be left free.
- a19 of X151 at high level.
- Tune oscillator frequency to 700 MHz by means of R904.
5.2.7.1 Checking the Search Generator

Connect pins 1 and 2 at X13.
Oscillator sweep width . $\pm 35 \mathrm{MHz}$
5.2.7.2 Checking the Lock-in Identification

Feed $100-\mathrm{MHz}$ signal with a level of 3 dBm into X153.
The oscillator should lock at 700 MHz .
5.2.8 Frequency Adjustment of $n \times 100-\mathrm{MHz}$ Synthesizer

- Feed $95-\mathrm{MHz}$ signal with a level of 3 dBm into X153.
- a19 of X151 at high level
- Remove the link X6 and connect a spectrum analyzer to A1 of X6.
- Apply a high signal in BCD format according to the desired frequency to b27 to b30 of X151.

Adjust the $\mathrm{n} \times 100-\mathrm{MHz}$ oscillators by means of R 904 to R 909 such that a balanced sweep width is produced about the desired $n \times 100-M H z$ frequency. Then feed $100-\mathrm{MHz}$ signal with a level of 3 dBm into X153. The oscillators should now lock at $\mathrm{n} \times 100 \mathrm{MHz}$.
5.2.9.1 Adjustment of the $220-\mathrm{MHz}$ Low-pass Filter

- Remove the links X8 and X9.
- Connect a network analyzer to X8 and X9.

Adjust L32 to L36 for uniform return loss over the range 100 to 220 MHz .
5.2.9.2 Checking the Gain of the $110.7-$ to $-210.7-\mathrm{MHz}$ Section

- Remove the links X8 and X11 and link A1 and B1 at X9.
- Connect a network analyzer to X8 and X11 such that the signal is fed into X8.

Gain over the frequency range 110.7 to $210.7 \mathrm{MHz}{ }^{\prime}$.
5.2.10 Frequency and Level Adjustment of the First Oscillator

Remove the link X10 and connect a spectrum analyzer to A1 of X10.
5.2.10.1 689-to-1010-MHz Oscillator

- a19 of X151 at high level.

Adjust the series inductance of V104 and V105 such that the frequency range 6.50 to 1100 MHz can be covered with a voltage of 3 to 24 V at X12.
5.2.10.2 1010-to-1330-MHz Oscillator

- a19 and b28 of X151 at high level.

Adjust the series inductance of V 100 and V 101 such that the frequency range 950 to 1400 MHz can be covered with a voltage of 3 to 24 V at X 12 .
5.2.10.3 Level Adjustment in the Frequency Range 689 to 1330 MHz

Adjust the coupling 100p between R222 and X10 such that the level over the frequency range 650 to 1010 MHz and 1010 to 1400 MHz is $3 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
5.2.11 Adjustment of the Output High-pass and Low-pass Filters and Checking the Gain of the Oscillator Amplifier

- Remove the link X10.
- Connect a network analyzer to X 10 and X 155 such that the signal is fed into X10/B1.
- Adjust the high-pass filter by means of L45 and L46 such that a flat frequency response is obtained especially over the frequency range 680 to 900 MHz .
- Adjust the low-pass filter by means of L160 to L162 such that a flat frequency response is obtained especially over the frequency range 900 to 1350 MHz .
- Cut-off frequency of the low-pass filter 1350 MHz
- Gain .. $13 \pm 2 \mathrm{~dB}$
5.2.12 Checking the Gain at the Reconversion Output and at the Buffer Amplifier Output
- Remove the link X10.
- Connect a network analyzer to X 10 and X 156 such that the signal is fed into X10/B1.
- Terminate X155 with 50Ω.
- Remove the link X7.

Attenuation over the frequency range 650 to $1350 \mathrm{MHz} \ldots \ldots . \mathbf{M H}^{-18} \pm 3 \mathrm{~dB}$
5.2.13 Checking the Loop Amplifier, the Lock-in Identification and the Search Generator in the Main Synthesizer

- Connect a spectrum analyzer to X155.
- a19 of X151 at high level.
- Tune the oscillator frequency to 860 MHz by means of R910.
- Feed $160-\mathrm{MHz}$ signal with a level of 3 dBm into X154.
- Put the $n \times 100-\mathrm{MHz}$ synthesizer into operation.
5.2.13.1 Checking the Search Generator
- Connect an oscilloscope to R169.
- Link 1 and 2 at X14.

A search voltage with a frequency of $200 \mathrm{~Hz} \pm 30 \%$ and a voltage of approximately $5 \mathrm{~V}_{\mathrm{pp}}$ should be measured with the oscilloscope.

5.2.13.2 Checking the Loop Amplifier and the Lock-in Identification

- Remove the 1ink X14.

Vary the frequency of the signal fed in at X154 until the oscillator goes out of lock. Then sweep the oscillator with a sweep width of approximately 75 MHz about its centre frequency.
5.2.14 Frequency Adjustment of the Main Synthesizer

- Put the $n \times 100-M H z$ synthesizer into operation.
- Connect a spectrum analyzer to X155.
- a19 of X151 at high leve1.
- Apply a high signal to pins b27 to b30 of X151 or low signal to ab8 to ab 10 of X 151 according to the desired frequency.
- X154 must be left free.

Adjust the frequencies to the centre values of the various ranges according to Table 1 using R903 and R910 to R917. After feeding 160 MHz with 3 dBm into X154, the oscillators in every range should lock. Subsequently check the tuning range. To this end, tune through the frequency range of the signal applied to X154 from 100 to 220 MHz . The first oscillator must remain locked. An exception

- is the range from 1310.7 to 1330.7 MHz in which the signal applied to X154 need only be tuned through the frequency range 100 to 150 MHz .

If one of the tuning subranges cannot be obtained without the first oscillator going out of lock, slightly readjust R903 and R910 to R917.
5.2.15 Checking the Oscillator Output Power

- Connect a power meter to X155.

Check the output power over the frequency range 689.3 to 1330.7 MHz (frequency setting according to Table 1).

- Oscillator output power at X155 .. 17 2 dBm

If necessary, readjust coupling loop between R 222 and X 10 as well as L45, L46 and L162 of the output high-pass and low-pass filters.
5.2.16 Checking the Level at the Phase Discriminator Connect a spectrum analyzer ($110-211 \mathrm{MHz}$) to X 16 . The level of the 1 st oscillator is checked in the frequency range 689.3 to 1330.7 MHz .
\qquad

Possible corrections:
Overall level too high or too low:

- Check reference voltage at pin 5 of N11 (can be corrected for by trimming resistor R301(threshold value)between 274 and 4758).
- The overall level is decreased by varying R126 and R426 (100 to 150) .
- The overall level is increased by removing. R139.

Frequency response is not flat enough:

- The level is increased in the upper frequency range by removing c93.
- 5.2.17 Checking the Power at the Oscillator Reconversion Output
- Connect a power meter to X156.

Output power over the frequency range 689.3 to $1330.7 \mathrm{MHz} \ldots \ldots 5_{-3}^{+2} \mathrm{dBm}$ If necessary, the output power can be adjusted via the coupling loop between R441 and X156.
5.2. 18 Checking the Sideband Noise of the First Oscillator

- Apply a low-noise crystal signal ($100 \mathrm{MHz} / 3 \mathrm{dBm}$) to X 153 .
- Apply a low-noise signal with the frequencies $110.7 \mathrm{MHz}, 160 \mathrm{MHz}$ and 210.7 MHz according to the test frequency to X 154 .
- Connect a sideband noise meter to X155.

Check the sideband noise at three points in every range according to Table 1 (except for range 1310 to 1330 MHz where only one point need be checked and range 830.7 to 910 MHz where checking is required at two points).
Fig. 2 shows the typical characteristic of the sideband noise.

Fig. 2 Characteristic of typical sideband noise level of the first oscillator

