SPM-37 ... 39, -137 ... 139Selective Level MetersBN 2203/02 ... 07, Series D ...PSM-37 ... 39, -137 ... 139Level Test Sets
BN 2203/12 ... 17, Series D ...Operating Manual

> Please direct all enquiries to your local Wavetek Wandel Goltermann sales company. The addresses are given at the end of this handbook.

Copyrights

This product or parts of it are based upon Recommendations and/or Standards of the Standardization Sector of the International Telecommunication Union - ITU-T and/or of the European Telecommunications Standards Institute ETSI. These Recommendations and Standards are subject to copyrights of these organizations. Without written permission of the ITU-T and/or ETSI it is not permitted to copy ITU-T Recommendations or ETSI standards or parts thereof and/or make them available to third parties.

Wavetek Wandel Goltermann
Eningen GmbH \& Co.
Mühleweg 5, 72800 Eningen u. A.
© 2000
Author: TD
Translator: John Nutley
Order no.: BN 2203/98.21
Edition: 13/00.07, D ..
Previous edition:
12/00.01, D ...
Subject to change without notice Our normal guarantee and delivery terms apply
Printed in Germany

Contents

1 Introduction
1.1 About the instruments 1-1
1.2 About this manual 1-2
2 Safety instructions
2.1 Correct usage 2-5
2.2 Connection to circuits carrying dangerous voltages 2-5
2.3 Faults and damage 2-5
2.4 Opening the instrument 2-5
2.5 Repairs and spare parts 2-6
2.6 Tests after repairs and maintenance 2-6
2.7 Inputs and outputs 2-6
2.8 Electromagnetic compatibility 2-7
2.9 Cleaning the instrument 2-7
3 General information
3.1 After unpacking 3-1
3.2 Preparation for use 3-1
3.2.1 Setting up the instrument 3-1
3.2.2 Before switching on 3-1
3.2.3 19" rack mounting 3-2
3.3 Power supply 3-3
3.4 Switching on and off 3-3
3.4.1 AC line operation 3-3
3.4.2 Battery operation 3-4
3.5 After switching on 3-5
3.5.1 Switch on test routine 3-5
3.5.2 Activate/deactivate keyboard click 3-6
3.5.3 Setting the date and time 3-6
3.5.4 Setting the switch on behavior 3-7
3.5.5 Warning messages 3-9
3.5.6 Selecting the weighting filter. 3-9
3.5.7 LCD contrast setting 3-10
3.6 Reference frequencies 3-10
3.7 MEMORY CARD 3-12
3.8 Setting up the V. 24 serial interface 3-15
3.9 Default settings 3-18
3.10 Operation after storage and transport 3-20
4 Getting started
5 Operation
5.1 Instrument controls and connectors 5-1
5.2 Operating principle 5-11
5.3 Help function 5-15
5.3.1 Calling up help from the INDEX 5-15
5.3.2 Calling up help from the CONTENTS 5-16
5.3.3 Calling up help from the CURRENT MENU HELP 5-16
5.4 LEVEL mode 5-17
5.4.1 Calling up the operating mode 5-17
5.4.2 Selective and wideband level measurement. 5-18
5.4.3 Results display 5-18
5.5 DEMODULATION mode 5-21
5.5.1 Calling up the mode 5-21
5.5.2 SSB demodulation 5-22
5.5.3 Results display 5-22
5.6 VOICE mode 5-25
5.6.1 Calling up the operating mode 5-25
5.6.2 Weighted noise power level measurements 5-26
5.6.3 Result display 5-26
5.7 NPR mode 5-27
5.7.1 Calling up the operating mode 5-27
5.7.2 Noise power ratio measurement 5-28
5.7.3 Results display 5-28
5.8 HOT TONE SEARCH mode 5-29
5.8.1 Calling up the operating mode 5-29
5.8.2 Hot tone search 5-30
5.8.3 Measurement sequence 5-30
5.8.4 Results display and evaluation 5-30
5.9 JITTER mode 5-33
5.9.1 Calling up the operating mode 5-33
5.9.2 Measuring the phase jitter of a signal 5-33
5.9.3 Phase jitter measurement to ITU-T O.91 5-34
5.9.4 Phase jitter measurement in the demodulated voice band 5-34
5.9.5 Results display 5-35
5.10 IMPULSIVE NOISE mode 5-37
5.10.1 Calling up the operating mode 5-37
5.10.2 Impulsive noise measurement in the voice band to ITU-T O.71 5-37
5.10.3 Impulsive noise measurement in the demodulated voice band 5-39
5.10.4 Measurement sequence 5-40
5.10.5 Results display 5-40
5.11 INTERRUPTIONS mode 5-41
5.11.1 Calling up the operating mode 5-41
5.11.2 Interruption measurement in the voice band to ITU-T 0.61 5-41
5.11.3 Interruption measurement in the demodulated voice band 5-42
5.11.4 Measurement sequence 5-44
5.11.5 Results display 5-44
5.12 AUTOSTEP mode 5-45
5.12.1 Calling up the operating mode 5-45
5.12.2 End to end measurement 5-45
5.12.2.1 PSM-139 as generator, SPM-139 as receiver. 5-46
5.12.2.2 Other generator, SPM-139 as receiver 5-48
5.12.3 Measurement sequence 5-50
5.12.4 Two port measurements and system monitoring 5-50
5.12.5 Measurement sequence 5-52
5.12.6 Measurement results and evaluation 5-52
5.13 SWEEP mode 5-53
5.13.1 Calling up the operating mode 5-53
5.13.2 Sweep measurement 5-53
5.13.3 Measurement sequence 5-54
5.13.4 Measurement result and evaluation 5-54
5.14 Parameters 5-55
5.14.1 Inputs and impedances 5-55
5.14.2 Level reference 5-56
5.14.2.1 Absolute voltage or power level 5-56
5.14.2.2 ABS-REF, level difference 5-57
5.14.2.3 Relative level (REL), referred level (dBm0) 5-59
5.14.3 Level units 5-60
5.14.4 Level monitoring 5-61
5.14.5 Level thresholds 5-63
5.14.6 Gain 5-65
5.14.7 Setting the instrument drive level manually 5-66
5.14.8 Receive frequency 5-67
5.14.9 Fixed frequencies 5-68
5.14.9.1 Storing, editing and deleting fixed frequencies 5-68
5.14.9.2 Activating/deactivating fixed frequencies 5-70
5.14.9.3 Setting the active range of the fixed frequency memory. 5-71
5.14.9.4 Selecting the current fixed frequency 5-72
5.14.9.5 Calling up fixed frequencies 5-73
5.14.9.6 Editing the current fixed frequency setting 5-74
5.14.9.7 Recording the offsets of the set fixed frequencies 5-75
5.14.9.8 Copying fixed frequencies to the Memory Card 5-75
5.14.9.9 Copying fixed frequencies from the Memory Card 5-76
5.14.9.10Printing the list of fixed frequencies 5-77
5.14.10 Automatic frequency control (AFC) 5-78
5.14.11 Start and stop frequencies 5-79
5.14.12 Center frequency and frequency span 5-79
5.14.13 Sidebands 5-80
5.14.14 Test tones 5-81
5.14.15 Channel system 5-82
5.14.16 Bandwidths 5-84
5.14.17 Weighting filters 5-85
5.14.18 Scaling 5-87
5.14.19 Setting the scale reference manually 5-87
5.14.20 Selecting the scale 5-88
5.14.21 Display averaging 5-88
5.14.22 Maximum hold function 5-89
5.14.23 Marker function 5-89
5.14.24 STEP parameters 5-90
5.14.25 Start mode 5-91
5.14.26 Gate time 5-92
5.14.27 Dead time 5-92
5.14.28 Acoustic warning (BEEP) 5-93
5.14.29 Sweep time 5-93
5.14.30 Reference line 5-94
5.14.31 Drive conditions 5-94
5.15 Calibration 5-95
5.16 Setups 5-97
5.16.1 Addresses 5-97
5.16.2 Storing a setup 5-98
5.16.3 Labelling setups 5-99
5.16.4 Recalling a setup 5-99
5.16.4.1 Deleting a setup 5-100
5.16.4.2 Displaying setups 5-100
5.16.4.3 Printing out the setup contents or setup index 5-102
5.16.4.4 Notes on the Memory Card 5-103
5.17 Documenting the results 5-104
5.17.1 Labelling the measurement result record 5-104
5.17.2 Preparing to print out results 5-105
5.17.3 Preparing to store measurement results (SPM/PSM-137/-138-139) 5-108
5.17.4 Triggering result printout and / or storage manually 5-110
5.17.5 Starting result printout and / or storage automatically 5-112
5.17.6 After storing results on the Memory Card 5-114
5.17.6.1 Notes on the Memory Card 5-115
5.18 Tracking generator (PSM-37/-38/-39/-137/-138/-139) 5-116
5.18.1 Activating / deactivating the tracking generator. 5-116
5.18.2 TX frequency 5-117
5.18.3 Protecting the TX frequency setting range from change 5-118
5.18.4 TX level 5-120
5.18.5 Outputs and impedances 5-122
5.18.6 External level control 5-123
6 Measurement notes
6.1 Measuring high attenuations 6-1
6.2 Measurement error due to residual carrier 6-2
7 Error messages and warnings
8 Maintenance, servicing and transport
8.1 Maintenance 8-1
8.1.1 Changing the Versacon inserts 8-2
8.1.2 Changing the fuse 8-2
8.1.3 Cleaning the instrument 8-3
8.1.4 Rechargeable battery pack option BN 2203/00.04 8-4
8.1.4.1 Fitting and removing the battery pack 8-4
8.1.4.2 Charging the batteries 8-4
8.1.4.3 Changing the fuse 8-5
8.1.4.4 Protecting the environment 8-5
8.1.4.5 Using the BAZ-2203 Battery Pack 8-6
8.1.5 Optional bandwidth 8-6
8.1.6 Software upgrade 8-7
8.1.6.1 Exchanging/Loading the instrument software 8-7
8.2 Servicing 8-15
8.2.1 Initialization 8-15
8.3 Storage and transport 8-15
9 Specifications
9.1 Frequency 9-1
9.2 Automatic frequency scans 9-2
9.3 Voltage and power levels 9-2
9.3.1 Measurands 9-2
9.3.2 Display 9-3
9.3.3 Measurement range selection 9-3
9.3.4 Automatic calibration 9-3
9.3.5 Display ranges for power and voltage 9-4
9.3.6 Level display error limits 9-4
9.3.6.1 Selective measurement 9-4
9.3.6.2 LF range measurements 9-7
9.3.6.3 Broadband measurement 9-9
9.3.7 Selectivity and filters 9-9
9.4 Other measurement modes 9-10
9.4.1 Phase jitter measurement 9-10
9.4.2 Impulsive noise measurement 9-11
9.4.3 Interruption measurement 9-11
9.4.4 Measurement of noise power ratio (NPR) 9-12
9.5 Demodulator 9-12
9.6 Dynamic range (intrinsic noise signals) 9-13
9.6.1 Noise dependent on the input signal 9-13
9.6.2 Noise independent of the input signal 9-13
9.7 Connectors 9-14
9.7.1 Measurement inputs 9-14
9.7.2 Other inputs and outputs 9-15
9.8 Tracking generator 9-17
9.9 Sweep measurements 9-19
9.10 General specifications 9-21
9.10.1 Safety 9-21
9.10.2 Electromagnetic compatibility 9-21
9.10.3 Power supply 9-21
9.10.4 Display 9-21
9.10.5 Timer 9-21
9.10.6 Memory 9-22
9.10.7 Service aids 9-22
9.10.8 Temperature and humidity specifications 9-22
9.10.9 Dimensions 9-22
9.10.10 Weight 9-22
9.11 Options 9-23
9.11.1 Standard frequency oscillator 9-23
9.11.2 Battery pack BAZ-2203 9-23
9.11.3 Remote control 9-23
9.12 Ordering information 9-23
10 Remote control
10.1 Introduction 10-1
10.2 About this remote-control manual 10-2
10.3 Remote-control interfaces of the device 10-3
10.3.1 IEC/IEEE remote-control interface 10-3
10.3.1.1 Bus connections 10-3
10.3.1.2 Instrument address 10-4
10.3.1.3 Interface functions 10-4
10.3.2 V. 24 / V. 28 remote-control interface 10-5
10.3.2.1 Interface functions 10-5
10.3.2.2 Bus connections 10-5
10.3.2.3 Parameters 10-7
10.4 Standard reporting system 10-8
10.4.1 General structure to SCPI. 10-8
10.4.2 Status Byte Register STB 10-9
10.4.3 Service Request Enable Register SRE 10-10
10.4.4 Event Standard Register ESR 10-12
10.4.5 Standard event status enable register ESE 10-13
10.4.6 Output queue 10-14
10.4.7 Parallel Poll 10-15
10.4.8 Initializing the device 10-16
10.4.9 Extended SCPI status report system 10-16
10.4.9.1 Operation Status 10-17
10.4.10 Initializing the extended SCPI status management system 10-19
10.5 Syntax 10-20
10.6 Common Commands 10-24
10.7 Programming Commands 10-35
10.7.1 Instrument model 10-35
10.7.2 Measurement Commands. 10-36
Index

1 Introduction

1.1 About the instruments

Equipped for the future

Carrier frequency systems will continue to be used around the world for many years to come, generating a need for modern and, above all, economical test equipment. New areas of telecommunications, such as ISDN and local area networks, will provide additional applications for selective level measurement equipment.
It has been demonstrated that the measurement of such analog parameters as impedance, noise, crosstalk, interrupts and frequency response is also essential for these digital systems.
This range of level meters is designed primarily for field service applications. Like their predecessors SPM-19 and SPM-15, the instruments are equally suitable for use in the laboratory and in production testing, thanks to high accuracy frequency and level parameters. Together with the hand-held level meters (SPM-32A through SPM-36A), these new instruments provide users with a comprehensive range of application-oriented level meters covering the frequency spectrum from 50 Hz to 32 MHz .

Versatile, yet easy to use

The new range of level meters is designed for efficiency in use, this being achieved through time-saving measurement routines.
The functions of this range of level meters are menu controlled, making the instruments practical and easy to use. Two special functions are worthy of mention: "Impulsive noise" and "Interrupt" modes, both of which conform to the CCITT requirements for such measurements.

Features of the range of level meters

Telecoms applications

\square Frequency ranges matched to system requirements:
50 Hz to $8 \mathrm{MHz}, 50 \mathrm{~Hz}$ to $18 \mathrm{MHz}, 50 \mathrm{~Hz}$ to 32 MHz .
\square Up to 5 hours operation from rechargeable batteries (optional)
\square End-to-end measurements with graphic display of frequency response results.
I Phase jitter measurement to CCITT O.91.
\square Interrupt measurement to CCITT O.61.
\square Impulsive noise measurement to CCITT O.71.
\square Real psophometric measurements in speech channels.

Datacoms applications

\square Operation network-independent.
\square Impulsive noise and interference signal measurements.
\square Interrupt measurement.
\square Crosstalk measurement (NEXT/FEXT).
\square Frequency response measurement.
\square Signal imbalance measurements (e.g. longitudinal conversion loss LCL).
\square Impedance measurements.
\square Return loss measurement.

1.2 About this manual

This manual applies to the following instruments:

- SPM-37, SPM-38 and SPM-39 Selective Level Meters
- SPM-137, SPM-138 and SPM-139 Selective Level Meters
- PSM-37, PSM-38 and PSM-39 Level Measurement Setups
- PSM-137, PSM-138 and PSM-139 Level Measurement Setups

Information which only applies to certain instrumetns is clearly indicated. The diagram below shows how the manual is arranged and the main contents of each section.
The key words index helps you find information quickly.

This section contains information on remote-control.

As well as the specifications, this section contains information on ordering the instrument, options and accessories.

This section contains useful tips on maintenance, storing and transporting the instrument.

If a warning or error message occurs during operation, this section tells you more about the meanings of these messages.

This section contains information on making measurements.

This section tells you how to operate the instrument and set the parameters, steb by step.

This section tells you the basic principles of operating the instrument. A short example measurement is given to show you how.

This section tells you what to do to start using the instrument.

Please make sure that you read this section before using the instrument for the first time.

The introduction gives you an overview of this range of instruments and tells you about the operating manual.

Conventions

Keys, function keys ($=\mathrm{F}$) and identification numbers on the instrument are shown in this manual as follows:

Keys

Function keys (= F)

Instrument:

Operating manual:

Identification numbers on the instrument front and back panels

Instrument:

TEST \& CONFIG

Operating manual:
[9]

Space for notes:

2 Safety instructions

This instrument left the factory in perfect condition. To maintain this condition and ensure safety in use, the following instructions must be observed when using the instrument.

2.1 Correct usage

The instrument must not be used for any purposes or under any conditions other than those for which it is intended, as indicated in the specifications (section 9 of this manual) and the introduction (section 1).

Warning: Failure to observe this instruction may be dangerous and may result in damage to the instrument (see section 2.3 on page 2-5).

2.2 Connection to circuits carrying dangerous voltages

If the instrument is to be connected to test circuits where dangerous voltages are present, a protective ground connection must be established before the measurement circuit is connected. If the protective ground circuit for the a.c. line can be used for this purpose, the instrument must be connected to the a.c. line before connecting it to the measurement circuit.

If the measurement circuit is provided with its own protective ground connector, this should be connected to the instrument's ground socket before the rest of the measurement circuit is connected.

2.3 Faults and damage

The instrument must be taken out of service and secured against unintentional operation if safe operation is no longer guaranteed. This is the case if:
\square it is visibly damaged
] it no longer operates correctly
\square it has been used or subjected to excessive stresses (e.g. in storage or transport) under conditions outside the permitted range limits.

2.4 Opening the instrument

Before opening the instrument, disconnect it from all power sources. Capacitors in the instrument may remain charged even if the instrument is disconnected from all power sources. Refer to the circuit diagrams for information.
 If calibration, maintenance or repairs on the opened instrument under power are unavoidable, such operations should only be performed by qualified personnel familiar with the risks involved. Caution: Dangerous voltages.

2.5 Repairs and spare parts

Repairs

Repairs should only be carried out by competent personnel. No constructional feature of the instrument may be modified in any way which reduces operational safety. Creepage and airpaths and insulation thickness in particular must not be reduced.

Spare parts

Only use original spare parts for replacing defective components. Other spares may be used only if they do not adversely affect the safety characteristics of the instrument.

2.6 Tests after repairs and maintenance

Protective ground connection

After repairs or maintenance, the condition of the protective ground conductor shall be checked visually and the resistance between the protective ground contact of the instrument's line plug and the instrument casing (ground socket) shall be measured. The resistance shall be below 0.1 ohms. The line cord shall be moved during the measurement. Any changes in resistance indicate damage to the line cord. A damaged line cord must not be used.

If a further measurement with a new line cord indicates that the line cord itself is not faulty, the instrument shall be disabled and the cause of the resistance changes identified and repaired to conform with the applicable safety regulations.

Insulation resistance

The insulation resistance between the protective ground contact and the a.c. line contacts (shorted together) of the instrument's line plug shall be measured using a 500 V DC insulation tester. The power switch on the back panel of the instrument shall be set to the on position (I) for the test. VDE regulations require that the insulation resistance shall be more than $2 \mathrm{M} \Omega$. If a value below $2 \mathrm{M} \Omega$ is indicated, the instrument shall be repaired and re tested before use.

2.7 Inputs and outputs

The balanced receiver input [21] and balanced tracking generator output [23] are designed for connection to standard telephone networks (TNV circuits).

All other inputs and outputs are designed for connection to SELV circuits.
Refer to IEC Guide 105 and EN 41003 / 1991 for more information.

2.8 Electromagnetic compatibility

This instrument meets the requirements of EN 50081-1 and is within Limit Class B of EN 55022 (identical with CISPR 22:1985 and DIN VDE 0878 Part 3).
The instrument has been tested to ensure that the EMI/RFI emission requirements are also met when it is used as part of a system.
For this condition to be met, the system must be correctly assembled and the appropriate connecting cables used.
Adequate screening must be provided.
If the device under test connected to this instrument can itself emit electromagnetic interference, users must ensure that emissions remain within permitted limits. Suitable measures should be taken to ensure that screening is contiguous.
When used in a balanced system, the device under test itself must be adequately balanced Electromagnetic emissions can be further reduced by operating the instrument from dry or rechargeable batteries, particularly if high signal levels are involved.

2.9 Cleaning the instrument

If the instrument has become dirty through use, it can be cleaned using a soft cloth moistened with a mild solution of detergent. Make sure that the cleaning solution does not get inside the instrument. Parts which have become very dirty may also be cleaned carefully using alcohol.

3 General information

3.1 After unpacking

Check: The packaging is undamagedCheck: The instrument shows no signs of external damageCheck: The AC line cord is present
Check: The instrument is at room temperatureCheck: Have you read the safety instructions in section 2 of this manual ?

3.2 Preparation for use

3.2.1 Setting up the instrument

Operating position

The instrument should be placed on a flat, horizontal surface for operation. Operation comfort can be improved by tilting the instrument slightly. This is done by pressing the buttons on the carry handle pivot simultaneously and moving the handle downwards until it locks into position. The handle now functions as a tilt bail. If the instrument is to be placed flat on the bench and the handle is not required, it can be folded back flat under the instrument by pressing the buttons on the carry handle pivot simultaneously and moving the handle to the position required.

Temperature

The instrument can be operated at ambient temperatures between 0 and $+40^{\circ} \mathrm{C}$. Ensure that this temperature range is not exceeded, especially if the instrument is fitted into an equipment rack or is operated as part of a larger installation.

3.2.2 Before switching on

Note: The instrument is a safety class I device as per IEC 1010-1. The casing is connected to the protective ground conductor.

- Operation from AC line: The AC line connection is provided with a protective ground conductor. The line cord supplied is used.

Operation from rechargeable batteries: The rechargeable batteries have been charged (see section 8.1.4.2 on page 8-4) before using an instrument equipped with the battery pack option (BN 2203/00.04) for the first time.

3.2.3 19" rack mounting

The instrument can be fitted into standard 19" racks using the 19" conversion kit, order number BN 2203/00.07. The kit basically comprises a 19" wide front panel fitted with handles, the mounting brackets and nuts and bolts (D, E)

Preparing the chassis

- Undo the hex key screws A and remove the top half of the casing. The handle can be lifted out of the lower half of the casing complete with the pivots.
- Remove the chassis from the lower half of the casing.
- Remove the four instrument feet from the lower half of the casing by undoing the screws (C) and remove the nuts (F).
- Remove the two locating pips from the top half of the casing by undoing the hex key screws (B).

Fitting the 19" conversion kit

- Fix one mounting bracket to the upper half of the casing using the holes for the locating pips and fixing screws (D).
- Fix the other mounting bracket to the lower half of the casing using the holes for the front two instrument feet and fixing screws (D).
- Fit the chassis into the lower half of the casing. Make sure that the front and back panels fit into the slots in the casing.
- Replace the top half of the casing and screw it to the lower half using the screws (A).
- Fix the front panel to the mounting brackets using the nuts and bolts (E)

Fig. 3-1 19" rack conversion kit

3.3 Power supply

AC line operation

The instrument power is derived from a switch-mode power supply. The AC line connector is located together with the AC line switch and the fuse on the back panel.

Battery operation

Operation independent of AC line power is possible using the battery pack option, BN 2203/00.04. The batteries are recharged by the switch-mode power supply.

Data retention in the event of power failure

The actual instrument settings are stored in non-volatile semiconductor memory in the same way as setups. This memory is buffered by a lithium battery when the instrument is switched off.

3.4 Switching on and off

3.4.1 AC line operation

Set the AC line switch on the back panel to the I position. The green LED next to the[\mathbf{J}] key (front panel) is on whenever the instrument is connected to the AC line and the AC line switch is set to l.

Two operating states are possible with this instrument:

- STANDBY status (display blanked)
- Measure status (display active)

When the instrument is switched on, it assumes the status it was in at the time it was last switched off (or power to the instrument was lost). The instrument settings depend on the preset values specified in the TEST \& CONF menu (see section 3.5.3 on page 3-6).

If measure status was active before switch-off:
The instrument switches on and performs the switch on test routine, after which it is ready for making measurements.

If STANDBY mode was active before switch-off:
The display remains blanked with the instrument in standby mode. Pressing the [dI \boldsymbol{I}] switch switches the instrument from standby to measure status. The switch on test routine is performed, after which the instrument is ready for making measurements.

$\begin{array}{ll}\text { O } & \text { PERM ON } \\ \text { O } & \text { CHARGE }\end{array}$

Switching off:

Pressing the [$\boldsymbol{J}{ }^{\mathbf{I}}$] key switches the instrument to STANDBY mode.
Switching the AC line switch (back panel) to the O position disconnects the instrument from the AC power supply.

3.4.2 Battery operation

Switching on:

O PERM ON
O CHARGE

The instrument switches on and invokes the switch on test routine. The instrument settings depend on the preset values specified in the TEST \& CONF menu (see section 3.5.1 on page 3-5).
The instrument switches off automatically 15 minutes after the last keystroke. To disable this power saving feature:

- Press [Blue key] to call up additional functions
- Press [\boldsymbol{J}] to disable automatic switch off.

The instrument is switched on permanently. Permanent operation is indicated by the red LED.

Note: The battery voltage is checked at the end of the switch on test routine. If it is below 14 V , the instrument switches off again immediately.

Switching off:

- Press [\boldsymbol{J}] to switch the instrument off.

The instrument switches off automatically if

- the battery voltage drops below 14 V
- no key or control is operated for a period of 15 minutes (unless PERMANENT ON mode has been activated).

3.5 After switching on

3.5.1 Switch on test routine

Immediately after being switched on, the instrument performs a self test. This test checks all the important hardware modules, memory modules and interfaces. The self test is in two parts.

Self test — part 1

The CPU and interfaces are tested. The test sequence is determined by the BIOS software.
The following tests are shown in sequence on the display:

- UV-EPROM
- RAM
- FLASH_ROM linear
- FLASH_ROM paged
- V. 24
- EEPROM
- HARDKEY
- KIF

Status displays during the test:

- RUNNING
- OKAY = Test completed successfully
- FAILED

Self test — part 2

After the first part of the test, the second part tests the digital signal processors and synthesizer as well as other circuits. The test sequence is determined by the instrument software (Flash ROMs). The progress of the second part of the test is not displayed on the screen. If an error occurs, the instrument reacts as follows:

1. A warning beep is heard and an error message is displayed.

In such cases, the instrument can still be used, but some restrictions apply.
2. The HARDWARE ERROR menu is displayed. This indicates in which area(s) errors have occurred. In such cases, useful measurements can no longer be made.
In both cases, however, the instrument can be operated. Press any function key to exit from the HARDWARE ERROR menu.

Fig. 3-2 HARDWARE ERROR menu

What if an error occurs?

Contact your local Wandel \& Goltermann service agent who will be pleased to help. The Service Manual also contains further information on the self tests.

3.5.2 Activate/deactivate keyboard click

It may be useful under certain circumstances to have an audible indication that a control has been operated. Activating the KEYBOARD CLICK function results in a "click" sound whenever you press a key or turn the rotary control.

Activate/deactivate KEYBOARD CLICK:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu
- Press KEYBOARD CLICK [F L1] to activate or deactivate the keyboard click.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-3 Activating KEYBOARD CLICK

3.5.3 Setting the date and time

To establish the time at which a measurement was made or to start a measurement at a specific time, the actual date and time can be entered. The built-in lithium battery ensures that the clock operates continuously.

Setting the date:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu
- Press DATE/TIME [F L2] to open the DATE/TIME menu
- Press ENTER DATE [F R1] to enable date entry Enter the date using the number keys and press [ENTER] to confirm the entry. Enter dots to separate the day, month and year.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-4 Setting the date

Setting the time:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu
- Press DATE/TIME [F L2] to open the DATE/TIME menu
- Press ENTER TIME [F R3] to enable time entry

Enter the time using the number keys and press to confirm the entry. Enter colons (use the dot key) to separate the hours, minutes and seconds.

- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-5 Setting the time

3.5.4 Setting the switch on behavior

When a power failure occurs or if the instrument is switched off and then on again, it is often useful if it reverts to the settings it was in before being switched off. Various pre-set options can be selected for this from the TEST \& CONF menu.

DEFAULT All settings revert to their default values after switching on.
USER All settings revert to the stored user-defined values after switching on
PREVIOUS
MEASUREMENT The currently set measurement mode is restored after switching on. If power was interrupted during an automatic measurement sequence, the sequence must be re-started.

Setting the switch-on behavior:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press POWER ON SETUP [F L3] to open the POWER ON SETUP menu
- Press POWER ON SETUP [F L1] to make the setting required
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-6 Setting the power on behavior (e.g. DEFAULT)

Determining the instrument settings for the USER POWER ON SETUP

- Set the instrument to the settings you require
- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press POWER ON SETUP [F L3] to open the POWER ON SETUP menu
- Press STORE [F L3] to store the current instrument settings
- Press POWER ON SETUP [F L1] to set USER as the preset setting.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-7 Storing the USER instrument setting

3.5.5 Warning messages

A distinction is made between WARNING and ERROR messages in this instrument. The instrument can be configured so that warning messages are not displayed during operation, but are signalled by a beep.

Display warnings or signal by beep:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu
- Press WARNING MESSAGE [F R1] to activate / deactivate the display function.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-8 Warnings are displayed during operation when ON is set

3.5.6 Selecting the weighting filter

The Bell systems used in the USA use the C-message weighting filter instead of the CCITT psophometer weighting. You can select the type of filter you require using this instrument.

Selecting the weighting filter:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press MEASUREMENT [F L3] to open the MEASUREMENT menu
- Press WEIGHTING [F L1] to select the desired weighting filter
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode

Fig. 3-9 Selecting the weighting filter (e.g. CCITT psophometer)

3.5.7 LCD contrast setting

Instruments in the SPM-37/-38/-39 family are fitted with variable contrast liquid crystal displays. The contrast of the display may require adjustment under certain lighting conditions. To do this, proceed as follows.

Correcting the contrast:

- Press and hold down the [Blue key]
- Press the arrow keys [\downarrow] or [\uparrow] to adjust the contrast so that the lettering is clear and the reference background is almost invisible.

3.6 Reference frequencies

Internal reference frequency

The instrument is equipped with a10 MHz reference frequency oscillator which provides sufficient accuracy for the tuning frequency for normal operation. The 10 MHz reference frequency can also be output from socket [52].
Note: If the reference frequency oscillator is switched on, do not input a reference frequency from any other source to socket [52]. This will avoid unwanted crosstalk interference.

Switching on the internal 10 MHz reference frequency oscillator:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press MEASUREMENT [F L3] to open the MEASUREMENT menu
- Press EXT REF [F L3] to switch on the internal reference frequency oscillator.

Fig. 3-10 EXT REF INT switches socket [52] as an output

External reference frequencies

A reference frequency can be input to socket [52] for a particular measurement, for example if an increase in the accuracy of the tuning frequency is required. The instrument can synchronize to the following reference frequencies: $60 \mathrm{kHz}, 300 \mathrm{kHz}, 2048 \mathrm{kHz}, 4200 \mathrm{kHz}, 1 \mathrm{MHz}, 2 \mathrm{MHz}$, 5 MHz and 10 MHz . For this, socket [52] must be switched as an input.
Note: If socket [52] is selected as input and a suitable standard frequency signal is present, the status display will show SETTLING for about 5 seconds, followed by LOCKED to indicate that the instrument is now synchronized to the external standard frequency. If a standard frequency signal is not present or the signal level is too low, the status display will indicate NO SIGNAL.
If the frequency of the signal is outside the possible signaling range, the message UNLOCKED will be displayed.
In both the latter cases, the error message BAD EXTERNAL REFERENCE FREQUENCY will also be displayed at regular intervals.

Switching socket [52] as a reference frequency input:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press MEASUREMENT [F L3] to open the MEASUREMENT menu
- Press EXT REF [F L3] to activate socket [52] as the reference frequency input.

Fig. 3-11 Activating the reference frequency input
Selecting the reference frequency:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press MEASUREMENT [F L3] to open the MEASUREMENT menu
- Press EXT REF FRQ [F L4] to open the EXT REF FRQ menu.
- Press [F L1] through [F R4] to select the reference frequency to which the instrument is to synchronize.

Fig. 3-12 Different reference frequencies to which the instrument can synchronize

3.7 MEMORY CARD

The Memory Card can be used with the SPM/PSM-137/-138/-139 only.

Using the Memory Card

The number of fixed frequencies and setups which can be stored by the instruments in the SPM/PSM-137/-138/-139 series can be increased by the use of a Memory Card:
Fixed frequencies: From 100 to 200 memory positions
Setups: From 7 to 107 memory positions.

Fig. 3-13 Memory Card
Types of Memory Card which can be used

- SRAM 512 kB
- SRAM 1 MB (supplied with the instrument)
- SRAM 2 MB
- SRAM 256 kB with Attribute Memory
- Flash EPROM 2MB

Handling a Memory Card

Always follow the instructions for use which are supplied with the Memory Card.

Protecting a Memory Card

Memory Cards can be write-protected. Move the slider on the edge of the Memory Card so that it points to the WP label. Observe any instructions printed on the Memory Card.

Formatting a Memory Card

Before you can use a new Memory Card it must be formatted to take data. This is similar to formatting a floppy disk. Five types of Memory Card can be formatted.

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press MEMCARD [F L4] to open the MEMORY CARD menu.
- Press Softkey to select the format needed.
- Press OK. Formatting a 2 MB FLASH card takes about 120 s .

Fig. 3-14 Formatting a SRAM Memory Card

Inserting the Memory Card

- Hold the Memory Card between your thumb and forefinger and push it into the card slot [3], making sure that the connectors are pointing towards the slot and the lettering on the Memory Card is on top.
- Push the Memory Card into the slot until the ejector button to the left of the slot becomes visible.

Ejecting the Memory Card

- Press the ejector button. The Memory Card can now be slid out of the slot.

Displaying the Memory Card contents

The Memory Card directory can be displayed so that you can see what is stored on the card.

Displaying the Memory Card directory:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press Softkey for format needed.
- Press MEMCARD DIR [F R4] to display the contents of the memory.

Fig. 3-15 Example of a Memory Card directory

- Select the directory using the rotary control or the arrow keys.
- Press OPEN [F L4] to open the selected sub-directory.

Deleting directories and files:

Note: A directory can only be deleted when it is empty, i.e. does not contain any files.

- Select the directory using the rotary control or the arrow keys.
- Select the file using the rotary control or the arrow keys.
- Press DELETE [F L4] to delete the selected file. The instrument will first prompt you to confirm that you want to delete the file as a safety measure.

3.8 Setting up the V. 24 serial interface

The INTERFACES option in the TEST \& CONFIG menu lets you set up the serial interface for outputting the results or remotely-controlling the instrument.

Selecting the handshake:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press V. 24 [F L2] to open the V. 24 menu.
- Press HANDSHAKE [F L3] to select the interface control function. Each time the key is pressed, a different option is selected:
NONE = no handshake.
RTS/CTS = Data transmission is controlled from the receiver using a hardware handshake.
XON/XOFF = Data transmission is controlled from the receiver using a hardware handshake.
The receiver accepts data until the buffer is full, when it transmits the signal XOFF (13h, Ctrl S) on circuit TxD (Pin2) to the transmitter. As soon as this signal is received, the transmitter waits until it receives the signal XON (11h, Ctrl Q) from the receiver indicating that the buffer is empty.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-16 Selecting the interface control

Selecting the parity

Selecting the handshake:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press V. 24 [F L2] to open the V. 24 menu.
- Press PARITY [F L4] to select the serial interface parity setting. The transmitter can insert a parity bit after the data bits as a means of detecting transmission errors. The receiver checks the data stream as indicated by the transmitter.
NONE = No parity check.
EVEN = Even parity, i.e. the number of "1" bits including the parity bit is always even. The transmitter sets the parity bit to " 1 " if the number of " 1 " bits in the data word is odd.
ODD = Odd parity, i.e. the number of " 1 " bits including the parity bit is always odd. The transmitter sets the parity bit to " 1 " if the number of " 1 " bits in the data word is even.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-17 Selecting the parity

Selecting the baud rate:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press V. 24 [F L2] to open the V. 24 menu.
- Press BAUDRATE [F R2] to open the BAUDRATE submenu.
- Press [F L1] through [F R4] to select the required baud rate. The baud rate is the rate at which data is transmitted (1 Baud = 1bps). For example, if the data format is 1 start bit, 7 data bits and 2 stop bits per character, then 960 characters will be transmitted per second if the baud rate is 9600 .
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-18 Selecting the baud rate

Selecting the number of data bits:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press V. 24 [F L2] to open the V. 24 menu.
- Press DATA BITS [F R3] to select the number of data bits per character to be transmitted over the serial interface. The LSB (least significant bit) is transmitted first, the MSB (most significant bit) last.
7 = Characters are transmitted in 7 bit ASCII code.
8 = Characters are transmitted in 8 bit ASCII code no. 5.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-19 Setting the number of data bits

Setting the number of stop bits:

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACES [F L4] to open the INTERFACES menu.
- Press V. 24 [F L2] to open the V. 24 menu.
- Press STOP BITS [F R4] to set the number of stop bits per character transmitted over the serial interface at the end of each character or parity bit. The stop bit can be 1, 1.5 or 2 bit periods in length.
- Press [PREV] to return to the previous menus one step at a time, or
- Press [RTN] to return direct to the main menu of the current operating mode.

Fig. 3-20 Selecting the number of stop bits

3.9 Default settings

Invoking the default settings:

The default settings for the individual parameters are stored at SETUP address 0 to allow the instrument to be set to a defined initial state.

- Press [Blue key] to call up additional functions
- Press [SETUP] to call up the SETUP menu
- Select 00 DEFAULT using the rotary control or the arrow keys
- Press RECALL [F L4] to set the default values

The main menu for LEVEL mode is displayed.
Instrument default settings

Meaning	Parameter	Setting
Acoustic signal (IMPULSIVE NOISE and INTERRUPTION modes)	BEEP	OFF
Response threshold	THRESH	- 20.0 dBm
Display averaging	AVRG	OFF
Drive		LOW NOISE
AUTO STEP mode	MODE	TIME
Automatic ranging	AUTO RANGING	ON
Automatic frequency control	AFC	OFF
Automatic measurement sequence	START/STOP key	STOP
Bandwidth	BANDW	3100 Hz
Mode	-	LEVEL
Weighting filter (JITTER)	FILTER	$20 . . .300 \mathrm{~Hz}$
Weighting filter (IMPULSIVE NOISE)	FILTER	FLAT
Date	DATE	Current date
Input	RX	High-impedance, 75
Receive frequency	FRQ	100000 Hz
External reference frequency	EXT REF FRQ	10000000 Hz
Step threshold	STEP THRESH	- 20.0 dBm
Frequency step	FSTEP	1000 Hz
RF gain	RF GAIN	- 40.0 dB
Calibration	CAL	OFF
Marker	MARKER	OFF
Maximum value hold	MAXHLD	OFF
Start measurement	START TIME	00:00
Center frequency	FCENT	55000 Hz
Power on behavior	POWER ON SETUP	Last selection
Notch filter	NOTCH	OFF
Upper level threshold limit	UPPER THRESH	29.0 dBm

Fig. 3-21 Default settings on initialization

Meaning	Parameter	Setting
Level reverence	... LEVEL	ABS LEVEL
Level units	-	dBm
Level threshold	THR/dBm	9.0
Level monitoring	LOWER THRESH	OFF
Level monitoring	UPPER THRESH	OFF
Psophometer filter	PSOPH	OFF
External reference frequency input	EXT REF	OFF
Step rate	TIME/STEP	1s
Step width	STEP WIDTH	1000 Hz
Sideband	USB/LSB	USB
Scale length	SCALE	100
Scale mode	SCALE RANGE	AUTO
Scale reference	dBm -->	9.0
Scale range	SCALE	$20 \mathrm{~dB} /$
Start frequency	FSTART/Hz	10000 Hz
Start mode	START	MAN
Start threshold	START THRESH	-20.0 dBm
Stop frequency	FSTOP	100000 Hz
Keyboard click	KEYBOARD CLICK	Last selection
Test tone frequency	TONE	800 Hz
Gate time	GATE TIME	01:00
Dead time	DEAD TIME	3 ms
Carrier frequency	CAR	100000 Hz
Time	TIME	Current time
Lower level alarm threshold	LOWER THRESH	- 71.0 dBm
START/STOP key lock	STOP KEY LOCKED	OFF
Gain	GAIN	20 dB
Warnings	WARNING MESSAGE	ON
Sweep time	SWEEP TIME	1 s
Sweep time selection	SWEEP TIME	AUTO
IF gain	IF GAIN	20.0 dB

Fig. 3-21 Default settings on initialization

3.10 Operation after storage and transport

Safety

Storage or transport may subject the instrument to excessive stresses. Refer to the safety instructions in section 2.

Recovery time

Condensation may form on or inside an instrument which has been stored or transported at a low temperature when it is brought into a warm room. Do not switch the instrument on until any condensation visible on the surface has evaporated. Correct operation is ensured once the instrument has reached a temperature within the guaranteed operating range (+5 to $+40^{-} \mathrm{C}$). The last point also applies if the instrument was stored at high temperatures.

Built-in lithium battery

The instrument is fitted with a lithium battery for buffering the semiconductor memories used for storing instrument setups and data retention in the event of a power failure. The battery may become discharged after long period of storage. Refer to the service manual for details of how to replace the battery.

4 Getting started

This section explains the principle behind operation of the instrument with the aid of a simple example measurement. It is intended to give first-time users of the instrument a general idea of how to use it and introduces some of the parameters and operating sequences which will be used for other measurement tasks.
The device under test is the reference frequency output of the instrument itself. The output signal is a 10 MHz carrier with output power of about -3.0 dBm into 75Ω.
Note: \quad The SPM/PSM-37/-137 have an upper frequency limit of 8 MHz . Insert a frequency divider between the reference frequency output [52] and the measurement input [20], or use an appropriate reference frequency source to provide the test signal. The description of storing instrument settings and measurement results on Memory Cards does not apply to instrument versions SPM/PSM-37 where this function is not available.

Test setup

- Connect the reference frequency output [52] on the instrument back panel to the measurement input [20] usig a short length of BNC cable.

Switching on

- Switch the instrument on using the AC line switch on the back panel.

If the instrument was set to standby mode the last time it was used, press the [山 I] key to switch it on.

Default setting

The default setup sets all parameters to their preferred default settings and is stored under address 00 DEFAULT in the setup memory.

- Press the [BLUE KEY] to invoke the additional functions.
- Press [IMPED] to open the SETUP menu.

Note: \quad The additional function, in this case SETUP, must be selected within 2 seconds of pressing the [BLUE KEY], i.e. while the bar is displayed at the bottom edge of the display.

- Use the rotary control or the arrow keys to select 00 DEFAULT. (if 00 DEFAULT is not shown as already selected).
- Press RECALL [F L4] to invoke the DEFAULT setup. The main menu for LEVEL mode is displayed.

Fig. 4-1 Entering the address

Input impedance

The default setting of the input impedance is 75Ω with high-impedance termination. To measure the input signal correctly the setting must be changed to termination with $Z_{0}=75 \Omega$. To do this, do the following:

- Press [IMPED] to open the impedances menu.
- Press $\mathbf{Z} \infty[F \mathrm{~L} 1]$ to terminate the input with $\mathrm{Z}_{0}=75 \Omega$.
- Press [PREV] to return to the measure menu.

Fig. 4-2 IMPEDANCE menu for selecting the input impedance

Level units

At present, the instrument is set for selective level measurement characterized by the current bandwidth setting of 3.1 kHz . The receive frequency is preset to 100 kHz (test signal is 10 MHz). The digital result field shows a value of around $<-90 \mathrm{dBm}$. To get an idea of the magnitude of the displayed level, switch over to the linear level display:

- Press [UNITS] to open the level units and reference menu.
- Press [F R4] $3 x$ to switch to display in Watts.
- Press [PREV] to return to the measure menu.

The result shown is a power value of $<1 \mathrm{pW}$ which is the noise component at 100 kHz evaluated with a bandwidth of 3.1 kHz . Switching the level units also switches the level reference from an absolute level to a relative level referred to 0 dBm (ABS ---> REL). The result is displayed in dBm 0 , indicating that the power level applies to the point with relative level of zero (dBr).

Note: \quad The analog display is disabled for linear level display.

- Press [UNITS] again to open the level units and reference menu.
- Press LEVEL ABSOLUTE [F L2] to switch to displaying absolute level.
- Press [F R2] 4 times to switch back to display in dBm.

Fig. 4-3 UNITS menu for selecting the level units

- Press [PREV] to return to the measure menu. The analog display is shown again.

Analog scale and averaging

The level of random or noise signals is often difficult to determine because of the variation with time. To illustrate this effect clearly, increase the resolution of the analog display. The rapidly fluctuating bar display can be slown down by using the averaging function, allowing the noise level to be read off more easily.

- Press TTTT [F L2] to open the SCALE menu.
- Press dB/DIV [F R3] to set a scale resolution of $2 \mathrm{~dB} / \mathrm{division}$.

Note the changes in the analog display.

- Press AVRG [F L4] to activate display averaging (OFF ---> SHORT ---> LONG). The movement of the bar display is reduced markedly when the LONG averaging time is selected.

Fig. 4-4 Display averaging activated

- Press [PREV] to return to the measure menu.

Note: \quad The resolution of the digital display changes to 0.01 dB when averaging is on.

Wideband level

To measure the power level of the 10 MHz signal from the standard frequency output [52], switch to wideband level measurement:

- Press BANDW [F R4] to open the BANDWIDTH menu.
- Press WIDE [F R4] to measure the total power level within the specified frequency range of the Level Meter (e.g. from 50 Hz to 32 MHz for the SPM-39).
The level display jumps to the expected value of around -3 dBm and stabilizes after a settling time (averaging period). Note the automatic scaling of the analog display. This function can be disabled if necessary.

Fig. 4-5 Wideband level measurement mode

Signal frequency

As the wideband level measurement does not tell us anything about the frequency composition of the test signal, a frequency-selective measurement is necessary. The HOT TONE SEARCH operating mode is useful for finding the frequency of an unknown signal. All signals exceeding a preset level threshold are displayed in a graphics field.

- Press [HOT] to select HOT TONE SEARCH mode.
- Press Scale [F L2] to open the SCALE and then press [F L2] to set $2 \mathrm{~dB} /$ division.
- Press THR/dBm [F L4] to alter the level threshold; see arrow on the left of the graphic field. Enter a level threshold of e.g.- 5.0 dBm using the number keys and press [ENTER]. (The default threshold of +9 dBm would not detect the signal).
- Press FSTOP [F R2] to change the stop frequency. Enter the upper frequency limit of the level meter (e.g. 32 MHz) using the number keys and press $[\mathrm{MHz}]$ to complete the entry. The lower frequency limit FSTART (default setting 10 kHz) is not changed, as we are assuming that the signal frequency is above 10 kHz .
- Press [START] to start the search (STOP LED goes out).

After about 40 seconds, the signal line is displayed in the graphic field.

- Press [START] again to stop the search (STOP LED lights up).
- Press MARKER [F L1] to open the marker menu.
- Press SHOW MARKER [F L2] to activate/deactivate the marker function.

Fig. 4-6 Marker activated; display of frequency and level

- Press [PREV] to return to the measure menu.

The level and frequency values for the test signal are displayed.

- Press [START(STOP)] to end the measurement.

Recording the results on a Memory Card

The results can be stored on a Memory Card if the SPM/PSM-137/-138/-139 is used.

Preparation

- Slide the Memory Card supplied with the instrument into the card slot.

Assigning a file name

- Press [BLUE KEY] to access the additional functions.
- Press [DOCUM] to open the DOCUMENT menu.

Fig. 4-7 DOCUMENT menu

- Press FILE MEMCARD PARAM [F L4] to specify a file name under which the results are to be stored.
- Press CREATE [F L3] to open the menu for entering the file name.

Fig. 4-8 Determining the storage location and memory contents

- Enter the name Meas 1 (for example).
- Use the rotary control, arrow keys or <-- [F L2] and --> [F R2] to select the characters from the character bar.

Fig. 4-9 Entering the file name

- Press INSERT [F R3] or [ENTER] to enter the selected character.
- Press CREATE FILE [F L4] to create a file with the selected file name.

Selecting a file

- Select the file MEAS1 using the rotary control or the arrow keys.
- Press SET ACT FILE to store the results in the file MEAS1.

Fig. 4-10 Selecting the file name

Storing the results

- Press [PREV] to return to the DOCUMENT menu.
- Press SEND TO MEMCARD [F R3] to select the Memory Card as the storage medium.

- Press PRINT PARAMETERS to store the measurement parameters.
- Press [EXEC] to store the results.

Displaying the stored results

- Select the file MEAS1 using the rotary control or the arrow keys.
- Press VIEW [F L1] to display the contents of the file.

Fig. 4-11 Selecting the file

- You can scroll through the contents of the file MEAS1 using the rotary control or the arrow keys.

Fig. 4-12 Display of file contents

5 Operation

5.1 Instrument controls and connectors

This section summarizes all instrument controls and connectors in tabular format. The position numbers in the tables agree with those on the instrument.

Front panel

Fig. 5-1 Controls and connectors on the front panel
Code no.

Fig. 5-1 Controls and connectors on the front panel

Fig. 5-1 Controls and connectors on the front panel

Code no.	Element	Meaning
12	$12 \bigcirc \bigcirc$	FINE key Changes the resolution of the rotary control. LED on: Least significant digit of numerical parameter. Step width $1 \mathrm{~Hz}, 0.1 \mathrm{~dB}$. LED not lit: Second and third least significant digits of numerical parameter. Step width $100 \mathrm{~Hz}, 1 \mathrm{~dB}$.
13		Rotary control - Continuous entry of numerical parameters. - Selection of ASCII characters during generation of setup titles. - Section-by-section scrolling through HELP. Line-by-line scrolling through the contents or keyword directory of HELP. - Scrolling through setup contents, fixed addresses.
14		Cursor (arrow) keys - Step-wise alteration of selected parameters which have an internal step-size setting or which allow scrolling. - Section-by-section scrolling through HELP. - Line-by-line scrolling through the contents or keyword directory of HELP.
		Contrast (PSM / SPM-37/-38/-39 only) Contrast setting for the display. The display contrast is a function of - the light falling on the display and - the viewing angle.
15	$\begin{array}{\|c\|} \hline \mathrm{CAL} \\ \hline \text { OFF } \\ \hline 15 \\ \hline \end{array}$	CAL key - Switches automatic calibration ON or OFF. - The LED stays lit when automatic calibration is switched OFF.
16	$\underset{\text { STTAP }}{\underbrace{}_{\text {START }}}$	START key (green) Starts and stops - an automatic measurement sequence in AUTOSTEP mode, - the tone search in HOT TONE SEARCH mode, - event counting in INTERRUPTIONS and IMPULSE NOISE modes. In STOP status, pressing the key always triggers a new measurement sequence, tone search or event count. The red LED indicates STOP status.
17		Display of input impedance and the corresponding frequency ranges Coaxial input, Z: 50Ω, high impedance, 75Ω SPM/PSM-37/-137: 50 Hz to 8 MHz SPM/PSM-38/-138: 50 Hz to 18 MHz SPM/PSM-39/-139: 50 Hz to 32 MHz

Fig. 5-1 Controls and connectors on the front panel

Code no.	Element	Meaning
17		Balanced input I, Z: 124Ω, high impedance, 600Ω SPM/PSM-37/-137: 10 kHz to 8 MHz SPM/PSM-38/-138: 10 kHz to 14 MHz SPM/PSM-39/-139: 10 kHz to 14 MHz
		Balanced input II, Z: 150Ω, high impedance, 600Ω 50 Hz to 620 kHz
18	$\begin{gathered} 8 \text { BLANK } \\ 0 \end{gathered}$	BLANK key (PSM) Blanks the TX level. A new TX level value can be entered. The LED is on when the output level is blanked.
		Display of output impedances (PSM) and the corresponding frequency ranges Coaxial output, Z: $50 \Omega, 75 \Omega$ PSM-37/-137: 50 Hz to 8 MHz PSM-38/-138: 50 Hz to 18 MHz PSM-39/-139: 50 Hz to 32 MHz
		Balanced output I (PSM), Z: $124 \Omega, 150 \Omega$
		PSM-37/-137: 10 kHz to 8 MHz PSM-38/-138: 10 kHz to 14 MHz PSM-39/-139: 10 kHz to 14 MHz
		Balanced output II (PSM), Z: $150 \Omega, 600 \Omega, \mathrm{Ri} \sim 0 \Omega$ 50 Hz to 620 kHz
19	(8)	Jack Power supply for the TK-11 active probe
20	$\overbrace{-}^{20}$	Coaxial measurement input Versacon © 9 universal connector system (75Ω basic jack) with BNC insert. Adapts to all commonly used connector systems.
21		Balanced tracking generator output 3-pole CF jack (North American version sith additional balanced input [26] WECO 310)
22		Coaxial tracking generator output Versacon ${ }^{\circledR} 9$ universal connector system (75Ω basic jack) with BNC insert. Adapts to all commonly used connector systems.

Fig. 5-1 Controls and connectors on the front panel
Code no.

Fig. 5-1 Controls and connectors on the front panel

Fig. 5-2 Front panel, e.g. PSM-139, BN 2203/17

Back panel

Code no.	Element	Meaning
51 50		IEEE 488 remote control connector Option 2203 / 00.05 24-pole Amphenol socket V. 24 serial interface Option 2203 / 00.05 Printer connection 9 -pole SUB-D plug. Connections: Pin 1: not used Pin 2: $R x$ Pin 3: Tx Pin 4: DTR Pin 5: ground Pin 6: DSR Pin 7: RTS Pin 8: CTS Pin 9:not used
52		Reference frequency output / input BNC socket
53		Auxiliary inputs / outputs 9-pole SUB-D socket. Connections: Pin 1: Alarm output: Relay c/o contact, NO Pin 2: Alarm output: Relay c/o contact, NC Pin 3: Y output; control voltage proportional to analog scale $0 . . .5 \mathrm{~V}_{\mathrm{DC}}$ Pin 4: Signal output: Interruption measurement to ITU-T 0.61 Pin 5 : External level setting (PSM) $\pm 1 \mathrm{~dB}$ with $\pm 500 \mathrm{mV}$ auxiliary d.c. voltage Pin 6: Alarm output: Relay c/o contact, C/O (see pins1 \& 2) Pin 7: Ground Pin 8: Ground Pin 9: Measurement ground for pin 5
54	$\begin{aligned} & 0 \\ & \underline{1} \\ & \hline \end{aligned}$	Grounding bolt

Fig. 5-3 Controls and connectors, back panel

Fig. 5-3 Controls and connectors, back panel

Fig. 5-4 Back panel, e.g. PSM-139

5.2 Operating principle

Display

Digital: Resolution 0.1, 0.01 dB and
Analog: Scales 2, 20, 100 dB

Parameters

Variable function keys
Fixed function keys

Documentation
Memory Card
External printer

Fig. 5-5 Front panel and structural elements

Display

The display is the main part of the front panel. Depending on the instrument version, it is either a liquid crystal or an electroluminescnt display. Both display types have a format of 240×64 pixels The operating mode, measurement results, important instrument parameters, status and error messages are all visible at a glance.

Fig. 5-6 Standard display (operating mode, results, parameters and error messages)

Menu control

The instrument is menu controlled. The instrument functions are grouped into function key menus.

Invoking operating modes and auxiliary function menus

The fixed function keys are used to invoke the main menus for the operating modes and the auxiliary functions. If the blue key [8] is pressed first, the second function printed above the key is invoked.

Changing parameters and functions using the function keys

There are four keys to the right ([F R1] to [F R4]]) ${ }^{1}$ and to the left ([F L1] to [F L4]) 1 of the display screen. The functions of these keys are controlled by the program and are indicated by labels shown adjacent to each key in the display.

Setting parameters

Different types of parameter are set in different ways.

- Toggle switch: The setting of these parameters changes each time the function key is pressed, e.g. from ON to OFF or from USB to LSB.
- Parameter selection from 2 or 3 possible values: Pressing the function key scrolls through the available settings, e.g. AVRG TIME OFF/SHORT/LONG.
Parameter selection from up to 8 different values (e.g. Bandwidth, 7 values): When the function key is pressed, a sub-menu opens. The parameter value is selected by pressing the appropriate function key. Once a parameter has been selected, the display reverts to the main menu after a pause of about 2 seconds.

[^0]- Opening a sub-menu using the preselect key and a function key: The fixed frequencies can only be set if the preselect key is first pressed, followed by function key [F R1]. This opens a sub-menu in which [F L1] is labelled FRQ MEMORY.
- Semi-analog setting: Numerical parameters can be set using the rotary control, number keys or arrow keys. This applies to all frequency settings, level thresholds and time values. The fixed frequencies can also be read direct from the memory.

The results

In general, the signal level at a particular frequency or frequency bandwidth is measured. In the default setting, the measured value is displayed digitally with a resolution of 0.1 dB . If the averaging function has been activated in the SCALE menu, the resolution is improved to 0.01 dB.
The absolute or relative level can also be precisely indicated as an analog bar graph with variable scaling.
Automatic measurements, such as HOT TONE SEARCH or AUTO STEP, yield a series of results which are displayed as a graph (results curve).

Inputs and outputs

The inputs and outputs and the impedances are set by pressing the fixed function key [IMPED] and using the variable function keys to select the required values.

Demodulator output

The demodulated test signal can be monitored via loudspeaker or headphones. The output volume can be varied.

Memory card

A slot for a PCMCIA format memory card is provided. The memory card can be used for storing fixed frequencies and measurement results.

IEEE functions

The LEDs labelled REM, CACT, SRQ, LSTN and TALK indicate the status of the IEEE bus during remote-controlled operation. The LOCAL key is used to switch from remote to local operation.

Notes:

5.3 Help function

The help function of the instrument provides short information on every menu of an operating mode or secondary function. This information is normally limited to eight lines of text, and can be called up from the help function main menu in different ways.

1. CONTENTS

List of contents for menu help texts.
2. INDEX

Alphabetical list of all help texts.
3. CURRENT MENU HELP

Help for the current menu being used.
INFO contains a short note on how to use the help function. README includes important information on the instrument which was not available at the time of printing the operating manual. The various ways of calling up help are described below.

Fig. 5-7 Help function main menu

5.3.1 Calling up help from the INDEX

- Press [HELP] to open the help main menu.
- Press INDEX [F R1] to call up the alphabetical index list.

Select the term required (inverse video) using the arrow keys or the rotary control and press [ENTER] to call up the help for this term.

- Press [PREV] to return to the index list.
- Press [PREV] twice to return to the help main menu.
- Press [RTN] to return to the current menu.

Fig. 5-8 Help index list

5.3.2 Calling up help from the CONTENTS

- Press [HELP] to call u the help main menu.
- Press CONTENTS [F R2] to call up the contents.

Select the required section (inverse video) using the arrow keys or the rotary control and press [ENTER] to call up the help for this section.

- Press [PREV] to return to the contents.
- Press [PREV] twice to return to the help main menu.

Press [RTN] to return to the current menu.

Fig. 5-9 Help contents

5.3.3 Calling up help from the CURRENT MENU HELP

- Press [HELP] to call up the help main menu.
- Press CURRENT MENU HELP [F R3] to call up the help for the current menu.

Use the arrow key [\downarrow] to close the introductory text and select help for the parameter required by pressing the appropriate function key.

- Press [PREV] to return to the help main menu and re-open current menu help if required.
- Press [RTN] to return to the current menu.

Fig. 5-10 Parameter display for the current menu

Note: Help text is scrolled through paragraph by paragraph using the arrow keys or line by line using the rotary control.

5.4 LEVEL mode

The most important measurement task of the instrument is the measurement of voltages and power levels.
In LEVEL mode, the instrument can be used for a wide range of applications which are encountered during the characterization of an analog communications system. For example, it may be used as:

- A selective level meter (channel or group power, pilots, carrier leaks)
- A wideband level meter (total power level)
- A CF noise level meter (weighted, unweighted)
- A selective RF voltmeter (voltage measurement)
- A selective frequency counter

Fig. 5-11 Level and voltage measurements at the various hierarchy levels of a CF system

5.4.1 Calling up the operating mode

- Press [LEVEL] to call up the main menu for LEVEL mode.

Fig. 5-12 Main menu for LEVEL mode

5.4.2 Selective and wideband level measurement

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page 5-55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)
Alter the receive frequency (selective level measurement)
FRQ, FSTEP --> Setting (see section 5.14 .8 on page $5-67$)
FRQ FMEM (fixed frequencies) --> Setting (see section 5.14.9 on page 5-68)
Absolute voltage/power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)

Select bandwidth

Note: \quad Switch to "WIDE" setting for wideband measurements.
BANDW ---> Setting (see section 5.14.16 on page 5-84)
If required: Automatic frequency control
AFC --> Setting (see section 5.14 .10 on page $5-78$)
If required: Level monitoring
ALARM PARAMETERS --> Setting (see section 5.14 .4 on page $5-61$)
If required: Disable AUTO RANGING
AUTO RANGING --> Setting (see section 5.14 .7 on page 5-66)

5.4.3 Results display

Level measurement display
LEVEL = Display of measured level

Fig. 5-13 Selective level measurement display
If required: Set scale reference manually
RANGING --> Setting (see section 5.14.19 on page 5-87)
If required: Set scale division
dB/DIV --> (see section 5.14 .18 on page 5-87)

If required: Set display averaging

AVRG --> (see section 5.14.21 on page 5-88)
Symbols and characters:
" \uparrow " in front of the level display: Above range limit (overdriven).
" \downarrow " in front of the level display: Below range limit (underdriven).
CAL above level units: Instrument is calibrated.

Notes:

5.5 DEMODULATION mode

General information

If the signal or noise in a discrete CF channel is to be measured and evaluated, DEMODULATION mode can be used. The instrument is tuned to the carrier leak and the upper (USB) or lower sideband (LSB) selected. The channel content can be assessed acoustically using a pair of headphones or the built-in loudspeaker.

Fig. 5-14 Demodulation of CF signals for qualitative assessment: Noise power level measurement at the CF level

5.5.1 Calling up the mode

- Press [DMOD] to call up the main menu for DEMODULATION mode.

Fig. 5-15 Main menu for DEMODULATION mode

5.5.2 SSB demodulation

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page $5-55$)
[UNITS] --> Setting (see section 5.14 .3 on page 5-60)
Altering the receive frequency (selective level measurement)
CAR --> Setting (see section 5.14 .8 on page $5-67$)
CAR FMEM (fixed frequencies) --> Setting (see section 5.14.9 on page 5-68)
Absolute voltage/power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14 .2 on page $5-56$)
Change sideband
USB/LSB --> Setting (see section 5.14.13 on page 5-80)
Correct gain
GAIN --> Setting (see section 5.14 .6 on page 5 -65)
Automatic gain control
AUTO GAIN --> Setting (see section 5.14 .6 on page $5-65$)
Activate weighting filter
NOTCH --> Setting (see section 5.14.17 on page 5-85)
PSOPH --> Setting (see section 5.14.17 on page 5-85)

Acoustic evaluation of the demodulated signal

The demodulated signal can be evaluated acoustically using the built-in loudspeaker or a pair of headphones connected via the 6.3 mm jack. The volume is controlled with control [25]. If a headphone is connected to socket [24], the internal loudspeaker is automatically disconnected.

5.5.3 Results display

Demodulation display

DMOD LEVEL = Display of the demodulated signal.

Fig. 5-16 The upper sideband is being received

If required: Set scale division

dB/DIV --> (see section 5.14.18 on page 5-87)

If required: Set display averaging

AVRG --> (see section 5.14.21 on page 5-88)

Symbols and characters:

" \uparrow " in front of the level display: Above range limit (overdriven).
" \downarrow " in front of the level display: Below range limit (underdriven).
CAL above level units: Instrument is calibrated.

Notes:

5.6 VOICE mode

General information

One of the most important measurements to be made in voice and data channels is that of wighted noise power. Too much noise worsens the S / N ratio and hence the transmission quality. The weighting filter is activated for measurements conforming to ITU-T O.41.
As well as weighted noise ($\mathrm{dBmp}, \mathrm{dBrnc}$), the following can also be measured:

- Unweighted noise or spurious level.
- Quantizing noise (in PCM systems) or psophometrically weighted noise level using a test signal. The test signal (e.g. 1010 Hz) is suppressed by an appropriate notch filter in the instrument.

Note: To increase the sensitivity (ITU-T prescribes -90 dBm), the VOICE band is limited to 10 kHz .

Fig. 5-17 Noise power level measurement at the LF level

5.6.1 Calling up the operating mode

- Press [VOICE] to call up the main menu for VOICE mode.

Fig. 5-18 Main menu for VOICE mode

5.6.2 Weighted noise power level measurements

Select input, impedance and measuremet units
[IMPED] --> Setting (see section 5.14 .1 on page 5-55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)
Absolute voltage / power leve, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)
Gain control
GAIN --> Setting (see section 5.14 .6 on page $5-65$)
Automatic gain control
AUTO GAIN --> Setting (see section 5.14.6 on page 5-65)
Activate weighting filter
NOTCH --> Setting (see section 5.14.17 on page 5-85)
PSOPH --> Setting (see section 5.14.17 on page 5-85)

5.6.3 Result display

Display of noise power level
VOICE LEVEL = Display of noise power level in voice band

Fig. 5-19 Display of noise power level weighted using a notch filter
If required: Set scale division
dB/DIV --> (see section 5.14 .18 on page 5-87)
If required: Set display averaging
AVRG --> (see section 5.14.21 on page 5-88)
Symbols and characters:
" \uparrow " in front of the level display: Above range limit (overdriven).
" \downarrow " in front of the level display: Below range limit (underdriven).
CAL above level units: Instrument is calibrated.

5.7 NPR mode

It is often useful to determine the quality of a multi-channel transmission system during operation. One way of assessing this is to measure the noise power ratio (NPR).

Fig. 5-20 Noise power ratio measurement in a free telephone channel

5.7.1 Calling up the operating mode

- Press [NPR] to call up the main menu for NOISE POWER RATIO mode.

Fig. 5-21 Main menu for NPR mode

5.7.2 Noise power ratio measurement

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page 5-55)
Alter the receive frequency
FRQ, FSTEP --> Setting (see section 5.14 .8 on page $5-67$)
FRQ FMEM (fixed frequencies) --> Setting (see section 5.14.9 on page 5-68)
Select channel system
SYSTEM --> Setting (see section 5.14.15 on page 5-82)

5.7.3 Results display

Display for noise power ratio measurement
NPR = Noise power ratio
INPUT POWER = Total input power level
SEL CH POWER = Selective channel noise power level

Fig. 5-22 Noise power ratio in a 300 channel system
If required: Set display averaging
AVRG --> (see section 5.14.21 on page 5-88)
Symbols and characters:
" \uparrow " in front of the level display: Above range limit (overdriven).
$" \downarrow$ " in front of the level display: Below range limit (underdriven).
CAL above level units: Instrument is calibrated.

5.8 HOT TONE SEARCH mode

Excessive discrete signals which degrade the S / N ratio of the transmission path can be detected using HOT TONE SEARCH mode. A threshold level which is entered before starting the search serves as criterion for detecting these hot tones. The frequency range to be searched is also entered before starting the search. The [START(STOP)] key controls the measurement. The hot tones are displayed graphically. A marker can be used to additionally display the frequency and level values numerically.

Fig. 5-23 Hot tones in a CF system

5.8.1 Calling up the operating mode

- Press [HOT] to call up the main menu for HOT TONE SEARCH mode.

Fig. 5-24 Main menu for HOT TONE SEARCH mode

5.8.2 Hot tone search

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page 5-55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)

Set search range

FSTART, FSTOP --> Setting (see section 5.14.11 on page 5-79)

Set search threshold

THR/dBm --> Setting (see section 5.14 .5 on page 5-63)

Select bandwidth

BANDW --> Setting (see section 5.14.16 on page 5-84)

5.8.3 Measurement sequence

Start search

- Press [START(STOP)] to start the search. The LED next to the key goes out.

The search is indicated by the status display SEARCHING shown below HOT TONE. Parameters cannot be altered during the search.
The search for hot tones is repeated continuously if the [START(STOP)] key is not pressed again. When FSTOP is reached, the search resumes from FSTART automatically.

Stop search prematurely

- Press [START(STOP)] to interrupt the continuous search. The LED next to the key comes on.

5.8.4 Results display and evaluation

Results display
HOT TONE = Graphic display of hot tones located within the search frequency range.

Fig. 5-25 A hot tone displayed in the graphics field
If required: Display hot tone level and frequency values
Note: The marker function can be activated during the search MARKER --> Setting (see section 5.14 .23 on page 5-89)

If required: Display maximum r.m.s. value of a signal
MAXHLD --> Setting (see section 5.14.22 on page 5-89)
If required: Evaluate marker frequency and level in LEVEL mode
MRK FRQ - -> LEVEL MEAS --> Setting (see section 5.14.23 on page 5-89).

Notes:

5.9 JITTER mode

Among the many causes of phase jitter, hum voltages are of particular significance. For this reason, only the jitter components between 4 and 300 Hz are detected. The instrument can evaluate the jitter components from 20 to 300 Hz or from 4 to 20 Hz . When measuring jitter in the voice band (ITU-T O.91), the frequency of the test signal must be taken into account.

5.9.1 Calling up the operating mode

- Press [Blue key] to invoke the secondary functions.
- Press [LEVEL] to call up the main menu for JITTER mode.

Fig. 5-26 Main menu forJITTER mode

5.9.2 Measuring the phase jitter of a signal

Fig. 5-27 Measuring the phase jitter of a signal
Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page 5 -55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)

Select measurement mode

- Press JITTER ... to open the measurement mode menu.
- Press JITTER [F L1] to select JITTER mode. The main menu is automatically displayed again.

Set the receive frequency

FRQ --> Setting (see section 5.14.8 on page 5-67)
FRQ FMEM (fixed frequencies) --> Setting (see section 5.14 .9 on page 5-68)

Select the filter

FILTER --> Setting (see section 5.14 .17 on page $5-85$)

5.9.3 Phase jitter measurement to ITU-T O.91

Fig. 5-28 Phase jitter measurement to ITU-T O. 91

Select input and impedance

[IMPED] --> Setting (see section 5.14.1 on page 5-55)
[UNITS] --> Setting (see section 5.14 .3 on page 5-60)

Select measurement mode

- Press JITTER ... to open the measurement mode menu.
- Press TONE JITTER [F L3] to select TONE JITTER mode. The main menu is displayed again automatically.

Select the test tone

TONE --> Setting (see section 5.14.14 on page 5-81)
Select the filter
FILTER --> Setting (see section 5.14.17 on page 5-85)
Set the TX level
TX --> Setting (see section 5.18 .4 on page $5-120$)

5.9.4 Phase jitter measurement in the demodulated voice band

Fig. 5-29 Phasenjittermessung im demodulierten Sprachkanal

Select input and impedance

[IMPED] --> Setting (see section 5.14 .1 on page 5-55)

Select measurement mode

- Press JITTER ... to open the measurement mode menu.
- Press DMOD TONE JITTER [F L2] to select DMOD TONE JITTER mode. The main menu is displayed again automatically.

Select the test tone

TONE --> Setting (see section 5.14.14 on page 5-81)

Set the carrier frequency

CAR --> Setting (see section 5.14 .8 on page 5-67)
FMEM (fixed frequencies) --> Setting (see section 5.14 .9 on page $5-68$)

Select sideband

LSB/USB --> Setting (see section 5.14.13 on page 5-80)

Select the filter

FILTER --> Setting (see section 5.14 .17 on page $5-85$)
Set the TX level
TX --> Setting (see section 5.18 .4 on page $5-120$)

5.9.5 Results display

Jitter measurement display
JITTER = Phase jitter in degrees
JITTER DMOD TONE = Phase jitter in degrees, measured in the demodulated voice band JITTER TONE = Phase jitter in degrees, measured to ITU-T O.91

Fig. 5-30 Jitter measurement display

Symbols and characters

NO SYNC instead of the phase jitter: Instrument cannot synchronize (level too low, wrong tuning frequency, etc.).

Notes:

5.10 IMPULSIVE NOISE mode

General information

Impulsive noise is a common cause of problems in data communications. This is often due to crosstalk from the voltage peaks caused by switching in high-tension networks or noise from electromagnetic switching equipment. Impulsive noise causes bit errors if the pulse amplitude reaches that of the signal and the pulse width is about the same as the telephone channel response time (Ý0.3 ms). The instrument counts the pulses exceeding a given amplitude threshold which occur within a defined time period (max. 99 h 59 min). The measurement can be started manually or by timer. Two types of impulsive noise measurement are provided:
IMPULSIVE NOISE VOICEBAND: Impulsive noise in the voice band, to ITU-T O.71. IMPULSIVE NOISE DMOD: Impulsive noise in the demodulated voice band (CF side).

5.10.1 Calling up the operating mode

- Press [Blue key] to call up the secondary functions.
- Press [DMOD] to call up the main menu for IMPULSIVE NOISE mode.

Fig. 5-31 Main menu for IMPULSIVE NOISE mode

5.10.2 Impulsive noise measurement in the voice band to ITU-T O.71

Fig. 5-32 Impulsive noise measurement in the voice band to ITU-T O. 71

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14.1 on page 5-55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)

Select measurement mode

- Press IMP NOISE ... to call up the measurement mode menu.
- Press IMPULSIVE NOISE VOICEBAND [F L1] to call up IMULSIVE NOISE VOICEBAND mode. The display returns to the main menu automatically.

Set level threshold

THRESH --> Setting (see section 5.14.5 on page 5-63)
Absolute voltage / power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)

Select weighting filter

NOTCH --> Setting (see section 5.14.17 on page 5-85)
FILTER --> Setting (see section 5.14 .17 on page $5-85$)
Set gate time
GATE TIME --> Setting (see section 5.14.26 on page 5-92)

Set measurement mode

START --> Setting (see section 5.14 .25 on page 5-91)

Set start of measurement

START TIME --> Setting (see section 5.14.25 on page 5-91)
If required: Beeper
BEEP --> Setting (see section 5.14.28 on page 5-93)

5.10.3 Impulsive noise measurement in the demodulated voice band

Fig. 5-33 Impulsive noise measurement in the demodulated voice band
Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page $5-55$)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)

Select measurement mode

- Press IMP NOISE ... to call up the measurement mode menu.
- Press IMPULSIVE NOISE DMOD [F L2] to call up IMPULSIVE NOISE DEMODULATION mode. The display returns to the main menu automatically.

Set level threshold

THRESH --> Setting (see section 5.14.5 on page 5-63)
Absolute voltage / power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)
Select weighting filter
NOTCH --> Setting (see section 5.14.17 on page 5-85)
FILTER --> Setting (see section 5.14.17 on page 5-85)

Alter carrier frequency

CAR --> Setting (see section 5.14 .8 on page 5-67)
CAR FMEM (fixed frequencies) --> Setting (see section 5.14.9 on page 5-68)
Select sideband
LSB/USB --> Setting (see section 5.14.13 on page 5-80)
Set gate time
GATE TIME --> Setting (see section 5.14 .26 on page $5-92$)

Set measurement mode

START --> Setting (see section 5.14.25 on page 5-91)

Set start of measurement

START TIME --> Setting (see section 5.14.25 on page 5-91)
If required: Beeper
BEEP --> Setting (see section 5.14.28 on page 5-93)

5.10.4 Measurement sequence

Start measurement

Automatic

As soon as the programmed start time is reached, the instrument counts pulses with amplitudes above the preselected level threshold.

Manual

- Press [START(STOP)]. The instrument counts pulses with amplitudes above the preselected level threshold.

In both cases, the measurement ends automatically at the end of the preset gate time.

Stop measurement prematurely

Automatic and manual:

- Press [START(STOP)].

Disable [START(STOP)] key

- Press STOP KEY LOCKED [F R4] to disable (lock) the [START(STOP)] key. This prevents the measurement being stopped prematurely by mistake.

5.10.5 Results display

Impulsive noise measurement dsplay
IMP NOISE DMOD = Display of up to 9999 events
IMP NOISE VOICEBAND = Display of up to 9999 events

Fig. 5-34 Typical impulsive noise measurement display
Status displays
RUN: Shows the elapsed measurement time.
TIME: Shows the current time of day.

5.11 INTERRUPTIONS mode

General information

Spontaneous drops of 10 dB or more in the level of a data signal generally lead to bit errors if the drop in level persists for longer than the channel response time ($\sim 0.3 \mathrm{~ms}$). ITU-T specifies that not more that 2 such interruptions should occur within a period of1 hour. The instrument counts the interruptions below a given threshold level occurring within a defined time period (max. 99 h 59 min). No events are registered within a dead time which can be selected. The start of the measurement is timer controlled or manually triggered. Two types of interruption measurement are provided:
INTERRUPTIONS VOICEBAND: Interruptions in the voice band to ITU-T O.61. INTERRUPTIONS DMOD: Interruptions in the demodulated voice band (CF side)

5.11.1 Calling up the operating mode

- Press [Blue key] to call up the secondary functions.
- Press [VOICE] to call up the main menu for INTERRUPTIONS mode.

Fig. 5-35 Main menu for INTERRUPTIONS mode

5.11.2 Interruption measurement in the voice band to ITU-T O.61

Fig. 5-36 Interruption measurement in the voice band to ITU-T O.61
Select input and impedance
[IMPED] --> Setting (see section 5.14 .1 on page 5-55)

Select measurement mode

- Press INTERR ... [F L1] to call up the measurement mode menu.
- Press INTERRUPTIONS VOICEBAND [F L1] to call up INTERRUPTIONS VOICEBAND mode. The display returns to the main menu automatically.

Set level threshold

THRESH --> Setting (see section 5.14.5 on page 5-63)
Absolute voltage / power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)
Set gate time
GATE TIME --> Setting (see section 5.14.26 on page 5-92)
Set dead time
DEAD TIME --> Setting (see section 5.14.27 on page 5-92)
Set measurement mode
START --> Setting (see section 5.14.25 on page 5-91)
Set start of measurement
START TIME --> Setting (see section 5.14.25 on page 5-91)
If required: Beeper
BEEP --> Setting (see section 5.14.28 on page 5-93)

5.11.3 Interruption measurement in the demodulated voice band

Fig. 5-37 Interruption measurement in the demodulated voice band

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14.1 on page 5-55)
[UNITS] --> Setting (see section 5.14.3 on page 5-60)
Select measurement mode

- Press INTERR ... to call up the measurement mode menu.
- Press INTERRUPTIONS DMOD [F L2] to call up INTERRUPTIONS DEMODULATION mode. The display returns to the main menu automatically.

Set level threshold

THRESH --> Setting (see section 5.14.5 on page 5-63)
Absolute voltage / power level, level difference or referred level
LEVEL MODE --> Setting (see section 5.14.2 on page 5-56)

Select weighting filter

NOTCH --> Setting (see section 5.14.17 on page 5-85)
FILTER --> Setting (see section 5.14.17 on page 5-85)

Alter carrier frequency

CAR --> Setting (see section 5.14 .8 on page 5-67)
CAR FMEM (fixed frequencies) --> Setting (see section 5.14.9 on page 5-68)
Select sideband
LSB/USB --> Setting (see section 5.14.13 on page 5-80)
Set gate time
GATE TIME --> Setting (see section 5.14.26 on page 5-92)
Set dead time
DEAD TIME --> Setting (see section 5.14 .27 on page $5-92$)
Set measurement mode
START --> Setting (see section 5.14.25 on page 5-91)
Set start of measurement
START TIME --> Setting (see section 5.14 .25 on page 5-91)
If required: Beeper
BEEP --> Setting (see section 5.14.28 on page 5-93)

5.11.4 Measurement sequence

Start measurement

Automatic

As soon as the programmed start time is reached, the instrument counts pulses with amplitudes above the preselected level threshold.

Manual

- Press [START(STOP)]. The instrument counts events where the level drops below the preselected level threshold.

In both cases, the measurement ends automatically at the end of the preset gate time.

Stop measurement prematurely

Automatic and manual:

- Press [START(STOP)].

Disable [START(STOP)] key

- Press STOP KEY LOCKED [F R4] to disable (lock) the [START(STOP)] key. This prevents the measurement being stopped prematurely by mistake.

5.11.5 Results display

Interruption measurement display
INTERR DMOD = Display of up to 9999 events
INTERR VOICEBAND = Display of up to 9999 events

Fig. 5-38 Typical interruption measurement display

Status displays

RUN: Shows the elapsed measurement time.
TIME: Shows the current time of day.

5.12 AUTOSTEP mode

General information

The instrument performs selective level measurements with automatic frequency stepping in AUTOSTEP mode.
This operating mode can be used for:

- Selective, automatic end-to-end measurements without the need for an auxiliary connection for frequency synchronization
- Two-port measurements at precisely defined frequencies (e.g. resonant nodes)
- System monitoring with up to 100 signals (pilots, carriers, channels).

5.12.1 Calling up the operating mode

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.

Fig. 5-39 Main menu for AUTO STEP mode

5.12.2 End to end measurement

General information

The frequency response of a transmission path can be displayed graphically using the AUTOSTEP menu, each measurement trace consisting of up to 100 points (corresponding to the number of STEPS).
This measurement can only be performed if a generator having a similar form of frequency conditioning is available which can be programmed to change frequencies automatically. These frequency changes can either be equally-spaced frequency steps or a set number of programmed fixed frequencies.
The PSM-139 or PS-19 from Wandel \& Goltermann are suitable instruments.
The generator and receiver should be programmed with identical frequency parameters (FSTART, FSTOP, FSTEP or fixed frequency values).

5.12.2.1 PSM-139 as generator, SPM-139 as receiver

Fig. 5-40 Timer-controlled end to end measurement

Generator settings

Select output, impedances and units:
[IMPED] --> see section 5.14.1 on page 5-55 for details.
[UNITS] --> see section 5.14 .3 on page 5-60 for details.
Absolute voltage / power level, level difference or referred level:
LEVEL MODE --> see section 5.14.2 on page 5-56 for details.
Set frequency range:
FSTART/FSTOP --> see section 5.14 .11 on page 5-79 for details, or
FMEM START/FMEM STOP --> see section 5.14.9.4 on page 5-72 for details.
Set step rate:
TIME/STEP --> see section 5.14.24 on page 5-90 for details.
Set step width:
STEP WIDTH --> see section 5.14.24 on page 5-90 for details.
Set number of steps:
STEPS --> see section 5.14.24 on page 5-90 for details.
Set AUTOSTEP mode and measurement mode:

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [SK R3] to open the Step Parameter menu.
- Press MODE [SK L4] to set the instrument as MASTER.
- Press SWEEP [SK L3] to set the measurement mode.

SING = Single measurement.
CONT = Continuous measurement.

Set generator level:

TX --> see section 5.18.4 on page ??? for details.

Receiver settings

Select output, impedances and units:

[IMPED] --> see section 5.14.1 on page 5-55 for details.
[UNITS] --> see section 5.14.3 on page 5-60 for details.

Absolute voltage / power level, level difference or referred level:

LEVEL MODE --> see section 5.14.2 on page 5-56 for details.

Set frequency range:

FSTART/FSTOP --> see section 5.14 .11 on page 5-79 for details,
or
FMEM START/FMEM STOP --> see section 5.14.9.4 on page 5-72 for details.
Set step rate:
TIME/STEP --> see section 5.14.24 on page 5-90 for details.
Set step width:
STEP WIDTH --> see section 5.14.24 on page 5-90 for details.

Set number of steps:

STEPS --> see section 5.14.24 on page 5-90 for details.

Set start level threshold:

STARTTHRESH --> see section 5.14 .5 on page $5-63$ for details.

Set scale reference

- - - > dBm --> see section 5.14.30 on page 5-94 for details.

Set AUTOSTEP mode:

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [SK R3] to open the Step Parameter menu.
- Press MODE [SK L4] to set the instrument to TIME (timer controlled SLAVE instrument). This setting monitors the signal level at the start frequency.
As soon as the level exceeds the start threshold, the measurement is made at the start frequency.
When the level subsequently drops below the start threshold, i.e. when the generator switches to the next frequency, the receiver also initiates frequency switching which proceeds with the step rate controlled by the timer until the stop frequency is reached. The receiver then starts monitoring the level at the start frequency again. This operating mode assumes that the step rates for the generator and receiver are exactly the same.

Select bandwidth:

BANDW --> see section 5.14.16 on page 5-84 for details.
Note: \quad For a standard frequency accuracy of $\pm 2 \times 10^{-6}$ for both instruments, the maximum frequency offset for each instrument will be 2 Hz per MHz frequency step. For a tuning / generator frequency change of, say, 3 MHz , this would mean a frequency offset of $\Delta \mathrm{f}=2 \times(3 \times 2 \mathrm{~Hz})=12 \mathrm{~Hz}$ in the worst case. If the receiver is set to a bandwidth of 25 Hz , this will result in a level error of about 3 dB .
To prevent this, the chosen measurement bandwidth must be sufficiently large or instruments with much more precise standard frequencies must be used (see PSM-x3y option 2203/00.06).
If the two instruments are located very close together, it is a good idea to use the same standard frequency for both instruments (standard frequency inputs and outputs are on the instrument back panel).

Caution: The settings for
FSTART/FSTOP or FMEM START/FMEM STOP
TIME/STEP
STEP WIDTH
STEPS
must be identical for the generator and receiver.

5.12.2.2 Other generator, SPM-139 as receiver

Fig. 5-41 Threshold-controlled end to end measurement

Receiver settings

Select output, impedances and units:

[IMPED] --> see section 5.14.1 on page 5-55 for details.
[UNITS] --> see section 5.14 .3 on page 5-60 for details.

Absolute voltage / power level, level difference or referred level:

LEVEL MODE --> see section 5.14 .2 on page 5-56 for details.

Set frequency range:

FSTART/FSTOP --> see section 5.14.11 on page 5-79 for details, or

FMEM START/FMEM STOP --> see section 5.14.9.4 on page 5-72 for details.

Set step rate:

TIME/STEP --> see section 5.14.24 on page 5-90 for details.

Set step width:

STEP WIDTH --> see section 5.14.24 on page 5-90 for details.

Set number of steps:

STEPS --> see section 5.14 .24 on page $5-90$ for details.

Set level threshold for frequency stepping:

STEPTHRESH --> see section 5.14 .5 on page $5-63$ for details.

Set scale reference:

- - - > dBm --> see section 5.14.30 on page 5-94 for details.

Set AUTOSTEP mode:

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [SK R3] to open the Step Parameter menu.
- Press MODE [SK L4] to set the instrument to THRESH (threshold controlled SLAVE instrument).
This setting monitors the signal level at the each frequency point.
When the level exceeds the threshold, a measurement will be made after about $2 / 3$ of the time corresponding to the step rate setting has elapsed.
When the level drops below the threshold after the entire time corresponding to the step rate has elapsed, i.e. because the generator has switched to the next frequency, the receiver will switch to the next frequency step.
This method allows use of a generator that does not have step timing that is sufficiently accurate for the timer controlled measurement mode (TIME). The step time for the generator must be selected to be greater than or equal to that of the receiver.
The attenuation range for the path under test must be such that the crossing of the level threshold can be correctly detected at each measured frequency for the measurement to be successful.

Select bandwidth:

BANDW --> see section 5.14.16 on page 5-84 for details.

5.12.3 Measurement sequence

Start measurement:

SLAVE instrument

- Press [START(STOP)] to set the instrument to wait for the trigger condition.

The instrument waits at the start frequency or start address until it measures a level that is above the level threshold setting.
The instrument steps to the next frequency as soon as the current level drops below the level threshold setting again.
The frequency or fixed frequency address will be switched at the selected step rate and using the current step width setting.
When the stop frequency or stop address is reached, the instrument switches back to the start frequency again automatically.

MASTER instrument

- Press [START(STOP)] to start the measurement sequence.

The frequency is switched at the selected step rate using the current step width.

Stopping the measurement prematurely:

- Press [START(STOP)] to stop the measurement prematurely.

5.12.4 Two port measurements and system monitoring

Instrument versions PSM-37 to 139 can determine the frequency response, e.g. of a two port network. A special AUTOSTEP mode is provided for this. Frequency stepping takes place at the maximum rate.

Fig. 5-42 Loop measurement using the PSM-139

Select input, output, impedance and measurement units
[IMPED] --> see section 5.14 .1 on page $5-55$ for details.
[UNITS] --> see section 5.14.3 on page 5-60 for details.

Set frequency range

FSTART/FSTOP --> see section 5.14.11 on page 5-79 for details.
or
FMEM START/FMEM STOP --> see section 5.14.9.4 on page 5-72 for details.
Set step speed
TIME/STEP --> see section 5.14 .24 on page 5-90 for details.
Set step width
STEP WIDTH --> see section 5.14.24 on page 5-90 for details.

Set number of steps

STEPS --> see section 5.14.24 on page 5-90 for details.

Set scale reference

- - - > dBm --> see section 5.14.30 on page 5-94 for details.

Set AUTOSTEP mode and measurement mode

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [F R3] to call up the step parameters menu.
- Press MODE [F L4] to select FAST measurement mode.
- Press SWEEP [F L3] to select the measurement mode.

SING = single sweep.
CONT = continuous sweep.
Select bandwidth
BANDW --> see section 5.14.16 on page 5-84 for details.

Set TX level

TX --> see section see section 5.18.4 on page 5-120 for details

5.12.5 Measurement sequence

Start measurement

- Press [START(STOP)] to start the measurement sequence.

The frequency is switched at the maximum rate allowed by the bandwidth using the current step width setting.

If fixed frequencies are used, the fixed frequency addresses are recalled one after the other.
Note: \quad The fixed frequency values must be entered in strict ascending order in the fixed frequency list.

In SING mode (=single sweep) the measurement ends when the stop frequency is reached. In CONT mode (=continuous sweep) the measurement repeats from the start frequency when the stop frequency is reached.

Stop measurement prematurely

- Press [START(STOP)] to stop the measurement prematurely.

5.12.6 Measurement results and evaluation

Results display

AUTOSTEP = Graphical display of frequency response.

Fig. 5-43 Frequency response measurement result shown in the graphics field

If required: Display individual frequency and level values

Note: \quad The marker function can be activated during the sweep
MARKER --> see section 5.14.23 on page 5-89 for details.
If required: Change scale
SCALE xx dB/DIV --> see section 5.14 .20 on page $5-88$ for details.

If required: Change scale reference

Note: \quad The scale reference can be changed during the measurement.

- Press -- > dBm [F L3] to alter the scale reference using the rotary control, keypad or arrow keys.

If required: Evaluate marker frequency and level in LEVEL mode
MRK FRQ - -> LEVEL MEAS --> see section 5.14.23 on page 5-89 for details.

5.13 SWEEP mode

Facilities for continuous frequency stepping between two selectable limits FSTART and FSTOP (or around a center frequency FCENT with frequency SPAN) allow you to perform all classic sweep measurements.
The measurement result is displayed as a graph of level (amplitude response, Y axis) versus frequency (X axis).
The measurement accuracy and resolution can be determined by selection of various YSCALE resolutions and different SWEEP TIMES. An automatic SWEEP TIME selection function is useful for selecting the optimum sweep time as determined by the measurement bandwidth and span settings.
The two operating modes LOW NOISE or LOW DISTORTION allow you to set the best instrument configuration (optimum dynamic range) for network or spectrum analysis.
We recommend the use of a PC or laptop, equipped with the LeveIPRO software package, order no. BN 2203/93.01, for improved display and management of the measurement results. The software is specially designed for the PSM-37 to PSM-139 Level Measuring Sets and provides database, tolerance mask, $A-B$ and $A \& B$ trace processing, printout, storage and other facilities.

5.13.1 Calling up the operating mode

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.

Fig. 5-44 Main menu for SWEEP mode

5.13.2 Sweep measurement

Select input, impedance and measurement units
[IMPED] --> Setting (see section 5.14 .1 on page $5-55$)
[UNITS] --> Setting (see section 5.14 .3 on page 5-60)
Set frequency range:
FSTART/FSTOP --> Setting (see section 5.14 .11 on page 5-79)
FCENT/SPAN--> Setting (see section 5.14 .12 on page 5-79)
Set sweep rate:
SWEEPTIME--> Setting (see section 5.14.29 on page 5-93)
Display maximum RMS value of signal
MAXHLD --> Setting (see section 5.14.22 on page 5-89)

Set scale reference

- -- - > dBm --> Setting (see section 5.14 .30 on page 5-94)

Set SWEEP mode:

- Press [Blue key] to call up the secondary functions.
- $[\mathrm{HOT}]$ Press $[\mathrm{HOT}]$ to call up the main menu for SWEEP mode.
- Press SWEEPPAR [SK R3] to call up the sweep parameter menu.
- Press SWEEP [SK L3] to set the sweep mode.

SING = single sweep.
CONT = continuous sweep.

Select bandwidth

BANDW --> Setting (see section 5.14.16 on page 5-84)

Set TX level:

TX -->Setting (see section 5.18 .4 on page 5-120)

5.13.3 Measurement sequence

Start measurement:

- Press [START(STOP)] to start the frequency sweep. The LED next to the key turns off.
- During the sweep you can change only the scale and reference parameters. All other parameters can be altered only after stopping the sweep.

Interrupting a sweep:

- Press [START(STOP)] to stop the sweep. The LED next to the key turns on.

5.13.4 Measurement result and evaluation

Results display
SWEEP = graphic display of frequency response within the specified frequency range.

Fig. 5-45 Display of frequency response
If required: Display level and frequency values
Note:
The marker function can be activated during the SWEEP
MARKER -->Setting (see section 5.14.23 on page 5-89)
If required: Setting the center frequency to the marker frequency
MRK FRQ - -> FCNT--> Setting (see section 5.14.23 on page 5-89)

5.14 Parameters

5.14.1 Inputs and impedances

Caution: The measurement inputs must be protected against input voltages $\mathrm{V}_{\mathrm{rms}}>10 \mathrm{~V}$ when terminated with Z_{0}. See "Specifications" for maximum input voltages at high impedances.

1. The level meter is equipped with one coaxial input [20] covering the entire specified frequency range. The input impedance can be selected from the IMPED menu; values available are: High impedance, 75Ω and 50Ω. The selected impedance is indicated by the LED display above the input (see fig. 5-44). The default setting for the coaxial input is high impedance (∞). The LED lit above 75Ω indicates the reference impedance for the dBm display when making power measurements.
a)
$50 \mathrm{~Hz} \ldots 32 \mathrm{MHz}$
b)

Fig. 5-46 Coaxial input
a) "High impedance" setting, dBm display reference impedance 75Ω
b) $Z_{0}=75 \Omega$ setting
2. Input socket [21] is intended for balanced measurements and has an upper frequency limit of 14 MHz .
The available impedances are split into two frequency ranges:
BAL I: 10 kHz to 14 MHz for 124Ω and 150Ω impedances.
BAL II: 50 Hz to 620 kHz for 150Ω and 600Ω impedances.

Selecting the input impedance

- Press [IMPED] to call up the IMPEDANCE menu.
- Press $Z / \infty[F \operatorname{L1}]$ to select between Z_{0} and high impedance ∞.
- Press $50 \infty 75$ [F L2] to select the Z_{0} value for the coaxial input.
- Press $124 \infty 150[F L 3]$ to select the Z_{0} value for the balanced input (range I).
- Press $150 \infty 600[F L 4]$ to select the Z_{0} value for the balanced input (range II).
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-47 Switching to "high impedance'

5.14.2 Level reference

5.14.2.1 Absolute voltage or power level

The absolute value of the signal at the input is measured and displayed in the default setting of the level meter. If the absolute level is to be displayed as a voltage, the appropriate units can be selected from the UNITS menu (see section 5.14.3 on page 5-60).

Fig. 5-48 Indication of level reference in the menu, e.g. absolute power level

Measuring absolute level

- Press [UNITS] to call up the level reference menu.
- Press LEVEL ABSOLUTE [F L2] to measure the absolute level.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.

Fig. 5-49 Level reference menu: Absolute level measurement setting

5.14.2.2 ABS-REF, level difference

When measuring the insertion loss of a 2-port network, only the level referred to a reference level is of interest. In this type of measurement, the absolute value is first determined and then stored as a reference value.
The next step displays all signal levels as level differences according to the expression:

$$
\mathrm{A}-\mathrm{R}(\mathrm{~dB})=\mathrm{ABS}(\mathrm{dBm})-\mathrm{REF}(\mathrm{dBm})
$$

Fig. 5-50 Example measurement

1. ABS: Reference measurement at input of d.u.t (absolute level)
2. ABS ---> REF LEVEL: Sets the input level as the reference level
3. A-R: Level difference at output of d.u.t.

Measuring level difference

- Press [UNITS] to call up the level reference menu.
- Press LEVEL ABS-REF [F L3] to measure the level difference.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.

Fig. 5-51 Display of level difference LEVEL ABS -REF

Reference level (REF)

The reference level is used by the instrument for determining the level difference ABS-REF. the reference level can be altered by:

- Entering a specific value using the keypad or rotary control, or in steps using the arrow keys,
- Storing a measured level in the memory.

Only one value can be entered for the reference level.

Entering a specific reference level

1. Instrument setting: Main menu of current operating mode.

- Press [UNITS] to call up the UNITS menu.
- Press LEVEL ABS-REF [F L3] to measure the level difference.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.
- Press LEVEL ABS-REF [F L3] to enable entry of the reference level.
- Enter the reference level using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.

Fig. 5-52 Main menu for LEVEL mode: Entering the reference level REF
2. Instrument setting: UNITS menu

- Press [UNITS] to call up the UNITS menu.
- Press LEVEL ABS-REF [F L3] to enable entry of the reference level.
- Enter the reference level using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad. Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.

Fig. 5-53 UNITS menu: Entering the reference level REF

Entering the reference level by measurement

Instrument setting: Absolute level measurement and main menu for the current operating mode.

- Press [UNITS] to call up the level reference menu.
- Press LEVEL ABS-REF [F L3] to measure the level difference.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.
- Press LEVEL ABS-REF [F L3] to enable entry of the reference level.
- Press ABS --> REF [F R3] to store the current level as the reference level.

Fig. 5-54 Main menu for LEVEL mode: Storing the current level as reference level

5.14.2.3 Relative level (REL), referred level (dBm0)

In telecommunications, levels are often specified referred to the relative level (dBr) of a given point in the system rather than in absolute terms. To simplify evaluation, the relative level can be set within the limits
-120 dBr and +30 dBr
The measurement result is then shown directly as "referred level", in dBm0 (power level) or in dB0 (voltage level).
The following relationship applies:

$$
\operatorname{REL}(\mathrm{dBm} 0)=\mathrm{ABS}(\mathrm{dBm})-\mathrm{REL}(\mathrm{dBr})
$$

The referred level is equal to the absolute level at the " 0 dBr point" or transmission level point.

Measuring the referred level

The level meter displays the absolute level (see Fig. 5-48, page 5-56).

- Press [UNITS] to call up the level reference menu.
- Press LEVEL RELATIVE [F L4] to measure the referred level.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.

Fig. 5-55 Main menu for LEVEL mode: Display of referred level

Entering the Transmission Level Point (TLP)

1. Instrument setting: Main menu of current operating mode.

- Press [UNITS] to call up the level reference menu.
- Press LEVEL RELATIVE [F L4] to measure the level difference.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.
- Press LEVEL RELATIVE [F L3] to enable entry of the transmission level point (TLP).
- Enter the transmission level point using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.

Fig. 5-56 Main menu for LEVEL mode: Entering the transmission level point (TLP)
2. Instrument setting: UNITS menu

- Press [UNITS] to call up the UNITS menu.
- Press LEVEL RELATIVE [F L4] to enable entry of the transmission level point (TLP).
- Enter the transmission level point using the keypad, rotary control or arrow keys. Press
[ENTER] to complete entries made using the keypad.
- Press [PREV], [RTN] or [LEVEL] to go to the main menu for LEVEL mode.

Fig. 5-57 LEVEL MODE menu: Entering the transmission level point (TLP)

5.14.3 Level units

Various units can be selected for each type of level, i.e. absolute, relative, difference and referred. Selecting a level unit also sets the corresponding level reference (LEVEL MODE). The instrument also converts automatically between logarithmic ($\mathrm{dBm}, \mathrm{dB}$) and linear (mV, pW) units.

Fig. 5-58 UNITS menu: Entering the level units

Changing the level units

- Press $\mathbf{d B} \mu \mathrm{V} \ldots \mathrm{mV}$ [F R2] to set the required units for absolute level (scrolling function).
- Press $\mathbf{d B} \mu \mathbf{V}$... $\mathbf{d B}$ [F R3] to set the required units for level difference (scrolling function).
- Press $\mathbf{d B} \mu \mathrm{VO}$... pW 0 [F R4] to set the required units for referred level (scrolling function).

Fig. 5-59 Level units dBm set for level difference

5.14.4 Level monitoring

Limit or threshold values can be entered in LEVEL mode for the minimum and maximum permitted levels in order to monitor the receive level. If the upper limit is exceeded or the value drops below the lower limit, a relay contact closes. The relay contacts are led out to a socket on the back panel.

Note: \quad The relay contact is a changeover switch (see section 9.7.2 on page 9-15.) The following describes the action of the normally open contact.

LEVEL mode

Setting the threshold values

- Press [LEVEL] to call up LEVEL mode.
- Press |---|---|-- [F L2] to call up the SCALE menu.
- Press ALARM PARAMETERS [F R1] to call up the LEVEL ALARM menu.
- Press UPPER THRESH [F L3] to enable entry of the upper threshold value.
- Enter the threshold value using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.
- Press LOWER THRESH [F L4] to enable entry of the lower threshold value.
- Enter in the same way as the UPPER THRESH.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-60 Entering the UPPER THRESH value

Activate / deactivate threshold values

- Press [LEVEL] to call up LEVEL mode.
- Press |---|---|-- [F L2] to call up the SCALE menu.
- Press ALARM PARAMETERS [F R1] to call up the LEVEL ALARM menu.
- Press UPPER THRESH [F R3] to activate the upper threshold. The value is marked on the analog scale.
- Press LOWER THRESH [F R4] to activate the lower threshold. The value is marked on the analog scale.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-61 Activating the UPPER THRESH value

Resetting alarms

If an alarm occurs (level outside threshold limits) the relay contact closes. The message "TRIGD" is shown next to RESET ALARM in the LEVEL ALARM menu. The relay contact must be reset in order to register future alarm events.

- Press |---|---|-- [F L2] to call up the SCALE menu.
- Press ALARM PARAMETERS [F R1] to call up the LEVEL ALARM menu.
- Press RESET ALARM [F R1] to reset the relay contact. The message "TRIGD" is deleted.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Relay contact status

Relay contact open

Relay contact closed
----> ALARM

Fig. 5-62 Relay contact status depending on the level measured

5.14.5 Level thresholds

Entering a search threshold

HOT TONE SEARCH mode

- Press [HOT] to call up HOT TONE SEARCH mode.
- Press THR/dBm [F L4] to enable entry of the search threshold. Any level which is above the current search threshold is displayed as a hot tone.
- Enter the level value using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-63 Entering the search threshold

Entering a level threshold

IMPULSIVE NOISE mode

- Press [Blue key] to call up the secondary functions.
- Press [DMOD] to call up IMPULSIVE NOISE mode.
- Press THRESH [F L2] to enable entry of the threshold. Any pulse having a level above the current threshold is counted.
- Enter the level value using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-64 Entering the level threshold

Entering a level threshold

INTERRUPTIONS mode

- Press [Blue key] to call up the secondary functions.
- Press [VOICE] to call up INTERRUPTIONS mode.
- Press THRESH [F L2] to enable entry of the threshold.
- Press [F L1] ... [F L4] to select the level threshold required. All interruptions with a level below that of the threshold value are counted. After the selection has been made, the main menu of the operating mode is automatically displayed.

Fig. 5-65 Selecting the level threshold

Entering the start threshold

AUTOSTEP TIME mode

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up AUTOSTEP mode.
- Press STEP PAR [F R3] to change to the STEP PARAMETER menu.
- Press MODE [F L4] to set AUTOSTEP to TIME mode.
- Press START THRESH [SKL3] to enable entry of the start threshold. When the SLAVE instrument measures a level below this threshold, it starts AUTOSTEP operation.
- Enter the level value using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-66 Entering the start threshold

Entering the step threshold:

AUTOSTEP THRESH mode

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up AUTOSTEP mode.
- Press STEP PAR [F R3] to change to the STEP PARAMETER menu.
- Press MODE [F L4] to set AUTOSTEP to THRESH mode.
- Press STEP THRESH [F L3] to enable entry of the step threshold. Each time the level drops below this threshold the frequency is changed to the next value in the sequence.
- Enter the level value using the keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the keypad.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-67 Entering the step threshold

5.14.6 Gain

Controlling the gain:
DEMODULATION and VOICE modes

- Press GAIN [F L4] to enable entry.
- Alter the gain in 5 dB steps using the rotary control or arrow keys.

Fig. 5-68 Controlling the gain

Automatic gain control:

DEMODULATION and VOICE modes

- Press GAIN [F L4] to enable entry.
- Press AUTO SET [F R4] to match the gain to the current input signal. The process is repeated each time the key is pressed.

Fig. 5-69 Matching the gain to the input signal automatically

5.14.7 Setting the instrument drive level manually

LEVEL mode

In LEVEL mode, the instrument operates with automatic drive level control which matches the internal amplifier stages to the test signal. For certain applications, this automatic function can be disabled using the AUTO RANGING setting. The RF GAIN and IF GAIN can then be set manually for low noise or low distortion.

Note: For low distortion,
broadband gain (RF GAIN) <-40 dB - total input level.
For low noise,
broadband gain (RF GAIN) <-20 dB - total input level.
The IF GAIN should be as large as possible (Caution: \uparrow - arrow)

Activate/deactivate manual control

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONFIG] to call up the auxiliary function TEST \& CONFIGURATION.
- Press INSTRUMENT [F L2] to change to the INSTRUMENT menu.
- Press AUTO RANGING [F R2] to switch auto ranging on or off (toggle function).
- Press [LEVEL] to call up LEVEL mode.
- Press RF GAIN/IF GAIN [F R2] to enable entry for RF GAIN. Use the rotary control or keypad to change the gain in steps.
- Press RF GAIN/IF GAIN twice [F R2] to enable entry for IF GAIN. Use the rotary control or keypad to change the gain in steps.

Fig. 5-70 Setting the RF gain manually

5.14.8 Receive frequency

The receive frequency is given by the parameter $F R Q^{1}$ in the various menus. It can be entered in several different ways.

Entry using the keypad

- Call up the operating mode (e.g. [LEVEL]).
- Press FRQ [F R1] to enable entry.
- Enter the frequency value using the keypad.
- Press [MHz], [kHz] or [ENTER] to complete the entry.

Fig. 5-71 Entering the frequency using the keypad; example shows LEVEL mode

Entry using the rotary control

- Call up the operating mode (e.g. [LEVEL]).
- Press FRQ [F R1] to enable entry.
- Enter the frequency value using the rotary control.

Changing the rotary control resolution

- Press [FINE] to change the resolution.

Resolution $1 \mathrm{~Hz}=$ LED next to [FINE] is on.
Resolution $100 \mathrm{~Hz}=$ LED next to [FINE] is off.

Entry using the arrow keys

- Press [LEVEL] to call up the main menu for the operating mode.
- Press FRQ [F R1] to enable entry.
- Enter the frequency value using the arrow keys. The step width is specified by FSTEP. The frequency changes continuously if the arrow key is held down.

Changing the step width

- Press FSTEP [F R2] to enable entry.
- Enter the step width using the keypad, rotary control or arrow keys. Press [MHz], [kHz] or [ENTER] to complete entries using the keypad.

Fig. 5-72 Changing the step width

[^1]
5.14.9 Fixed frequencies

Fixed frequencies can be stored in the instrument memory for measurements which are often repeated in the following modes:

- LEVEL
- DEMODULATION
- NPR
- JITTER
- AUTOSTEP
- IMPULSE NOISE DEMOD
- INTERRUPTIONS DEMOD

The number of fixed frequencies which can be stored depends on the instrument version:

- 100 fixed frequencies for the SPM/PSM-37/-38/-39,
- 200 fixed frequencies for the SPM/PSM-137/-138/-139.

The addresses of the fixed frequencies can be called up using the rotary control, number keys or arrow keys in LEVEL, DEMODULATION, IMPULSE NOISE DEMOD, INTERRUPTIONS DEMOD and JITTER modes.
In AUTO STEP mode, the fixed frequencies are called up automatically once the active fixed frequency range has been set.
The number of fixed frequencies which can be recalled is determined by the freely selectable range.
The current contents of the fixed frequency memory can be output as a list using an external printer.
100 fixed frequencies (address range C100 to C199) can be stored on a Memory Card for instrument versions SPM/PSM-137/-138/-139.

Fig. 5-73 Main menu for the fixed frequency function
Note: The use of fixed frequencies in LEVEL, DEMODULATION, NPR, JITTER and AUTOSTEP differs in parts. Operating steps which are different for different modes are described separately in the sections which follow.

5.14.9.1 Storing, editing and deleting fixed frequencies

Note: Any unused memory addresses are indicated by NOT USED.

Storing fixed frequencies:

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press EDIT [F L2] to open the entry menu.
- Select the address using the rotary control, arrow keys or by pressing NEXT [F R2].

Note: If an arrow key is pressed and held down, the cursor scrolls through the list of addresses or fixed frequencies.

- Press EDIT FRQ [F R1] to enable entry.
- Enter the frequency value using the number keys, arrow keys or rotary control. Press [MHz], [kHz] or [ENTER] to complete entries made using the number keys.
- Press NEXT [F R2] to move to the next address. Frequency entry is still enabled, so that the next value can be entered immediately.
- etc.
- Press [PREV] to return step-by-step to the previous menus after completing fixed frequency entries, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-74 Entering a sequence of fixed frequencies

Editing individual fixed frequencies:

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press EDIT [F L2] to open the entry menu.
- Select the address using the rotary control, arrow keys or by pressing NEXT [F R2].

Note: If an arrow key is pressed and held down, the cursor scrolls through the list of addresses or fixed frequencies.

- Press EDIT FRQ [F R1] to enable entry.
- Enter the frequency value using the number keys, arrow keys or rotary control. Press [MHz], [kHz] or [ENTER] to complete entries made using the number keys.
- Press EDIT FRQ [F R1] to disable entry.
- Select the next address using the rotary control, arrow keys or by pressing NEXT [F R2].
- Press EDIT FRQ [F R1] to enable entry.
- etc.
- Press [PREV] to return step-by-step to the previous menus after completing fixed frequency entries, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-75 Editing individual fixed frequencies

Deleting fixed frequencies

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press EDIT [F L2] to open the entry menu.
- Select the address using the rotary control or arrow keys.
- Press DELETE [F R4] to delete the fixed frequency. NOT USED is shown against the address.
- Press NEXT [F R2] to move to the next address.
- Press DELETE [F R4] to delete the fixed frequency.
- etc.
- Press [PREV] to return step-by-step to the previous menus after completing fixed frequency entries, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-76 Deleting fixed frequencies

5.14.9.2 Activating/deactivating fixed frequencies

Note: \quad The fixed frequency function is deactivated automatically if a fixed frequency is deleted, edited or a new value is stored.

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press USE FMEM [F L1] to activate / deactivate the fixed frequency function. The frequency indicated by ACT is set immediately when the fixed frequency function is activated. The last frequency value set is retained when the function is deactivated.

Fig. 5-77 LEVEL mode: "Fixed frequency" function activated

5.14.9.3 Setting the active range of the fixed frequency memory

Not all of the stored fixed frequencies are always required. By entering a first and a last address, the fixed frequencies which can be set are limited to within this range.

Fig. 5-78 Entire and active fixed frequency memory ranges

LEVEL, DEMODULATION, NPR, JITTER modes

Call up the LIMITS menu:

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press LIMITS [F L4] to call up the LIMITS menu.

Note: Always ensure that the last address is higher than the first address when entering values.

Setting the first address:

- Select the address using the rotary control or arrow keys.
- Press SET FIRST FMEM [F R2] to set the selected address and fixed frequency as the first address in the range.

Setting the last address:

- Select the address using the rotary control or arrow keys.
- Press SET LAST FMEM [F R2] to set the selected address and fixed frequency as the last address in the range.

Fig. 5-79 LEVEL mode: Menu for entering frequency limits

Activating / deactivating the set range:

- Press FMEM LIMITS [F L1] to activate / deactivate the range limits. When deactivated, the addresses and frequency values of the first and last frequencies are shown in brackets.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-80 Activating the set frequency limits

5.14.9.4 Selecting the current fixed frequency

LEVEL, DEMODULATION, NPR, JITTER, IMPULSE NOISE DEMOD, INTERRUPTIONS DEMOD modes

Selecting the current fixed frequency:

- Call up the operating mode (e.g. [LEVEL])
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Select the address using the rotary control or arrow keys.
- Press SET ACT FMEM [F R2] to set the current fixed frequency. The frequency is displayed next to ACT. This frequency is set immediately when the fixed frequency function is activated.

Fig. 5-81 Current fixed frequency after changing to the main menu

AUTO STEP mode

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up AUTOSTEP mode
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.

Setting the start address:

Note: Always ensure that the last address is higher than the first address when entering values.

- Select the address using the rotary control or arrow keys.
- Press SET START FMEM [F R2] to set the selected address and fixed frequency as the start address.

Setting the stop address:

- Select the address using the rotary control or arrow keys.
- Press SET STOP FMEM [F R3] to set the selected address and fixed frequency as the stop address.
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-82 Entering the start and stop frequencies

5.14.9.5 Calling up fixed frequencies

Once the fixed frequency function and the range limits if required have been activated, press [RTN] or one of the mode keys to open the main menu for the operating mode.

Note: Press [FINE] (adjacent LED turns on) to change addresses one at a time.

LEVEL, DEMODULATION, NPR, JITTER, IMPUSLE NOISE DEMOD, INTERRUPTIONS DEMOD modes

The address of the fixed frequency set as current frequency is shown below FRQ or CAR.

- Press FRQ FMEM [F R1] to enable entry of fixed frequency addresses.
- Select the addresses one by one using the rotary control or arrow keys, or enter the address numbers using the number keys. Press [ENTER] to complete entries made with the number keys.

Fig. 5-83 LEVEL mode: Calling up fixed frequencies

AUTOSTEP mode

The start and stop addresses are displayed instead of the start and stop frequencies.
If the start and stop addresses have already been set from the fixed frequency menu, the automatic measurement sweep can begin immediately. The frequency addresses are incremented and the corresponding frequencies set automatically.

Setting fixed frequencies in the main menu of AUTOSTEP mode

Note: Always ensure that the last address is higher than the first address when entering values.

- Press FMEM START [F R1] to enable entry of the start address.
- Select the address using the rotary control or arrow keys, or enter the address numbers using the number keys. Press [ENTER] to complete entries made with the number keys.
- Press FMEM STOP [F R2] to enable entry of the stop address.
- Select the address using the rotary control or arrow keys, or enter the address numbers using the number keys. Press [ENTER] to complete entries made with the number keys.

Fig. 5-84 AUTOSTEP mode: Calling up fixed frequencies

5.14.9.6 Editing the current fixed frequency setting

LEVEL, DEMODULATION, NPR, JITTER, IMPULSE NOISE DEMOD, INTERRUPTIONS DEMOD modes

- Press FRQ FMEM [F R1] twice to enable fixed frequency entry.
- Enter the frequency value using the number keys, arrow keys or rotary control. Press [MHz], [kHz] or [ENTER] to complete entries made using the number keys.

Display frequency offset of current frequency

- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu. The frequency offset from the nominal value and the current frequency value are displayed.

Fig. 5-85 Displaying the frequency offset Δf

5.14.9.7 Recording the offsets of the set fixed frequencies

It is possible to record the frequency offsets in LEVEL mode if the fixed frequency function and the AFC function are both activated.
$\Delta f=$ actual frequency (FRQ) - fixed frequency (FMEM).

- Call up the operating mode (e.g [LEVEL]).
- Measure the receive frequency at the start of the measurement period.
- Enter the measured frequency as a fixed frequency. Then activate the fixed frequency function and set the measured frequency entered as the current fixed frequency. Then call up the main menu of the selected operating mode.
- Press AFC [F R3] to activate automatic frequency control.

If the frequency differs from the set fixed frequency, $\Delta \mathrm{f}$ is displayed next to the fixed frequency address. An arrow next to this indicates the direction of the offset.

Displaying the frequency offset
(see section Display frequency offset of current frequency).

5.14.9.8 Copying fixed frequencies to the Memory Card

Note: Directory and file names are not required when copying fixed frequencies to the Memory Card.

If a directory and file have not already been created, this is done automatically during copying.

To see the status of the copied fixed frequency file FMEM_01 on the Memory Card, change to the TEST \& CONFIG menu. The Memory Card directory can be displayed from here (see section 3.7 on page $3-12$). The fixed frequency file is found in directory BN 2203/FREQ.

As well as the file name FMEM_01, the file size and date and time of copying are displayed.

The contents of the file FMEM_01 are overwritten each time a copy is made.

Copying fixed frequencies to the Memory Card

- Call up the operating mode (e.g [LEVEL]).
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press MEMCARD [F L3] to change to the Memory Card menu.
- Place a formatted Memory Card into the card slot.
- Press STORE FMEM... [F L2] to start copying.

The contents of the address range C100 to C199 is copied from the instrument memory to the Memory Card as file FMEM_01 in directory BN2203/FREQ.
The red LED to the left of the card slot is on during copying. The process takes a few seconds and ends as soon as the LED turns off.

- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-86 Copying fixed frequencies to the Memory Card

5.14.9.9 Copying fixed frequencies from the Memory Card

Note: The error message: ERROR MEMORY CARD OPERATION FAILED is displayed if there is no fixed frequency file stored on the Memory Card.

Copying fixed frequencies from the Memory Card

- Call up the operating mode (e.g [LEVEL]).
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press MEMCARD [F L3] to change to the Memory Card menu.
- Place a Memory Card with a fixed frequency file into the card slot.
- Press LOAD FMEM... [F L1] to start copying.

The contents of file FMEM_01 is copied from the Memory Card to the address range C100 to C199 of the instrument memory.
The red LED to the left of the card slot is on during copying. The process takes a few seconds and ends as soon as the LED turns off.

- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-87 Copying fixed frequencies from the Memory Card

5.14.9.10 Printing the list of fixed frequencies

- Connect and configure the printer.
- Call up the operating mode (e.g [LEVEL]).
- Press [Blue key] to call up the secondary functions.
- Press function key [F R1] to call up the fixed frequency menu.
- Press PRINT ALL FMEM [F R4] to print a list of the current contents of the fixed frequency memory. The message "PRINTING" appears in place of PRINT ALL FMEM during the print operation.

Fig. 5-88 Inhalt des Festfrequenzspeichers ausdrucken
Cancelling the print job:

- Press PRINTING [F R4] to call up the print job menu.
- Press OK [F L4] to abort the print job.
- Press CANCEL [F R4] to continue the print job.

The display reverts automatically to the fixed frequency menu in both cases.

Fig. 5-89 Cancelling the print job

5.14.10 Automatic frequency control (AFC)

The AFC regulates the receive frequency to that of the input signal. It only operates for selective level measurement and only if a discrete signal frequency of sufficient amplitude is present in the passband of the selected filter.
It is a good idea to use AFC when

- the receiver is to be rapidly tuned to the filter center frequency,
- the signal frequency is unstable,
- the signal is to be monitored over a long period of time.

Fig. 5-90 AFC capture and locking ranges

Activating / deactivating AFC

Instrument setting: Main menu of LEVEL mode.

- Press [AFC] to activate / deactivate AFC.
- With AFC activated, tune the instrument so that the signal frequency is within the set filter bandwidth.

Whenever this is not the case, the status message UNLOCKED flashes next to [AFC].

Fig. 5-91 AFC activated

5.14.11 Start and stop frequencies

HOT TONE SEARCH, AUTOSTEP, SWEEP modes

Entering the start and stop frequencies:

- Call up the operating mode (e.g. HOT TONE SEARCH).
- Press FSTART/Hz [F R1] to enable entry of the start frequency.
- Enter the frequency value using the number keys, arrow keys or rotary control. Press [MHz], [kHz] or [ENTER] to complete entries made using the number keys.
- Press FSTOP/Hz [F R2] to enable entry of the stop frequency.
- Enter the frequency value using the number keys, arrow keys or rotary control. Press [MHz], [kHz] or [ENTER] to complete entries made using the number keys.

Fig. 5-92 Entering frequency limits, e.g. start frequency

5.14.12 Center frequency and frequency span

SWEEP mode

Switching to center frequency / frequency span display mode:

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.
- Press [Blue key] to call up the secondary functions.
- Press FSTART/Hz [SK R1] to switch the frequency display mode. Use the same procedure to switch to FSTART/FSTOP display mode.

Setting the center frequency and frequency span:

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.
- Press FCENT/Hz [SK R1] to enable entry of the center frequency.
- Enter the frequency value using the number keys, rotary control or arrow keys. Press [kHz], [MHz] or [ENTER] to complete entries made using the number keys.
- Press SPAN/Hz [SK R2] to enable entry of the frequency span.
- Enter the frequency value using the number keys, rotary control or arrow keys. Press [kHz], [MHz] or [ENTER] to complete entries made using the number keys.

Fig. 5-93 Entering frequency information, e.g. center frequency value

5.14.13 Sidebands

The center band is converted to 1.85 kHz if the instrument is tuned to the center of the channel. If tuned to the suppressed carrier, the receive frequency must be offset for correct demodulation:

- By - 1.85 kHz for the lower sideband (LOWER SB)
$-\mathrm{By}+1.85 \mathrm{kHz}$ for the upper sideband (UPPER SB).

Changing the sideband:

DEMODULATION modes

- Press DEMOD to call up DEMODULATION mode.
- Press USB or LSB [F R2] to switch to the erect or inverted sideband (upper or lower sideband).

Fig. 5-94 Changing the sideband

JITTER DMOD TONE mode

- Press [Blue key] to call up the secondary functions.
- Press [LEVEL] to call up JITTER mode.
- Press JITTER [F L1] to call up the measurement mode menu.
- Press [F L2] ... [F L3] to select a measurement mode. The display reverts to the main menu automatically.
- Press USB or LSB [F R2] to switch to the erect or inverted sideband (upper or lower sideband).

IMP NOISE DMOD mode

- Press [Blue key] to call up the secondary functions.
- Press [DMOD] to call up IMPULSIVE NOISE mode.
- Press PARAMETER [F L4] to call up the Parameter menu.
- Press USB or LSB [F R2] to switch to the erect or inverted sideband (upper or lower sideband).
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

5.14.14 Test tones

JITTER DMOD TONE, TONE JITTER modes

- Press [Blue key] to call up the secondary functions.
- Press [LEVEL] to call up JITTER mode.
- Press JITTER [F L1] to call up the measurement mode menu.
- Press [F L2] ... [F L3] to select a measurement mode. The display reverts to the main menu automatically.
- Press TONE [F L3] to change to the test tone menu.
- Press [F L1] ... [F L2] to select the required test tone. The display reverts to the main menu automatically.
$800 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$ $1020 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$
- Press [PREV] to return step-by-step to the previous menus, or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-95 Selecting the test tone

5.14.15 Channel system

NPR mode

Selecting the channel system:

- Press [NPR] to call up NPR mode.
- Press CHANN SYSTEM [F R3] to change to the channel system menu.
- Select the channel system from the existing list using the rotary control or the arrow keys.
- Press SET ACT CHANN [F R2] to set the selected channel system. The nominal loading for the channel system is applied immediately. The channel system is displayed next to ACT.

Fig. 5-96 Selecting the channel system

No. of channels in system	Bandwidth in kHz	Level reduction / dB 10log $\frac{\mathbf{1 , 7 4 k H z}}{\mathbf{1}}$
12	48	14.41
24	96	17.42
36	144	19.18
48	192	20.43
60	240	21.40
72	288	22.19
80	240	21.40
96	396	23.57
120	492	24.51
132	540	24.92
192	792	26.58
240	992	27.56
252	1040	27.76
300	1232	28.50
312	1284	28.68
432	1784	30.11
480	1980	30.56
540	2284	31.18
600	2540	31.64
612	2588	31.72
597		

Fig. 5-97 Nominal loadings of individual channel systems

No. of channels in system	Bandwidth in kHz	Level reduction / dB $\mathbf{1 0 l o g} \cdot \frac{\mathbf{B}}{\mathbf{1 , 7 4 k H z}}$
792	3272	32.74
900	3828	33.42
960	4040	33.66
972	4088	33.71
1092	4880	34.48
1200	5284	34.82
1260	5540	35.05
1332	5872	35.28
1380	5700	35.15
1500	6968	36.03
1800	7844	36.54
1872	8148	36.71
2100	9848	37.53
2400	11088	38.04
2580	10652	37.87
2700	12044	38.40
3600	17000	39.90

Fig. 5-97 Nominal loadings of individual channel systems

5.14.16 Bandwidths

LEVEL, HOT TONE SEARCH, AUTOSTEP modes

Selecting the bandwidth:

Note: The optional bandwidth is set using [F R3]
(see section 8.1.5 on page 8-6.).

- Call up the operating mode (e.g. LEVEL).
- Press [BANDW] to open the BANDWIDTH menu.
- Press [F L1] ... [F R4] to select the bandwidth required. The display reverts automatically to the main menu.
$25 \mathrm{~Hz}=$ This narrow filter is suitable for analyzing closely-spaced signal components or for measuring noisy signals.
$100 \mathrm{~Hz}=$ This filter allows the instrument to be used for measurements on FM VFT systems. $1740 \mathrm{~Hz}^{1}=$ This filter has the effective bandwidth of an ITU-T weighted telephone channel. $3100 \mathrm{~Hz}=$ This filter has the bandwidth of a telephone channel. It is used to measure power and unweighted noise levels in the telephone channel.
$48 \mathrm{kHz}($ SWEPT $)=$ This bandwidth can be used to measure the power level in a supergroup. $240 \mathrm{kHz}($ SWEPT $)=$ This bandwidth can be used to measure the power in a master group.
WIDE = When WIDEBAND is selected, the instrument operates as a broadband receiver. This allows you to measure the broadband loading of a communications system, such as the baseband loading of a CF path.

Fig. 5-98 Selecting the bandwidth, e.g. for LEVEL mode

[^2]
5.14.17 Weighting filters

Selecting the weighting filter:

JITTER mode

- Press [Blue key] to call up the secondary functions.
- Press [LEVEL] to call up JITTER mode.
- Press FILTER [F R3] to change to the filter menu.
- Press [F L1] ... [F L3] to select the filter required. The display reverts automatically to the main menu:
20 ... $300 \mathrm{~Hz}=$ Standard jitter (STD)
$4 \ldots 300 \mathrm{~Hz}=$ Standard jitter (STD) and low frequency jitter (LF)
$4 \ldots 20 \mathrm{~Hz}=$ Low frequency jitter (LF)

Fig. 5-99 Selecting the filter

IMPULSIVE NOISE mode

- Press [Blue key] to call up the secondary functions.
- Press [DMOD] to call up IMPULSIVE NOISE mode.
- Press FILTER [F R3] to change to the filter menu.
- Press [F L1] ... [F L3] to select the filter required. The display reverts automatically to the main menu:
FLAT
$300 \ldots 500 \mathrm{~Hz}$
$600 \ldots 3000 \mathrm{~Hz}$

Fig. 5-100 Selecting the filter

Selecting the notch filter:

DEMODULATION mode

- Press [DMOD] to call up DEMODULATION mode.
- Press NOTCH/PSOPH [F R3] to call up the filter menu.
- Press NOTCH [F R3] to select and set the required notch filter.

825 Hz
1010 Hz

- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-101 Setting and activating the notch filter

IMPULSIVE NOISE mode

- Press [Blue key] to call up the secondary functions.
- Press [DMOD] to call up IMPULSIVE NOISE mode.
- Press PARAMETER [F L4] to call up the parameter menu.
- Press NOTCH [F R3] to select and set the required notch filter:

825 Hz
1010 Hz

- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Activate psophometer or C-Message weighting filter:

DEMODULATION mode

Note: Either the psophometer filter or the C-Message weighting filter can be selected, depending on the setting chosen in the TEST\& CONF menu.

- Press [DMOD] to call up DEMODULATION mode.
- Press NOTCH/PSOPH [F R3] to call up the NOTCH/PSOPH menu.
- Press PSOPH (CMES) [F R1] to activate the filter.
- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-102 Activating the psophometer filter

5.14.18 Scaling

LEVEL, DEMODULATION, VOICE modes

Selecting the scaling

Note: In LEVEL mode, an additional scaling of 0.2 dB /division is available.

- Call up the operating mode (e.g. LEVEL).
- Press |---|---|-- [F L2] to call up the SCALE menu.
- Press dB/Div [F R3] to set the required scaling (scroll-through function)
- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-103 Setting the scaling

5.14.19 Setting the scale reference manually

LEVEL mode

Setting the scale reference manually:

- Call up the operating mode (e.g. LEVEL).
- Press |---|----- [F L2] to call up the SCALE menu.
- Press RANGING [F L1] to switch from auto to manual ranging.
- Press SHIFT RANGE [F L3] to enable entry of a scale reference.

Alter the scale reference stepwise using the rotary control or the arrow keys. The step width depends on the scaling selected.

- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-104 Setting the scale reference manually

5.14.20 Selecting the scale

HOT TONE SEARCH, AUTOSTEP, SWEEP modes

Selecting the scale:

- Call up the operating mode (e.g. AUTOSTEP).
- Press SCALE [F L2] to call up the SCALE menu.
- Press [F L1] ... [F R2] to select the scale required. The display reverts automatically to the main menu of the current operating mode.

Fig. 5-105 Selecting the scale

5.14.21 Display averaging

The display may fluctuate and make reading the results difficult when measuring small signals at relatively small bandwidths. To achieve a stable display, even when the signal is noisy, display averaging can be activated. Select between SHORT averaging time for signals with a low proportion of noise and LONG for very noisy signals.

Setting and activating display averaging:

LEVEL, DEMODULATION, VOICE modes

Note: If display averaging is on, the resolution of the digital result display increases to two decimal places.

- Call up the operating mode (e.g. LEVEL).
- Press |--------- [F L2] to call up the SCALE menu.
- Press AVRG [F L4] to select the averaging required.

OFF = Display averaging off.
SHORT = Short averaging time.
LONG = Long averaging time.

- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-106 Setting the averaging, e.g. SHORT

NPR mode

- Press [NPR] to call up NPR mode.
- Press AVRG [F L2] to activate / deactivate display averaging.

Fig. 5-107 Display averaging activated

5.14.22 Maximum hold function

HOT TONE SEARCH mode

Activating the MAXHLD function causes the largest r.m.s. value of a varying signal level occurring during the observation period to be displayed. In this way it is possible to determine whether interference tones or hot tones occur within a given period in both free and occupied channels of a communications system. The signal duration must, however, be sufficient for the instrument's autoranging function to set itself to the signal.

Activating / deactivating maximum hold

- Press [HOT] to call up HOT TONE SEARCH mode.
- Press MAXHLD [F R3] to toggle between ON and OFF.

Fig. 5-108 MAXHLD function disabled

5.14.23 Marker function

HOT TONE SEARCH, AUTOSTEP, SWEEP modes

Activate / deactivate marker function

Note: \quad The marker function can be enabled or disabled during a search or during a measurement.

- Call up the operating mode (e.g. HOT TONE SEARCH).
- Press MARKER [F L1] to call up the marker menu.
- Press SHOW MARKER [F L2] to activate / deactivate the marker function.
- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.
- The frequency and level values of the first hot tone or measured point are displayed immediately. Other pairs of values can be displayed using the rotary control or arrow keys.

Fig. 5-109 HOT TONE SEARCH mode: Marker function on; display of frequency and level values

HOT TONE SEARCH, AUTOSTEP modes

Evaluating marker frequency and level in LEVEL mode:

Note: Activate the marker function.

- Call up the operating mode (e.g. HOT TONE SEARCH).
- Press MARK [F L1] to call up the marker menu.
- Press MRK FRQ --> LEVEL MEAS to change to LEVEL mode. The current marker frequency is set and the level measured.

SWEEP mode

Setting the center frequency to the marker frequency:
Note: Activate the marker function.

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.
- Press MARK [F L1] to call up the marker menu.
- Press MRK FRQ - > FCNT to set the actual marker frequency as the new center frequency.

5.14.24 STEP parameters

AUTOSTEP mode

Frequency step width

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [F R2] to call up the step parameter menu.
- Press STEP WIDTH [F R2] to enable entry of the step width.
- Enter the frequency step width using the number keys, rotary control or arrow keys. Press [kHz$],[\mathrm{MHz}]$ or [ENTER] to complete entries made using the number keys.
The number of STEPS is calculated from the frequency step width and the current frequency range.

Number of frequency steps (alternative entry)

Note: A maximum of 100 STEPS can be entered.

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [F R2] to call up the step parameter menu.
- Press STEPS [F R3] to enable entry of the number of steps.
- Enter the number of steps using the number keys, rotary control or arrow keys. Press [ENTER] to complete entries made using the number keys.

Step speed:

- Press [Blue key] to call up the secondary functions.
- Press [NPR] to call up the main menu for AUTOSTEP mode.
- Press STEP PAR [F R2] to call up the step parameter menu.
- Press TIME/STEP [F L1] to change the step speed.
$1 \mathrm{~s}, 3 \mathrm{~s}=$ time for each frequency step setting

Fig. 5-110 Entering the step speed

5.14.25 Start mode

IMPULSIVE NOISE, INTERRUPTIONS modes

Setting the start mode:

- Call up the operating mode (e.g. INTERRUPTIONS).
- Press START [F R2] to call up the start mode.
- Press START [F R1] to set the start mode.

MAN = The measurement must be started manually by pressing the [START(STOP)] key. AUTO $=$ The measurement starts automatically at the time set on the timer.

Fig. 5-111 Setting the start mode
Setting the time for an automatic measurement start:

- Call up the operating mode (e.g. INTERRUPTIONS).
- Press START [F R2] to call up the start mode.
- Press START TIME [F R2] to enter the time.
- Enter the time using the number keys (in hours and minutes separated by a full stop) or using the rotary control.
- Press [ENTER] to complete the entry.
- Press [PREV] to return to the previous menus step by step, or.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-112 Entering the time, e.g. 15:45

5.14.26 Gate time

IMPULSIVE NOISE, INTERRUPTIONS modes

Setting the gate time:

- Call up the operating mode (e.g. INTERRUPTIONS).
- Press GATE TIME [F R1] to enable entry of the gate time.
- Enter the time using the number keys (in hours and minutes separated by a full stop) or using the rotary control.
- Press [ENTER] to complete the entry.

Fig. 5-113 Entering the gate time, e.g. 2 hours 30 minutes

5.14.27 Dead time

INTERRUPTIONS mode

Selecting the dead time

- Call up the operating mode (e.g. INTERRUPTIONS).
- Press DEAD TIME [F R3] to select the required dead time.

3 ms or $125 \mathrm{~ms}=$ No interruptions are detected during this time.

Fig. 5-114 Entering the dead time, e.g. 125 ms

5.14.28 Acoustic warning (BEEP)

IMPULSIVE NOISE, INTERRUPTIONS modes

Activating /deactivating the function:

- Call up the operating mode (e.g. INTERRUPTIONS).
- Press PARAMETER [F L4] to call up the parameter menu.
- Press BEEP [F L1] to activate / deactivate the function.
$\mathrm{ON}=$ Events are signalled by a beep.
OFF = Events are not signalled by a beep.

Fig. 5-115 Beeper switched off

5.14.29 Sweep time

SWEEP mode

Setting the sweep time manually:

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.
- Press SWEEP PAR [SK R3] to call up the sweep parameter menu.
- Press SWEEP TIME [SK L2] to call up the sweep time menu.

Fig. 5-116 Setting the sweep time

- Press [SK L1] to [SK R2] to select the required sweep time. The sweep parameter menu reappears automatically.
- Press [PREV] to return to the previous menus step by step.
- Press [RTN] to return to the main menu of the current operating mode

Fig. 5-117 Selecting the sweep time

5.14.30 Reference line

AUTOSTEP, SWEEP modes

The reference line determines the drive limit for the instrument. It should therefore be selected to correspond with the maximum expected input level to avoid incorrect measurements.

Entering the reference line:

- Press [Blue key] to call up the secondary functions.
- Press [HOT] e.g. to call up SWEEP mode.
- Press ---> dBm [SK L2] to enable entry of the reference line.
- Enter a level value using the numerical keypad, rotary control or arrow keys. Press [ENTER] to complete entries made using the numerical keypad.

5.14.31 Drive conditions

Depending on the measurement task, it may be useful to optimize the dynamic range of the measuring receiver for maximum signal-to-noise ratio (LOW NOISE) or minimum distortion (LOW DISTORTION).

Low noise setting is useful when displaying the transfer function of a two-port network having a high attenuation difference within the selected frequency range (network analysis).

Low distortion setting is useful when measuring the non-harmonic components of an input signal without invoking measurement errors due to the intrinsic distortion of the measuring receiver (spectrum analysis).

SWEEP mode

- Press [Blue key] to call up the secondary functions.
- Press [HOT] to call up the main menu for SWEEP mode.
- Press SWEEP PAR [SK R3] to call up the sweep parameter menu.
- Press [SK R1] to toggle between the settings LOW NOISE and LOW DISTORTION.
- Press [PREV] to return to the previous menus step by step.
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-118 Setting the drive conditions

5.15 Calibration

The instrument calibrates automatically

- after switch on,
- whenever a parameter relevant to a measurement is changed,
- at regular intervals after switch on,
- if the instrument temperature changes.

This ensures that the instrument always measures with maximum accuracy.
Measurements are interrupted by calibration. If this is undesirable, e.g. during long-term monitoring, the calibration function can be disabled.

Enabling / disabling automatic calibration:

- Press [CAL] to enable or disable automatic calibration (toggle function). The red LED of the key is lit when automatic calibration is switched off.

Notes:

5.16 Setups

Up to 7 complete instrument settings (SETUPS) can be stored in the internal memory of the instrument for recall at any time.
If a MEMORY CARD is used (SPM/PSM-137/-138/-139) the number of memory positions can be increased to 97.

Calling up the SETUP menu

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.

Fig. 5-119 Main menu for the SETUP MEMORY function

5.16.1 Addresses

The instrument settings are stored at the following addresses. Only one setup can be stored at each address. The entire memory available, i.e. internal and Memory Card, is displayed.
If the Memory Card addresses are to be used, a Memory Card must be placed in the card slot.

Instrument internal memory

Total memory area: Addresses 00 to 09
Reserved memory: Addresses 00 to 02
Note: Addresses 00 to 02 cannot be overwritten.
Address 00 = DEFAULT SETUP: Default settings for reset (initialization).
Address 01 = USER: Instrument setting to be assumed at power on, selected by the user (see POWER ON SETUP in TEST \& CONFIG menu)
Address 02 = PREVIOUS: Instrument settings at the point power was last switched off.
Available memory area: Addresses 03 to 09
MEMORY CARD (SPM/PSM-137/-138/-139)
Memory area: Addresses C10 to C99

Fig. 5-120 Indication of memory address areas when no Memory Card s available

Address labelling

DEFAULT SETUP:Default settings for reset (initialization).
USER: Instrument setting to be assumed at power on, selected by the user (see POWER ON SETUP in TEST \& CONFIG menu)

PREVIOUS: Instrument settings at the point power was last switched off.
NOT USED Unused memory position.
NO TITLE Memory position occupied but no title assigned to setup.
NOT AVAIL Memory position not available as no Memory Card fitted.

5.16.2 Storing a setup

Note: \quad The parameters relevant to measurements with the other measurement modes are stored along with those of the current measurement mode.
It is therefore a good idea to set the other measurement modes according to requirments before storing the setup.
In this way, only the appropriate mode key need be pressed after recalling a setup in order to begin measurements immediatel with the correct settings.

- Set the instrument as required.
- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Select the address using the rotary control or arrow keys.

If the setup is to be stored on a Memory Card, place a formatted card in the card slot.

- Press STORE [F L1] to store the setup. The label changes from NOT USED to NO TITLE. The instrument setting is stored.

Note: If the address is already used, a prompt will ask if you want to overwrite it.

Fig. 5-121 Selecting the address for storing the current instrument setting

5.16.3 Labelling setups

Setups which have been stored can be labelled with a name of up to 12 characters after pressing the appropriate function key.

- Press TITLE [F L2] to call up the TITLE menu for labelling the current setup.
- Select a character using the rotary control, arrow keys or [F L2] and [F R2] by placing the cursor under the required character.
- Press INSERT CHR [F R3] to store the selected character.
- Select the next character and store by pressing INSERT CHR and so on until the label has been entered.
- Pressing DELETE CHR [F R4] deletes the last character entered.
- Press ENTER TITLE [F L4] to assign the label to the current setup.

Fig. 5-122 Labelling a setup

5.16.4 Recalling a setup

Setups can be recalled from the memory as often as required. The instrument setting applies immediately and measurements in the selected mode can begin immediately.

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Select the address using the rotary control or arrow keys.

If the setup is to be recalled from a Memory Card, place a formatted card in the card slot.

- Press RECALL [F L4] to recall the selected setup.

The instrument will be set accordingly.

Fig. 5-123 Selecting the address of the required setup

5.16.4.1 Deleting a setup

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Select the address using the rotary control or arrow keys.

If the setup is to be deleted from a Memory Card, place a formatted card in the card slot.

- Press DELETE SETUP [F L3] to delete the setup after you have confirmed that you want to delete the setup.

Fig. 5-124 Selecting the address of a setup to be deleted

5.16.4.2 Displaying setups

The setup contains the stored measurement mode and all parameters relevant to the measurement. It also contains the parameter settings for the other measurement modes which were current when the setup was stored.
The VIEW and VIEW CONTENTS functions can be used to view the setups without activating them.
VIEW displays the parameters for the initial measurement mode which is set when the selected setup is recalled.
VIEW CONTENTS displays all measurement parameters for all measurement modes stored in the selected setup.

Viewing the measurement parameters of the current setup measurement mode

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Select the address using the rotary control or arrow keys.
- Press VIEW [F R1] to view the parameters for the current measurement mode.

Fig. 5-125 Display of measurement parameters for the measurement mode set after recalling a setup

The contents of the selected setup can be scrolled through using the rotary control.

Fig. 5-126 Display of measurement parameters

Displaying the measurement parameters for all measurement modes

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Select the address using the rotary control or arrow keys.
- VIEW CONTENTS [F R2] to view the entire contents of the setup.

Fig. 5-127 Displaying all measurement parameters for all measurement modes stored in a setup

Display of the entire setup. The contents of the selected setup can be scrolled through using the rotary control.

Fig. 5-128 Display of all measurement parameters

5.16.4.3 Printing out the setup contents or setup index

Printing out the setup index

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Press PRINT INDEX [F R4] to print out the setup index (list).

Fig. 5-129 Printing out the setup index

Printing out the setup contents

- Press [Blue key] to call up the secondary functions.
- Press [IMPED] to call up the SETUP menu.
- Press PRINT CONTENTS [F R3] to print out the setup contents.

Fig. 5-130 Printing out the setup contents

Cancelling the print job:

The message "PRINTING" is displayed next to the function key in place of PRINT CONTENTS or PRINT INDEX. The print job menu is called up by pressing the appropriate function key. When the print job is complete, the original functions are restored.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTING [F R3] or [F R4] to call up the print job menu.
- Press OK [F L4] to confirm the query "Abort print job?" and cancel the printout.
- Press CANCEL [F L4] to continue printing.

Fig. 5-131 Cancelling the print job

5.16.4.4 Notes on the Memory Card

Setups are stored in the directory BN2203/SETUPS of the Memory Card. This directory is created automatically when a setup is stored on the Memory Card (see section 3.7 on page 3-12.).

5.17 Documenting the results

All instrument versions ${ }^{1}$ are capable of documenting the results using an external printer.
They can also be stored on a Memory Card if the SPM/PSM-137/-138-139 are used.
The following describes the most important features of the results documentation function:

- Automatic documentation of results on completion of a measurement as determined by the current operating mode
- Manual triggering of result documentation
- Selection between various printers
- Display or printout of the contents of a measurement result file
- Simultaneous documentation on the printer and the Memory Card (SPM/PSM-137/-138-139).

All parameters required for result documentation are found in the DOCUMENTATION menu.

Calling up the DOCUMENTATION menu:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.

Fig. 5-132 Main menu of the DOCUMENTATION function

5.17.1 Labelling the measurement result record

A header line for the results record can be entered using a menu selection. The title or label is applied to both the printout and the stored record.

Note: \quad The title must be entered before the result record is printed out.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press TITLE [F L3] to call up the TITLE menu for entering a title of up to 40 characters for the measurement results record of the next measurement.
- Select a character using the rotary control, arrow keys or <-- [F L2] and --> [F R2] by placing the cursor under the required character.
- Press INSERT CHR [F R3] to store the selected character.
- Select the next character and store by pressing INSERT CHR and so on until the title has been entered.
- Pressing DELETE CHR [F R4] deletes the last character entered.
- Press ENTER TITLE [F L4] to assign the title to the current measurement record.
- Press [PREV] to return to the previous menus step by step or

[^3]- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-133 Entering a title for the measurement record

5.17.2 Preparing to print out results

Various settings need to be made before the results can be printed out.

Setting the printer as output device:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press SEND TO PRINTER [F R1] to set the printer as the output device. The display changes from OFF to ON. The LED next to EXT PRINTER below the [EXEC] key comes on.
ON = Results output to the external printer.
OFF = Results not output to external printer.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-134 Setting the printer as output device

Selecting the printer type:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTER [F R2] to change to the PRINTER menu.
- Press TYPE [F L2] to change the printer type.
- Press PCL [F R1], ESCP [F R2] or THINK JET [F R3] to select the type required.

PCL = Laser printer, e.g. HP Laserjet series II
ESCP $=$ Pin printer, e.g. Epson FX 80
THINK JET = Inkjet printer, e.g. HP Thinkjet

- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-135 Selecting the printer type

If required: Specify page length:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTER [F R2] to change to the printer parameter menu.
- Press PAGE LENGTH [F R1] to enable entry of the number of lines per page to be printed.
- Enter the number of lines using the rotary control, arrow keys or number keys. Press [ENTER] to complete entries made with the number keys.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-136 Specifying the page length

Reset the line counter:

Note: Only required for pin and inkjet printers.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTER [F R2] to change to the printer parameter menu.
- Press ADJUST TOF [F R2] to reset the internal line counter (top of file).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-137 Resetting the line counter

If required: Reset printer

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTER [F R2] to change to the printer parameter menu.
- Press RESET [F R4] to reset the printer, i.e. set it to a defined state. This may include adjusting the print head position, clearing the buffer and so on.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-138 Resetting the printer

If required: Trigger manual form feed:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTER [F R2] to change to the printer parameter menu.
- Press FORMFEED [F R3] to set the paper to the start of the next page.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-139 Triggering a form feed

5.17.3 Preparing to store measurement results (SPM/PSM-137/-138-139)

Various settings need to be made before results can be stored on a Memory Card. For all the instructions below, a Memory Card must be present in the card slot.

Setting the Memory Card as output device:
Note: Determine the measurement result file.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press SEND TO MEMCARD [F R3] to select the MEMCARD as output device. The LED next to MEMCARD below the [EXEC] turns on.
ON = Results are stored on the Memory Card.
OFF $=$ Results are not stored on the Memory Card.

Fig. 5-140 Selecting the Memory Card as output device
Creating a result file or selecting an existing file as the current result file:

Creating a result file

Note: Observe the DOS name convention.
The name should be limited to 8 characters.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to call up the Memory Card parameter menu
- Select a character using the rotary control, arrow keys or <-- [F L2] and --> [F R2] by placing the cursor under the required character.
- Press INSERT CHR [F R3] to store the selected character.
- Select the next character and store by pressing INSERT CHR and so on until the name has been entered.
- Pressing DELETE CHR [F R4] deletes the last character entered.
- Press CREATE FILE [F L4] to store the file name. The display reverts automatically to the previous menu.

Fig. 5-141 Entering a file name for the results file

Selecting the current result file

- Select a result file from the existing list using the rotary control or the arrow keys.
- Press SET ACT FILE [F R2] to set the selected file as the current file. The file name is shown below ACT FILE in the display.

Fig. 5-142 Selecting the current result file

Storing the measurement parameters for only one set of results

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to call up the Memory Card parameter menu.
- Press WRITE MODE [F L3] to set the store mode to OVER.
- Press [PREV] to return to the DOCUMENTATION menu.
- Press PRINT PARAMETERS [F L4] to store the measurement parameters on the Memory Card.
The results can now be stored (see section 5.17.4 on page 5-110).
Note: If PRINT PARAMETERS [F L4] is pressed again, the as yet complete set of data is deleted and overwrtten. Only the last set of data is stored on the Memory Card.

Fig. 5-143 Storing the measurement parameters

Storing the measurement parameters for further sets of results:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to change to the Memory Card parameter menu.
- Press WRITE MODE [F L3] to set the store mode to APPD (append).
- Press [PREV] to return to the DOCUMENTATION menu.
- Press PRINT PARAMETERS [F L4] o store the measurement parameters on the Memory Card.
The results can now be stored (see section 5.17.4 on page 5-110).
Note: If PRINT PARAMETERS [F L4] is pressed again, the new set of measurement parameters and any subsequent results is appended to the previous sets of data. No data is deleted or overwritten.

5.17.4 Triggering result printout and / or storage manually

Start printout or store process:

Note

The instrument must already be set up to print out or store the results (see section 5.17 .2 on page $5-105$) and (see section 5.17 .3 on page $5-108$).

HOT TONE, AUTOSTEP, NPR modes

Note: Only manual triggering of the printout or store process is provided in these modes.

- Press [EXEC] to start storing and / or printing the results.

LEVEL, DEMODULATION, VOICE, JITTER, IMP NOISE, INTERRUPTIONS modes
Note: Manual or automatic triggering of the printout or store process is provided in these modes.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press DOCUM TRIGG [F L1] to change to the AUTO DOCUMENT TRIGGER menu.
- Press OFF [F L1] to disable automatic documentation.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.
- Press [EXEC] to start storing and / or printing the results after a measurement has been made.

The following are recorded:

Operating mode	Results and data recorded			
VOICE	LEVEL	TIME	TIME	
RX LEVEL	FREQUENCY	LEVEL	TIME	
DMOD	CAR FRQ	LEVEL	SEL CH POWER	TIME
NPR	NPR	INPUT POWER		
HOT TONE and AUTO STEP	FREQUENCY	LEVEL	TIME	
JITTER	FREQUENCY	JITTER		
IMPULSIVE NOISE	TIME	IMP NOISE (events)		
INTERRUPTIONS	TIME	INTERRUPTIONS (events)		

Fig. 5-144 Results which are recorded

Cancelling the print job:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press PRINTING [F L4] to call up the print job menu.
- Press OK [F L4] to confirm the query "Abort print job?" and cancel the printout.
- Press CANCEL [F R4] to continue printing.

Note: Function key [F L4] is labelled PRINT PARAMETERS again when the print job is finished. During the print job, the key is labelled PRINTING.

Fig. 5-145 Cancelling the print job

5.17.5 Starting result printout and / or storage automatically

Note: Make sure that a printer is connected and configured before staring a printout. Make sure that a formatted Memory Card is in the card slot before storing results.

Timer-controlled printout or storage of results:

LEVEL, DEMODULATION, VOICE, JITTER modes

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press DOCUM TRIGG [F L1] to change to the AUTO DOCUMENT TRIGGER menu.
- Press TIMER [F L3] to enable timer-controlled result documentation.
- Press SET INV [F R3] to enable entry of the time interval. The result documentation starts at the end of the first time interval.
- Enter the time interval using the rotary control, arrow keys or number keys. Press [ENTER] to complete entries made with the number keys.
Pressing the [FINE] sets the resolution of the rotary control or arrow keys:
Resolution 1 minute --> [FINE] key: LED next to the key is on.
Resolution 10 minutes --> [FINE] key: LED next to the key is off.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-146 Activating the timer

Printng or storing level alarms:

Note: \quad The level limits must be set and activated in LEVEL mode (see section 5.14 .4 on page 5-61).

LEVEL mode

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press DOCUM TRIGG [F L1] to change to the AUTO DOCUMENT TRIGGER menu.
- Press LEVEL ALARM [F L4] to enable documentation of level alarms. The results are documented as soon as a level alarm occurs (level above or below limit values).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-147 Enabling documentation of level alarms

Event-controlled storage and /or printout of results

IMPULSIVE NOISE, INTERRUPTIONS mode

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press DOCUM TRIGG [F L1] to change to the AUTO DOCUMENT TRIGGER menu.
- Press EVENT [F L4] to enable event-controlled documentation of results. Results are documented as soon as an event occurs.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-148 Activating event-controlled result documentation

Ending automatic result documentation:

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press DOCUM TRIGG [F L1] to change to the AUTO DOCUMENT TRIGGER menu.
- Press OFF [F L1] to disable automatic result documentation.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

5.17.6 After storing results on the Memory Card

Once results have been stored on the Memory Card, the contents of the current result file can be displayed, printed out or deleted entirely.

Displaying the result file contents

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to change to the Memory Card parameter menu.
- Select a result file from the existing list using the rotary control or the arrow keys.
- Press SET ACT FILE [F R2] to set the selected file as the current file. The file name is shown next to ACT FILE in the display.
- Press VIEW [F L1] to display the contents of the current result file.
- Scroll through the contents of the result file using the rotary control or the arrow keys.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Printing the contents of the result file

Note: Make sure that a printer is connected and configured before staring a printout of the result file contents.

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to change to the Memory Card parameter menu.
- Select a result file from the existing list using the rotary control or the arrow keys.
- Press SET ACT FILE [F R2] to set the selected file as the current file. The file name is shown next to ACT FILE in the display.
- Press PRINT [F L2] to print out the contents of the current result file. The message PRINTING is displayed instead of PRINT.
Pressing function key [F L2] calls up the print job menu. The print job can be cancelled from here (see section 5.17.4 on page 5-110).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Deleting the result file

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to change to the Memory Card parameter menu.
- Select a result file from the existing list using the rotary control or the arrow keys.
- Press SET ACT FILE [F R2] to set the selected file as the current file. The file name is shown next to ACT FILE in the display.
- Press DELETE [F L4] to delete the contents of the current result file after confirming the query.
- Press [PREV] to return to the previous menus step by step or
- RTN
- Press [RTN] to return to the main menu of the current operating mode.

Calling up the Memory Card directory

- Press [Blue key] to call up the secondary functions.
- Press [DOCUM] to call up the DOCUMENTATION menu.
- Press MEMCARD PARAM [F R4] to change to the Memory Card parameter menu.
- Press MEMCARD DIR [F R4] to display the directory for the current result file (see section 3.7 on page 3-12).

5.17.6.1 Notes on the Memory Card

Results are stored in the directory BN2203/RESULTS of the Memory Card. This directory is created automatically when results are stored on the Memory Card (see section 3.7 on page 3-12.)

5.18 Tracking generator (PSM-37/-38/-39/-137/-138/-139)

The PSM instruments are equipped with a tracking generator. These instruments are thus capable of selective measurements of attenuation and distortion. The following parameters are available:

BLANK = TX level blanking. ON / OFF function.
TX = Entry of TX level. If TX OFF, the tracking generator must be switched on first.
AUTO BLANK = Soft blanking of TX level at every frequency change.
FRQ LIMIT = The TX frequency range can be restricted by setting a MAX FRQ and a MIN FRQ. This frequency range can be altered at any time. The FRQ LIMIT ON/OFF function activates / deactivates the frequency limits.

FLIMIT SECURE = This allows a frequency range to be set which, unlike FRQ LIMIT, can be protected against alteration by third parties.

MAX FRQ = Upper limit for TX frequency entry; the maximum permitted value depends on the instrument version.

MIN FRQ = Lower limit for TX frequency entry; the minimum permitted value depends on the instrument version.

EXT LEVLG = External level control. The EPM-1 Milliwatt Power Level Meter from Wandel \& Goltermann canbe used to form an external amplitude control loop e.g. to compensate for the insertion losses of long cables or level changes at the feed point.

LEVEL LIMIT = Activate / deactivate TX level limits.
MAX LEVEL = Maximum permitted TX level entry value.
TX POWER = Activate $/$ deactivate tracking generator .

5.18.1 Activating / deactivating the tracking generator

Activating the tracking generator:

Note: \quad For safety reasons, the TX level remains blanked when the tracking generator is activated in the TX menu. The LED below the [BLANK] key is on. Pressing the [BLANK] key switches the set TX level to the selected output and the LED turns off.

- Call up the operating mode (e.g. LEVEL).
- Press TX OFF [F L4] to call up the TX menu.
- Press TX POWER [F R4] to activate the tracking generator. The LED below the [BLANK] key is on.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-149 Tracking generator activated

Activating the tracking generator output:

- Press [BLANK] to activate the output

Deactivating the tracking generator:

- Press [Blue key] to call up the secondary functions.
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press TX POWER [F R4] to deactivate the tracking generator. Function key [F L4] in the main menu of the operating mode is labelled with TX OFF again.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-150 Tracking generator deactivated

5.18.2 TX frequency

Entering the TX frequency:

The TX frequency corresponds to the receiver tuning frequency (see section 5.14.8 on page 5-67).

Setting the frequency range:

- Call up the operating mode (e.g. LEVEL).
- Press TX OFF [F L4] or
- Press [Blue key] to call up the secondary functions.
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press MAX FRQ [F L3] to enable entry of the upper range limit.
- Enter the frequency value using the number keys, rotary control or arrow keys. Press [kHz], [MHz] or [ENTER] to complete entries made using the number keys.
- Press MIN FRQ [F L4] to enable entry of the lower range limit.
- Enter the frequency value as described under MAX FRQ.

Fig. 5-151 Setting the frequency limits

Activating / deactivating the frequency limits

- Press TX OFF [F L4] or
- Press [Blue key] to call up the secondary functions.
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press FRQ LIMIT [F L2] to activate / deactivate the frequency limits (toggle function).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-152 Activating the frequency limits

5.18.3 Protecting the TX frequency setting range from change

It may be necessary to restrict the frequency ranges that can be used for transmissions. The setting range of the TX frequency can be specified. By assigning a numerical code. the setting range can be protected against unauthorized alteration by third parties.

Setting the numerical code:

Note: The instrument is set to a numerical code of "00000" when delivered.

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to change to the INSTRUMENT menu.
- Press FLIMIT SECURE [F R3] to change to the TX LIMITS menu.
- Press UNLOCK CODE [F R1] to enable entry of the numerical code.
- Enter the numerical code using the number keys and press [ENTER] to conclude the entry. The function key label changes to LOCK CODE.
- Press LOCK CODE [F R1] to enable entry of a new numerical code.
- Enter the numerical code using the number keys and press [ENTER] to conclude the entry. The new numerical code is set as soon as the menu is changed, eg. by pressing the [PREV] key or the [LEVEL] key.

Fig. 5-153 Changing or entering the numerical code

Forgotten the numerical code?

Contact your Wandel \& Goltermann sevice center for assistance.

Setting the range limits:

Note: When setting the limits always ensure that the upper limit value is greater than the lower limit value.

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to change to the INSTRUMENT menu.
- Press FLIMIT SECURE [F R3] to change to the TX LIMITS menu.
- Press UNLOCK CODE [F R1] to enable entry of the numerical code.
- Enter the numerical code using the number keys and press [ENTER] to conclude the entry. The status display below TX-LIMITS changes from LOCKED to UNLOCKED. The setting range limits can now be entered or changed and activated or deactivated.

Fig. 5-154 Entering the numerical code

- Press MAX FRQ [F L3] to enable entry of the upper range limit.
- Enter the frequency value using the number keys, rotary control or arrow keys. Press [kHz], [MHz] or [ENTER] to complete entries made using the number keys.
- Press MIN FRQ [F L4] to enable entry of the lower range limit.
- Enter the frequency value as described under MAX FRQ.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-155 Entering the setting range limits

Activating / deactivating the setting range limits:

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to change to the INSTRUMENT menu.
- Press FLIMIT SECURE [F R3] to change to the TX LIMITS menu.
- Press UNLOCK CODE [F R1] to enable entry of the numerical code.
- Enter the numerical code using the number keys and press [ENTER] to conclude the entry "Setting the range limits:" on page 5-119.
- Press TX FRQ LIMIT [F L2] to activate / deactivate the setting range limits (toggle function).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-156 Activating the setting range limits

5.18.4 TX level

Entering the TX level:

- Call up the operating mode (e.g. LEVEL).
- Press TX OFF [F L4] to call up the TX menu.
- Press TX POWER [F R4] to activate the tracking generator. The LED below the [BLANK] key is on.
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.
- Press TX x.x dBm [F L4] to enable entry.
- Enter the TX level using the number keys, rotary control or arrow keys. Press [ENTER] to complete entries made using the number keys.

Fig. 5-157 TX level 0.0dBm, blanked (BLANK ON)

Limiting the settable TX level:

- Call up the operating mode (e.g. LEVEL).
- Press TX OFF [F L4] or
- Press [Blue key] and then
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press MAX LEVEL [F R3] to enable entry of the upper range limit.
- Enter the level value using the number keys, rotary control or arrow keys. Press [ENTER] to complete entries made using the number keys.

Fig. 5-158 Setting the TX level upper limit

Activating / deactivating the level limit:

- Press TX OFF [F L4] or
- Press [Blue key] and then
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press LEVEL LIMIT [F R2] to activate / deactivate the upper level limit (toggle function).
- Press [PREV] to return to the previous menus step by step or
- Press [RTN] to return to the main menu of the current operating mode.

Fig. 5-159 Activating the level limit

Blanking the TX level

Blank on frequency change:

- Press TX OFF [F L4] or
- Press [Blue key] and then
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press AUTO BLANK [F L1] to activate / deactivate the auto blanking function (toggle function). When activated, the TX level is "soft" blanked and then unblanked each time the frequency is changed.

Fig. 5-160 AUTO BLANK function deactivated

Manual TX level blanking:

- Press [BLANK] to activate / deactivate the function (toggle function). If activated, the TX level is permanently blanked. The LED below [BLANK] is on.

5.18.5 Outputs and impedances

The instrument is fitted with one coaxial and one balanced output. In the IMPED menu, both the output impedance and the output itself can be selected. An LED display above the output socket lights to indicate which output and which impedance has been set.

Fig. 5-161 Example: Coaxial output, impedance setting $Z_{0}=75 \Omega$

Selecting the impedance and output:

- Press [IMPED] to call up the IMPEDANCE menu.
- Press [F R2] ... [F R4] to select the output and impedance required.

Fig. 5-162 Switching "high impedance" to a Z_{0} value

5.18.6 External level control

An external control voltage from the EPM-1 Milliwatt Power Meter can be fed into the auxiliary input/output socket [53] (pin 5: Signal, pin 9: Ground) on the back panel of the instrument to form an external control loop. The TX level is measured as close to the device under test as possible, using the probe of the EPM-1. A d.c. voltage proportional to the difference between the nominal and actual TX level is output from the control voltage output of the EPM-1to socket [53] of the instrument. This level control circuit allows cable losses due to long feed cables or the frequency response of the generator output impedance and of the test cables to be compensated for.

Switching to external level control:

Instrument setting: Main menu of LEVEL or AUTO STEP mode

- Press TX OFF [F L4] or
- Press [Blue key] and then
- Press TX x.x dBm [F L4] to call up the TX menu.
- Press EXT LEVLG [F R1] to switch to external level control.

Notes:

6 Measurement notes

6.1 Measuring high attenuations

General considerations

When making level measurements on two-port networks with high attenuations, a high return impedance Z_{s} is required between the generator and receiver of the test set.
If the return impedance is not infinite, additional measurement errors result from the voltage drops $U_{S T}$ across the ground wire resistances r_{1} and $r_{2}{ }^{1}$ of the test cable used.
Fig. 6-1 shows the problem with a test setup using a device under test with infinite attenuation.

Fig. 6-1 Measuring high attenuations

To ensure broadband performance and conformance to important EMI/RFI requirements, no internal increase has been made in the return impedance for the PSM-37 to 39 or PSM-137 to 139 Level Test Sets.
For this reason, short cables with low impedance screening should be used when measuring high attenuations. Connections must be clean and corrosion-free.
The return impedance can also be increased significantly by inserting a coaxial choke.

[^4]If the MSD-2 Coaxial Choke BN 2227/1 (Wandel \& Goltermann) is inserted in the test circuit, the return impedance at 200 Hz is already $>10 \Omega$ (see Fig. 6-2). The choke can be used at frequencies up to 50 MHz .

Generator

Fig. 6-2 Increased return impedance through the use of a MSD-2 coaxial choke

6.2 Measurement error due to residual carrier

All selective level meters which use heterodyning may show results display interference from the residual carrier at low tuning frequencies.
The measurement error resulting from this depends on the ratio of the residual carrier level to the measured signal (signal to interference ratio).
This ratio is determined by the following parameters among others:

- Individual magnitude of the residual carrier (production scatter, actual temperature, etc.)
- Tuning frequency $\leq 2 \mathrm{kHz}$
- Current measurement bandwidth
- Magnitude of the signal being measured
- Magnitude of any wideband loading (automatic wideband attenuator setting)

To determine the size of the measurement error, the signal to interference ratio must be measured.

Measuring the signal to interference ratio:

- Press [Blue key] to activate the additional functions.
- Press [TEST \& CONFIG] to enable the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu.
- Press AUTO RANGING [F R2] to disable auto-ranging.
- Press [LEVEL] to invoke LEVEL measurement mode.
- Disconnect the test signal from the input socket. The drop in the display value corresponds to the signal to interference ratio.

The measurement error can be determined from the graph below.
Measurement error in dB

The residual carrier has the same effect as the intrinsic noise.

Examples of measurement errors at given signal to interference ratios:

Ratio 20 dB --> measurement error approx. 0.04 dB
Ratio 10 dB --> measurement error approx. 0.48 dB
The measurement error is negligible if the signal to interference ratio is more than 20 dB .
Re-enabling auto-ranging:

- Press [Blue key] to activate the additional functions.
- Press [TEST \& CONFIG] to enable the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to open the INSTRUMENT menu.
- Press AUTO RANGING [F R2] to enable auto-ranging.
- Press [LEVEL] to invoke LEVEL measurement mode.

Notes:

7 Error messages and warnings

This instrument makes a distinction between error messages and warnings. Both types are displayed on screen in plain text.
WARNING Warnings are displayed e.g. if a function is invoked which is not implemented in the instrument version you are using.

Fig. 7-1 Example of a warning

ERROR Error messages are displayed if e.g. the setting range for a parameter is exceeded.

Fig. 7-2 Example of an error message

Querying the last error message

The last error message can be displayed and acknowledged from the HELP menu.

- Press [HELP] to open the main help menu.
- Press QUIT [F R4] to clear the current error message.

Fig. 7-3 Clearing the current error message

List of error messages and warnings:

USE FMEM CAN'T BE MODIFIED

Fixed frequencies cannot be used in HOT TONE mode. This error message only appears under IEEE bus remote control.

AUTO-DOCUMENTATION-TRIGGER AND MEASMODE DON'T MATCH

The selected trigger for automatic recording of results cannot be used in this measurement mode. This error message only appears under IEEE bus remote control.

AUTO STEP MASTER REQUIRES GENERATOR ON

The generator must be switched on for AUTO STEP MASTER measurements. This error message only appears under IEEE bus remote control.

BAD EXTERNAL REFERENCE FREQUENCY

The instrument is unable to synchronize to the external reference frequency being input.

BANDWIDTH CAN'T BE MODIFIED

The bandwidth for the chosen measurement is preset at a fixed value and cannot be altered. This error message only appears under IEEE bus remote control.

CALIBRATION ERROR

An error has occurred during calibration.

CARRIER LEAK

FREQUENCY TOO LOW

The receive frequency is so low that the carrier leak of the instrument may lead to a measurement error (see section 6.2, page 6-2).

CHANNEL AND IMPEDANCE FOR RX DON'T MATCH

The combination selected for the input socket and input impedance is not possible. This error message only appears under IEEE bus remote control.

DIRECTORY MUST BE EMPTY BEFORE DELETION

The directory onthe Menory Card which you want to delete still contains some files.

EEPROM OPERATION FAILED

An error has occurred during a read / write operation to the EEPROM.

FDM-MEASMODE BUT FDM-OPTION NOT AVAILABLE

Note: FDM plans are not yet available.
An FDM sub-measurement mode has been selected for the selected measurement mode but the FDM option is not available.

FMEM-ACT-ID GREATER

THAN FMEM-LAST-ID

The actual memory address is higher than the memory address for the upper fixed frequency limit.

FMEM-ACT-ID LESS
 THAN FMEM-FIRST-ID

The actual memory address is lower than the memory address for the lower fixed frequency limit.

FMEM-FIRST-ID GREATER THAN FMEM-LAST-ID

The memory address selected for the first fixed frequency is above that selected for the upper fixed frequency limit

FMEM-LIST NOT MONOTONOUS

The frequency values in the fixed frequency list for AUTO STEP measurements must increase steadily (= monotonic) if the step frequencies are taken from the fixed frequency list.

FMEM-START-ID AND FMEM-STOP-ID ARE IDENTICAL

The fixed frequency addresses for the start and stop frequencies must be different in AUTO STEP measurement modes.

FREQUENCY AND BANDWIDTH DON'T MATCH

The set frequency and the 48 kHz or 240 kHz do not match.

FREQUENCY AND FREQLIMIT DON'T MATCH

The selection frequency required is outside the set frequency limits.

FREQUENCY AND SIDEBAND DON'T MATCH

The carrier frequency must be above $1850 \mathrm{~Hz}+45 \mathrm{~Hz}=1895 \mathrm{~Hz}$ for lower sidebands (LSB), otherwise the selection frequency would be below the frequency limit of 45 Hz .

FREQUENCY TOO HIGH

FOR RX CHANNEL

The selection frequency setting is higher than the limit frequency for the output socket selected.
(Balanced output I: Fmax $=14 \mathrm{MHz}$,
balanced output II: Fmax $=620 \mathrm{kHz}$).

FREQUENCY TOO HIGH

FOR TX-CHANNEL

The transmit frequency setting is higher than the limit frequency for the output socket selected (PSM instruments only).
(Balanced output I: Fmax $=14 \mathrm{MHz}$,
balanced output II: Fmax $=620 \mathrm{kHz}$).

FREQUENCY TOO LOW

FOR RX-CHANNEL

The selection frequency setting is lower than the limit frequency for the output socket selected (Balanced input II: Fmin $=10 \mathrm{kHz}$).

FREQUENCY TOO LOW FOR TX-CHANNEL

DieThe transmit frequency setting is lower than the limit frequency for the output socket selected (PSM instruments only).
(Balanced output II: Fmin = 10 kHz).

GAIN TOO LOW

The set gain value is less than the relative level setting.

GENERATOR AND BANDWIDTH

DON'T MATCH

The generator cannot be activated for bandwidths of 48 kHz or 240 kHz (PSM instruments only).

GENERATOR ON AND MEASMODE DON'T MATCH

The generator can only be activated in AUTOSTEP and LEVEL measurement modes. This error message only appears under IEEE bus remote control.

GENERATOR OFF

BLANK OFF NOT POSSIBLE

The generator cannot be blanked as it is already switched off (PSM instruments only).

IF-GAIN OUT OF RANGE

The IF gain setting required is outside the range of values. This error message can only occur when the wideband gain is altered, as the IF gain is changed at the same time.

KEY HAS NO FUNCTION AT THIS MOMENT

An unassigned function key was pressed.

LOWER ALARM THRESHOLD
 OUT OF RANGE

The lower alarm threshold value is outside the range of values. This error message only occurs when the relative level is changed.

MARKER OFF ->
 NO FREQUENCY TO TRANSFER

A change to selective level measurement by transferring the marker frequency is not possible from AUTOSTEP or HOT TONE SEARCH modes as the marker is switched off and no transfer frequency is selected.

MEASUREMENT ALREADY RUNNING

A further command to start the measurement was issued when the measurement was already running. This error message only appears under IEEE bus remote control.

MEMORY-CARD FULL

There is no more space left for storage on the Memory Card.

MEMORY-CARD NOT AVAILABLE

A Memory Card has not been fitted into the slot.

MEMORY-CARD OPERATION FAILED

An error has occurred during a read / write operation to the Memory Card.

MEMORY-CARD WRITE PROTECTED

The Memory Card is write-protected.

MISSING RESULT

An attempt was made to read out a result before any resuls were available. This error message only appears under IEEE bus remote control.

NO FURTHER CHARACTER

CAN BE DELETED

All characters in the current title have been deleted.

NO FURTHER CHARACTER

CAN BE INSERTED

The maximum number of characters for a setup title is 11 .

NO GENERATOR INSTALLED

The instrument is not fitted with a generator. This error message only appears under IEEE bus remote control.

NO MEMORYCARD-FILE SPECIFIED

No file has been specified for storing the results on the Memory Card.

NO OUTPUT-DEVICE SPECIFIED

No device has been specified to which to output the results record.

NO RESULTS YET ->
 NO FREQUENCY TO TRANSFER

A change to selective level measurement by transferring the marker frequency in AUTOSTEP or HOT TONE SEARCH modes is not possible yet as no results are available and therefore no

NO SUCH FILE

The selected file does not exist on the Memory Card, either because a different card was used or because the file has been deleted.

NO VALUE AT SPECIFIED POSITION

IN FMEM-LIST AVAILABLE
There are no entries in the fixed frequency list, so the frequency cannot be selected from the fixed frequencies.

NOT YET IMPLEMENTED

The selected instrument function is not available.

ONLY ONE PRINT JOB

POSSIBLE

Only one print job can be managed at any one time.

OPERATION NOT POSSIBLE

WHILE PRINTING

The 'form feed' and 'top of form' commands cannot be processed when the printer is printing.

OPTION FDM NOT INSTALLED

The instrument is not equipped with the option selected.

OPTION MEMORY-CARD NOT INSTALLED

The instrument is not equipped with the option selected.

OPTION NOT AVAILABLE

The instrument is not equipped with the option selected.

PARAMETER CAN'T BE MODIFIED DURING RUNNING MEASUREMENT

Any measurement already running must be stopped before a parameter can be altered in IMPULSIVE NOISE, INTERRUPTIONS, AUTO STEP and HOT TONE SEARCH modes. This error message only appears under IEEE bus remote control.

PERMISSION DENIED

Acces to the Memory Card has been denied.

PRESS STOP FIRST

Any measurement already running must be stopped before a parameter can be altered in IMPULSIVE NOISE, INTERRUPTIONS, AUTO STEP and HOT TONE SEARCH modes.

RAM CORRUPTED

FMEM LIST LOST
The fixed frequency list cannot be used due to a memory error.

RAM CORRUPTED

SETUP LOST
The instrument setups cannot be used due to a memory error.

RAM CORRUPTED

USING DEFAULT SETTINGS
The RAM contents have been corrupted. The instrument has been set to the default settings.

REL LEVEL AND GAIN

DON'T MATCH
The relative level and gain settings do not correlate.

REQUESTED OPTION'S LICENCE

IS NOT VALID FOR THIS DEVICE
The selected optional band filter has not been released for use with this instrument.

SENDLEVEL AND LEVELLIMIT DON'T MATCH

The required value for the send level cannot be set (PSM instruments only).

SEND LEVEL OUT OF RANGE

The required value for the send level is outside the range of values. This error message only appears when the relative level is changed.

SETUP 'PREVIOUS' LOST

The contents of the "PREVIOUS" POWER ON SETUP memory position is corrupted.

SETUP 'PREVIOUS' LOST USING DEFAULT-SETTINGS

The contents of the "PREVIOUS" POWER ON SETUP memory position is corrupted. The instrument has been set to the default settings.

SETUP 'USER' LOST

The contents of the "USER" POWER ON SETUP memory position is corrupted.

SETUP 'USER' LOST

USING DEFAULT-SETTINGS
The contents of the "USER" POWER ON SETUP memory position is corrupted. The instrument has been set to the default settings.

SETUP CORRUPTED

The setup on the Memory Card is corrupted (memory error or incorrect size).

SETUP DOESN'T MATCH WITH DEVICE

The setup which is to be loaded from the memory card is for a different instrument type

SETUP DOESN'T MATCH DEVICE

The setup selected from memory does not match the instrument, e.g. because no generator is fitted, no IEEE bus is fitted, etc.

SETUP NOT USED

No setup is stored under the memory address selected.

SETUP WRITE PROTECTED

A write protected setup (addresses 00, 01 and 02) cannot be overwritten.

SIDEBAND CAN'T BE MODIFIED

The sideband position for the selected measurement is fixed and cannot therefore be changed. This error message only appears under IEEE bus remote control.

START-THRESHOLD OUT OF RANGE

The required value for the start threshold cannot be set.

START-FREQUENCY AND STOP-FREQUENCY ARE IDENTICAL

The start and stop frequencies used in AUTO STEP and HOT TONE SEARCH modes must be different.

START-FREQUENCY GREATER

 THAN STOP-FREQUENCYThe start frequency must be less than the stop frequency for a HOT TONE SEARCH.

STEPWIDTH AND STEPCOUNT DON'T MATCH WITH STARTFREQ AND STOPFREQ

A maximum of 100 steps can be performed between the start and stop frequencies in AUTO STEP mode.

STEPWIDTH TOO LOW, MODIFY FIRST

The minimum step width for AUTO STEP mode is 1 Hz .

STOP KEY LOCKED

The START/STOP key is disabled. The STOP KEY LOCKED parameter must be set to OFF to re-enable the START/STOP key

SYNTHESIZER UNLOCKED

The internal frequency is not correct as one or more of the phase-locked loops is not locked.

TERMINATOR, CHANNEL AND IMPEDANCE FOR TX DON'T MATCH

This combination of output socket, impedance and termination cannot be set. This error message only appears under IEEE bus remote control.

THRESHOLD OUT OF RANGE

The search threshold for a HOT TONE SEARCH is outside the range of values. This error message can ony appear when the relative level is changed.

TOO MANY STEPS

A maximum of 100 steps can be performed between the start and stop frequencies in AUTO STEP mode.

UNLOCK FIRST

Enter the code to unlock the frequency limits for the tracking generator.

UPPER ALARM THRESHOLD

OUT OF RANGE

The value for the upper alarm threshold is outside the range of values. This error message can ony appear when the relative level is changed.

USING FMEM DEACTIVATED

Frequency selection from the fixed frequencies was deactivated because the fixed frequency position selected was empty.

USING FMEM-LIMITS DEACTIVATED

Limiting of the fixed frequency selection was deactivated because one of the limits selected was unassigned.

VALUE IN FMEM LIST OUT OF RANGE

The fixed frequency list contains an entry with a value above the frequency limit of the instrument. This error message only occurs if the frequency list is loaded from a memory card for an instrument with higher frequency limits.

VALUE WAS OUTSIDE THE

PARAMETERS RANGE!

An attempt was made to enter a parameter value outside the range for the selected parameter using the number keys.

WRONG VALUE FOR BANDWIDTH

The required bandwidth value cannot be set. This error message only appears under IEEE bus remote control.

Y-SCALE-REFERENCE OUT OF RANGE

The value for the Y scale reference is outside the range of values. This error message can ony appear when the relative level is changed.

Notes:

8 Maintenance, servicing and transport

8.1 Maintenance

Instrument configuration

Please quote the instrument identification in addition to the type name in the event of any queries or when ordering options and accessories relating to this instrument.

Instrument identifier

The instrument identifier is made up from the series index and the serial number. These are printed below the type name which is located on the front panel above the display.

Software status

The current software status can be queried from the TEST\&CONFIG menu.

- Press [Blue key] to call up the subsidiary functions.
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION function.
- Press SOFTWARE [F R2] to query the current software status..

Fig. 8-1 Software status display

INSTRUMENT ID

Identification number of the instrument, required when ordering software options.
SW VERSION
Instrument software version number and release date. The instrument software contains the measurement, control, result recording, evaluation, display and printout functions for the instrument.
BIOS VERSION
BIOS software version number and release date. The BIOS EPROM is read directly following switch-on. This tells the instrument what is to be set at power on, how to react if the instrument software cannot be loaded, etc.

8.1.1 Changing the Versacon inserts

As delivered, the inputs and outputs on the front panel are equipped with basic 75 ohm Versacon 9 connectors. The BNC inserts can be exchanged for other inserts from the Versacon 9 range at any time.

Removing the sockets

1. Undo the locknut using the pin wrench (order number W1) by turning it anticlockwise.
2. Screw the locknut forwards as far as it will go.
3. The insert can now be unscrewed. If it is stiff, use the pin wrench to loosen it.

Fitting the socket

1. Screw the locknut onto the insert as far as it will go.
2. Screw the insert as far as it will go into the basic socket mounted on the instrument.
3. Screw the locknut back (clockwise) as far as it will go and tighten it using the pin wrench.

8.1.2 Changing the fuse

If the instrument does not function when switched on and the power connection to the instrument appears to be in order, the main ac line fuse may have blown.

Check

Warning: Danger of electric shock. Disconnect the instrument from the ac line.

1. Open the fuse cover using a small screwdriver (see Fig. 8-2 on page 8-2).
2. Remove the fuseholder (see Fig. 8-3 on page 8-3).
3. Check the fuse for continuity.
4. If the fuse is defective, replace itr with a new one.
5. Replace the fuseholder (arrow points to the right).
6. Close the fuse cover.
7. Connect up and switch on. If the fuse blows again, contact your local Wandel \& Goltermann service center

Fig. 8-2 Opening the fuse cover

Fig. 8-3 Removing the fuse holder complete with fuse

8.1.3 Cleaning the instrument

Do not use solvents for cleaning the front panel and casing:
\square Solvents such as denatured alcohol or petroleum may attack the lettering and finish of the instrument.
\square Cleansers for plastic surfaces or furniture often contain polishing agents which may also damage the lettering and finish of the instrument.

To clean the instrument, moisten a cloth with warm water to which a little detergent has been added. Make sure that no water enters the instrument. Wipe off damp surfaces with a dry cloth to remove any marks.

8.1.4 Rechargeable battery pack option BN 2203/00.04

8.1.4.1 Fitting and removing the battery pack

The instrument can be equipped with the rechargeable battery pack option BN 2203/00.04 to allow operation independent of the ac line supply. The subsections below explain how to fit or remove the battery pack.

1. Remove the panel below the "Battery pack" label.
2. Slide the battery pack into the slot with the connector to the left.
3. Fix the battery pack in position by tightening the screws.
4. Fit the panel on to the battery pack.
5. To remove the battery pack, proceed in reverse order.

Fig. 8-4 Fitting and removing the battery pack

8.1.4.2 Charging the batteries

The batteries will be charged as soon as you have connected the instrument to the ac line and have set the ac line switch to the I position and have activated STANDBY mode. Charging continues until STANDBY mode is disabled. If the batteries are completely flat, a complete charging cycle takes about 14 hours, after which a very small charging current will flow to compensate for the self-discharging of the batteries.

The yellow LED indicates that charging is in progress.

8.1.4.3 Changing the fuse

If the instrument fails to operate from the batteries although these are fully charged, it is possible that the battery pack fuse may have blown.

Check

1. Undo the battery pack fixing screws.
2. Slide the battery pack out of the slot.
3. Unscrew the fuse holder on the inner face of the battery pack.

4. Remove the fuse and check it for continuity. If the fuse is defective, replace it with a new one, type T 4A.
5. Screw the fuse holder back into position.
6. Re-fit the battery pack as indicated in section 8.1.4 on page 8-4.
7. Switch the instrument on.
8. If the instrument still does not work, please contact your nearest Wandel \& Goltermann service center for assistance.

8.1.4.4 Protecting the environment

The battery pack contains NiCd batteries. If the battery pack is no longer required because of being exchanged or scrapped, do not dispose of the batteries in normal household refuse as they contain toxic heavy metals. You can return them to our service centers or dispose of them according to the regulations governing such items in your local area.

8.1.4.5 Using the BAZ-2203 Battery Pack

Caution: For your own safety and to ensure correct operation of the instrument, please observe the following instructions.

- Handle the BAZ-2203 Battery Pack with care.
- Never short-circuit the contacts of the BAZ-2203 Battery Pack, e.g. by touching them with a metal object, as this may cause the Battery Pack to explode or ignite.
- Do not drop, damage, dismantle or expose the BAZ-2203 to temperatures outside the permitted ranges.
- Only charge the BAZ-2203 as described in this section.
- Do not store the BAZ-2203, either alone or when built-in to the instrument, for more than one or two days at the sort of high temperatures which may occur in a car.
- Do not leave a BAZ-2203 in the instrument for more than a week in the discharged state without connecting the instrument to the ac power suply.
- Do not store the BAZ-2203 for more than six months without occasionally recharging it.

8.1.5 Optional bandwidth

All versions of the instrument can be equipped with an additional bandwidth. This can be loaded from the Memory Card.

- Insert the Memory-Card with the additional bandwidth into the card slot.
- Press [Blue key] to call up the subsidiary functions.
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION function.
- Press INSTRUMENT [F L2] to open the instrument configuration menu.
- Press INSTALL FILTER [F R4] to access the stored bandwidth.
- Select the bandwidth using the rotary control or the arrow keys.
- Press INSTALL [F L3] to store the selected bandwidth in the instrument..

Fig. 8-5 Installing the optional bandwidth in the instrument

8.1.6 Software upgrade

A software upgrade can become necessary when:

- The instrument hardware is upgraded, or
- Extended software functions are released.

8.1.6.1 Exchanging/Loading the instrument software

The instrument software is stored in flash EPROMs. With these devices, the content can be altered after they are installed. During each loading operation, all memory cells in the flash EPROMs are first set to one and then to zero. After each step, the content is read to check whether the device or board is okay. Then, the new software is loaded via the selected interface and the flash EPROMs reprogrammed.
The new software can be loaded:

- From the MEMORY CARD (see page 8-9), or
- Via the serial interface of a PC (see page 8-10).

The interface is selected in the SW DOWNLOAD menu:

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION secondary function.
- Press SOFTWARE [F R2] to call up the software menu.
- Press SW DOWNLOAD [F L2] to call up the interface selection menu.
- Press LOAD FROM SERIAL LINK [F L2] to load the software via the serial interface, or
- Press LOAD FROM MEMCARD [F L3] to load the software from the currently inserted MEMORY CARD.

Fig. 8-6 Selecting the interface for loading software

After selecting the interface, you are prompted to acknowledge your choice and start transmission, or interrupt the operation.

- Press OK [F L4] to confirm your choice and begin transmission, or
- Press CANCEL [F R4] to interrupt the operation.

Fig. 8-7 Confirming the download procedure

Loading the software from the MEMORY CARD

- Insert the MEMORY CARD containing the software
- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION secondary function.
- Press SOFTWARE [F R2] to call up the software menu.
- Press SW DOWNLOAD [F L2] to call up the interface selection menu.
- Press LOAD FROM MEMCARD [F L3] to load the software from the currently inserted MEMORY CARD.
- Press OK [F L4] to confirm your choice and begin transmission.

As a confirmation, the instrument displays the LOAD MENU with the selected interface. The inserted MEMORY CARD is first checked for a file with the valid instrument software.

Fig. 8-8 Checking for valid software on the Memory Card
The file name means:
2203
Instrument type, BN for the SPM-/PSM-37-139 family
9312
Component no. for the flash EPROMs
978
The software status (a serial count is used during the search procedure; the instrument starts with the number 99x and counts down). This ensures that the latest software version is always found on the inserted MEMORY CARD.
Various messages and warnings are displayed (e.g. the MEMORY CARD cannot be read, does not contain valid software, is faulty or was changed).

Caution: The file name is not compared with the software status in the instrument. The newest software version found on the inserted MEMORY CARD is loaded into the instrument.
If a file with valid instrument software is found, it is loaded. The loading procedure is indicated along with the file name.

Fig. 8-9 Starting the download operation for new software

The first step in the loading procedure involves erasing the content of the flash EPROMs.

Fig. 8-10 Erasing the flash EPROM

Once the content is successfully erased, loading of the new software and programming of the flash EPROMs can begin. The programming status and the quantity of data already transferred are displayed both numerically and in a bargraph.

Fig. 8-11 Status display during the download operation

Once the programming is completed ("Programming done"), the instrument is reinitialized.

Loading the software via the serial interface

Necessary equipment

The software is loaded from a PC via the V.24/RS-232 serial interface. This interface can be found on the back panel of the instrument (9-pin subminiature D connector [50]).
The following are required to load the instrument software:

- IBM-compatible PC with V.24/RS-232 interface (COM1 or COM2), allowing a transmission rate of 115200 baud.
- Diskette with the loading/instrument software.
- RS 232 adapter cable for hardware handshake.

Connect the serial interfaces:

- Connect the COM1 or COM2 port on the PC to the serial interface of the instrument via adapter cable. The figure below shows other possible connections.
Like a PC, the instrument is a data terminal equipment (DTE).
A zero modem is thus required. Connect the following pins:

Connection for RTS/CTS hardware-handshake (from 9-pin to 25pin submin-D-connector)

Fig. 8-12 Possible serial interface connections between the instrument and PC

Fig. 8-13 Possible serial interface connections between the instrument and PC (continued)

Prepare the instrument

- Press [Blue key] to call up the secondary functions.
- Press [TEST \& CONF] to call up the TEST \& CONFIGURATION secondary function.
- Press SOFTWARE [F R2] to call up the software menu.
- Press SW DOWNLOAD [F L2] to call up the interface selection menu.
- Press LOAD FROM SERIAL LINK [F L2] to load the software via the serial interface.

The instrument starts the loading program and indicates that it is ready for data transmission and waiting to establish a connection with the PC.

Fig. 8-14 Waiting for the connection to the PC

Start the PC loading program

There is a README.TXT file on the diskette containing the loading/instrument software. This file indicates how to operate version 2.xx of the loading program.

- Insert the diskette into the PC (e.g. in drive A)
- If COM1 is the valid interface, start the loading program by typing:

A: \LOADCOM1

- Acknowledge your entry by pressing the Enter key. The program will respond with "FIRMWARE LOADER" and display the transmission parameters of the serial interface, followed by the name of the file which contains the instrument software.
- Press the Enter key to begin data transmission from the PC. If the SPM-39 is ready to receive ("Waiting for connection"), the loading procedure will begin.

Fig. 8-15 Starting the download operation for new software

An automatic routine will now test the serial connection between the PC and instrument. The serial interface of the instrument will be automatically configured (e.g. handshake, transmission protocol, timeout).

If the test is successful, the flash EPROMs will now be erased.

Fig. 8-16 Erasing the flash EPROMs

Once the EPROMs are erased, loading of the new software and programming of the flash EPROMs can begin. The programming status and the quantity of data already transferred are displayed both numerically and in a bargraph.

Fig. 8-17 Download operation status display

Once the programming is completed ("Programming done"), the instrument is reinitialized
Note: You can speed up the loading procedure via the RS232 interface by setting up a RAM disk on your PC (see your DOS handbook). Transfer the files from the diskette to the RAM disk and start the firmware loader there.

Interrupting the loading procedure

If you need to interrupt the loading procedure during the readiness phase ("Waiting for data"), press the "ESC" key.
If the loading procedure is interrupted by an external event such as a power failure or interruption of the serial connection ("Loading halted"), the SPM-39 will be non-functional when powered up since the flash EPROMs were partially erased.
The same is true if the flash EPROMs cannot be properly erased or the serial connection is disrupted or interrupted during the programming procedure ("Programming halted").
The instrument's power-on test recognizes this state (EPROM FAILED) and branches automatically to the loading routine. The instrument first attempts to load from the MEMORY CARD. If no card is present or the wrong card is present, the instrument waits for data on the serial interface.

Messages and error messages while loading the software

Load from device: V. 24

In the load menu, loading of the software via the serial interface was selected.

Load from device: MEMORY_CARD

In the load menu, loading of the software from the MEMORY CARD was selected.

Search software : 2203-9312.xxx

A search is made for a valid instrument software version on the MEMORY CARD. While searching, the instrument counts down from ...9312.99x to ...9312.00x in order to find the latest version (with the highest number).

Load software : 2203-9312.xxx
The instrument found a valid software version and is loading it into the flash EPROMs.

x kByte loaded

The x shows how much data was already loaded into the flash EPROMs. This is also indicated graphically in the box below the message.

Programming status OKAY

Loading of the instrument software into the flash EPROMs is proceeding normally.

Programming failed

An error occurred while loading the instrument software into the flash EPROMs.

Unknown record

The loading procedure was started but no valid data format was present (e.g. the MEMORY CARD was removed while the flash EPROMs were being erased).

Checksum error in record

The checksum for a data packet was in error. The firmware loader retransmits the last record.

Bad address in 72-record

An incorrect address was transmitted in a data packet. The firmware loader retransmits the last record.

Flash not deleted

The flash EPROMs were not properly erased prior to loading of the instrument software.

Programming done

Loading and programming of the flash EPROMs were successfully completed.

BREAK DETECTED

Programming halted
Loading via the serial interface was interrupted (e.g. by a BREAK signal from the transmitter or an interruption in the connection cable).

FRAMING ERROR DETECTED

Programming halted

An error in the transmission frame was detected while loading via the serial interface.

DATA LOST

Programming halted
Data were lost while loading via the serial interface.

PARITY ERROR DETECTED

Programming halted

A parity bit error occurred while loading via the serial interface.

NO MEMORY-CARD FILESYSTEM DETECTED

The file system on the MEMORY CARD is faulty (e.g. unformatted).

MEMORY-CARD CHANGED ERROR

The MEMORY CARD was changed during the loading procedure.

MEMORY-CARD FILESYSTEM EOF-ERROR

An End of File (EOF) was not detected on the MEMORY CARD.

MEMORY-CARD FILESYSTEM ERROR

The directory on the MEMORY CARD is faulty; the instrument cannot access a file.

Waiting for Data

The start handshake was successfully completed and the instrument is waiting for data from the serial interface (e.g. while data are being read from the diskette).

Waiting for connection...

The instrument is waiting for a connection with the serial interface of the PC. The PC has not yet started the start handshake.

Bad start command (-->power off/on) Loading halted

The start handshake was faulty, the flash EPROMs are not being erased and the loading is being halted. Turn the instrument off and on again and restart the function in the menu.

Deleting flash memory...please wait

The flash EPROMs are erased before the new program is loaded. As a precaution to ensure that the device is in proper working order, all bits are set to zero and then to one.

Flash erase fault (-->power off/on)

The flash EPROMs could not be completely erased. The loading procedure is being halted and must be restarted by turning the power off and on again. Since the flash EPROMs were partially erased, the self-test will detect this faulty state and branch automatically to the loading menu.

Flash erase zero fault (-->power off/on)

The flash EPROMs cannot be written to zero. The loading procedure is being halted and must be restarted by turning the power off and on again. Since the flash EPROMs were partially erased, the self-test will detect this faulty state and branch automatically to the loading menu

Waiting for memory-card...

In the load menu, loading of the software from the MEMORY CARD was selected, but no MEMORY CARD is present.

Waiting for memory-card changed...

Valid instrument software is not present on the inserted MEMORY CARD. Please insert the proper card.

8.2 Servicing

8.2.1 Initialization

It is possible that the semiconductor memory may be disconnected from the built-in Lithium battery during repairs. This may mean that it contains undefined values. It can be initialized or reset to a defined state as follows:

- Switch the instrument off using the ((symbol)) key
- Press the [CLR] key and at the same time switch on again using the ((symbol)) key
- Keep holding down the [CLR] key until the switch-on test routine has ended (indicated by a beep).
This results in the default settings being made. Any stored setups are not deleted.

Lockup

The above procedure should also be used if the instrument locks up as a result of external interference pulses and cannot be restarted by switching it off and then on again. Any stored setups are not deleted.

8.3 Storage and transport

Retain the original packing for possible future use, e.g. when returning the instrument to a W\&G service center for repairs. It will ensure that the instrument is correctly protected against damage should it become necessary to transport the instrument at some time.

Packing

If possible, use the original packing if you wish to transport the instrument.
If the original packing is no longer available, observe the following instructions:

Storage or transport under damp conditions

It is a good idea to re-use the silica-gel drying agent provided in the original packing

- if the transport period is to be very long, or
- if the instrument is to be subjected to damp conditions during a long period of storage.

The sachets of drying agent should be placed with the instrument inside the plastic bag provided in the original packing. The drying agent is blue when dehydrated and pink when saturated.

Do not use saturated drying agent as this may increase the humidity and cause damage.
Seal the bag tightly using good quality adhesive tape.

Stable container

Use a box made from double-layer corrugated cardboard with a wall thickness of at least 4 mm . The box should be dimensioned such that space for at least 70 mm of padding on all sides of the instrument is available. Rigid plastic foam or corrugated cardboard is suitable as padding.
The padding must ensure that the instrument cannot shift position in the box and as large an area as possible of the instrument should be padded. Any free space in the box may be filled with polystyrene chips.

Polystyrene chips alone are not suitable for use as padding.

Use fiber-reinforced, water-resistant self-adhesive tape at least 70 mm wide to seal the box along the butt edges.

Checklist

Make up a checklist of all the parts contained in the box and store this along with the box.

9 Specifications

The following specifications are valid for the operating ranges of the influence quantity stated under "General Specifications" (see section 9.9.7, page 9-19), after a warm-up period of about 15 minutes, unless otherwise stated. All values quoted for measurement error and influence effects are limit values.
The influence of external electromagnetic interference is not included in the following specifications.
All specifications marked with an asterisk * are traceable to international standards.

9.1 Frequency

Frequency range

Instrument version	SPM/PSM-37/-137	SPM/PSM-38/-138	SPM/PSM-39/-139
Coaxial input			
Frequency range $f_{\text {min }}$ to $f_{\text {max }}$	50 Hz to 8 MHz	50 Hz to 18 MHz	50 Hz to 32 MHz
Balanced input			
Frequency range I $f_{\text {min }}$ to $f_{\text {max }}$	10 kHz to 8 MHz	10 kHz to 14 MHz	
Frequency range II $f_{\text {min }}$ to $f_{\text {max }}$	50 Hz to 620 kHz		

Frequency setting
Entry using
Keyboard, resolution . 1 Hz
Rotary control, resolution . $100 \mathrm{~Hz} / 1 \mathrm{~Hz}$, coarse/fine setting
STEP keys, step width . 1 Hz to $\mathrm{f}_{\max }$ (see above)
Recall of fixed frequencies up to 100 stored in device memory 100 more on RAM card

Frequency display
AFC off . 8 digits, resolution 1 Hz
AFC on . 9 digits, resolution 0.1 Hz

* Tuning frequency error limits

including aging for 1 year

9.2 Automatic frequency scans

Search scan

Automatic search for levels above a presettable level threshold. The search takes place between the frequencies f_{1} and f_{2} within the frequency range of the instrument (see section 9.1 on page 9-1).
If the level threshold is exceeded, the values of level and frequency are stored (max. 100 pairs of values).

End-to-end measurement using two instruments (AUTOSTEP)

Operation switchable between MASTER and SLAVE functions
ㄱ MASTER (PSM-37/-38/-39/-137/-138/-139)
Frequency scan is timer-controlled
\square SLAVE
Frequency scan starts when the level is below a presettable threshold value. The next steps can be controlled by subsequent occurrence of levels below the threshold or by timer

Time / step
.1 s or 3 s
Frequency scan
As frequency steps
between START and STOP frequencies, frequency step width(see section 9.1 on page 9-1)
or a sequence of
fixed frequencies from first fixed frequency to last fixed frequency Loop back measurements (generator and receiver in the same instrument) are also possible.

Automatic frequency control (AFC) ${ }^{1}$

Holding range
entire frequency range (see section 9.1 on page 9-1)
Capture range. approximately equal to selection filter 30 dB bandwidth (see section 9.3.7, page 9-9)

9.3 Voltage and power levels

9.3.1 Measurands

Absolute level

Voltage level in . dB referred to 0.7746 V
Voltage level in . dB $\mu \mathrm{V}$ referred to $1 \mu \mathrm{~V}$
Power level in .dBm referred to 1 mW
Noise level in . dBmp (dBrnC for US version)

Voltage

Voltage level in
$\mu \mathrm{V}, \mathrm{mV}$

[^5]
Level difference [dB]

The difference in dB between the absolute level and a stored reference level
Reference level entry via keyboard, rotary control or absolute level transfer

Level referred to 0 dB

the difference between the absolute level and a stored relative level [dBr]
Displayed as
Referred voltage level in . dB0
Referred power level in . dBm0
Referred power in . pW0
Referred noise level in . dBm0p1
Referred power in . pW0p²
Relative level entry via keyboard, rotary control or absolute level transfer

9.3.2 Display

Digital display

	with averaging	without averaging
Resolution	0.01 dB	0.1 dB

Semi-analog display
Scale segment selection . manual or automatic
Scale length . 100,20 or 2 dB
Resolution . $0.5,0.1$ or 0.01 dB

9.3.3 Measurement range selection

Automatic for most operating modes. Manual selection is in 5 dB steps with drive level monitoring.

9.3.4 Automatic calibration

Normally, calibration is carried out at the set tuning frequency (tracking generator principle). The correction values thus determined are stored. Broadband measurements are calibrated at 10 kHz . The tracking generator is blanked during calibration (LED below [BLANK] key is lit). Automatic calibration can be disabled. When enabled, calibration is made if the temperature of the instrument changes by more than $0.5^{\circ} \mathrm{C}$ or if a certain time has elapsed (approx. 10 min) or if an operating state is set for which no correction values are available. Automatic calibration can be matched to the current measurement task when the instrument is remote-controlled.

[^6]
9.3.5 Display ranges for power and voltage

Absolute levels

Input	Units	Selective	Voice $)$	Broadband
$\mathrm{Z}=50 / 75 \Omega$	dB	-140 to +22	-120 to +20	-60 to +20
	dBm	-130 to +30	-110 to +30	-50 to +30
$\mathrm{Z}=124 / 150 \Omega$	dB	-130 to +22	-110 to +20	-50 to +20
	dBm	-125 to +25	-105 to +25	-45 to +25
$\mathrm{Z}=600 \Omega$	dB	-130 to +22	-110 to +20	-50 to +20
	dBm	-130 to +22	-110 to +20	-50 to +20

The lower display range limit is approximately 5 dB above the intrinsic noise floor (selective;
Measurement bandwidth $=25 \mathrm{~Hz}$)

Level difference

Difference between absolute and reference level
Reference level range . -140 to +20 dB
Referred level
Difference between absolute and relative levels
Relative level range . -120 to +30 dBr
Voltage
Measurement range . 80 nV to 7.7 V

9.3.6 Level display error limits

The values quoted are valid when:

- The input is fed from a source with internal impedance Z_{0} and terminated with the receiver input impedance Z_{0},
- The signal is a sinewave
- Automatic calibration is on
- AFC is on
- AVRG (noise averaging) is on.

The influence of individual discrete interference (see section 9.6.2, page 9-13) and the influence of external electromagnetic interference quantities is not taken into account.

9.3.6.1 Selective measurement

The frequencies specified apply to the SPM-39/-139 and PSM-139. The upper limits for the other instruments are as given in the table (see section 9.1 on page $9-1$). The real r.m.s. value is measured
The overall error limits (IEC publication 359) apply within the operating ranges of the influence quantities and within the measurement ranges of the measurands.
The intrinsic error limits (IEC publication 359) apply for the reference values or reference ranges for the influence quantities or measurands.
Unless otherwise stated, all measurement errors apply to measurement frequencies $\geq 2 \mathrm{kHz}$ at a measurement bandwidth of 3.1 kHz and to measurement frequencies $<2 \mathrm{kHz}$ at a measurement bandwidth of 25 Hz .

If the measurement bandwidths 48 kHz and 240 kHz are used (swept bandwidths), the error limits increase by typically 0.25 dB .

Overall error limits

50/75 Ω input

Input level $\mathrm{dB} / \mathrm{dBm}$	Overall error limit in $\mathrm{dB}, \mathrm{Z}=75 \Omega(\mathrm{Z}=50 \Omega)$	
$+20 /+30$	0,4	$0.2(0.25)$
$0 /+10$	(0.45)	
$-80 /-70$		
Frequency range	$50 \mathrm{~Hz} \quad 200 \mathrm{~Hz}$	32 MHz

Balanced input 124Ω, frequency range I (see section 9.1 on page 9-1)

Balanced input 150Ω, frequency range I (see section 9.1 on page 9-1)

Balanced input $150 \Omega / 600 \Omega$, frequency range II (see section 9.1 on page 9-1)

Input level dB/dBm	Overall error limit in dB			
+ 20/+25	1.0	0.35	0.25	0.35
0/+5				
- 70/-65				
Frequency range	$50 \mathrm{~Hz} \quad 200 \mathrm{~Hz} \quad 2 \mathrm{kHz}$			100 kHz 620 kHz

The following influence effects are included in the overall error limits:

* Intrinsic error

of level display versus frequency for an input level of $0 \mathrm{~dB} / \mathrm{dBm}$, at $23^{\circ} \pm 3^{\circ} \mathrm{C}$

Frequency range $50 \mathrm{~Hz} \quad 200 \mathrm{~Hz} \quad 2 \mathrm{kHz} \quad 10 \mathrm{kHz} \quad 60 \mathrm{kHz} 100 \mathrm{kHz} 620 \mathrm{kHz} \quad 8 \mathrm{MHz} \quad 14 \mathrm{MHz} 32 \mathrm{MHz}$

1) If 50Ω coaxial input impedance is activated, the intrinsic error increases by 0.05 dB in each case.

Average variation with temperature

in the range 0 to $+50^{\circ} \mathrm{C}$
0.0035 dB/K

Variation with level

Excluding the discrete interference effects indicated in section 9.6.
Coaxial input $\mathbf{5 0 / 7 5} \Omega, \mathbf{f}=\mathbf{2 0 0} \mathbf{~ H z}$ to $\mathbf{f}_{\text {max }}$ (see section 9.1 on page 9-1)

Balanced inputs $\mathbf{1 2 4 / 1 5 0 / 6 0 0} \Omega, \mathbf{f}=\mathbf{2 0 0} \mathbf{~ H z}$ to $\mathbf{f}_{\text {max }}$ (see section 9.1 on page 9-1)

| Input level | -90 dB | -70 dB | 0 dB | $+20 \mathrm{~dB} / \mathrm{dBm}(600 \Omega)$ |
| :--- | ---: | :--- | :--- | :--- | :--- |
| | 0.15 0.1 0.15 | | | | Input level $-85 \mathrm{dBm} \quad-65 \mathrm{dBm} \quad+5 \mathrm{dBm} \quad+25 \mathrm{dBm}(124 / 150 \Omega)$

Measurement error due to intrinsic noise

Additional errors may be caused by the intrinsic noise of the receiver at levels <-100 dB $(-90 \mathrm{dBm})$ coaxial or $<-90 \mathrm{~dB}(-85 \mathrm{dBm})$ balanced. The size of the error depends on the measurement bandwidth.
Automatic broadband attenuator setting (RF GAIN) must be switched to manual (AUTO RANGING OFF) in order to check the ratio of the measurement signal to the intrinsic noise level (signal-to-noise ratio).

The additional measurement error due to intrinsic noise can be read off from the following graph.

Measurement display "minus" noise floor in dB

9.3.6.2 LF range measurements

Frequency range
Overall error limits
50/75 Ω coaxial input

Input level dB/dBm	Overall error limit in dB	
$+20 /+30$		
$0 /+10$	0.5	0.35
$-80 /-70$		
Frequency range	50 Hz	200 Hz

Balanced input $150 \Omega / 600 \Omega$, frequency range II (see section 9.1 on page $9-1$)

Input level dB/dBm	Overall error limit in dB	
$+20 /+30$	1.2	0.45
$0 /+5$		
$-70 /-65$		
Frequency range	50 Hz	200 Hz

* Intrinsic error

of level display versus frequency for $0 \mathrm{dBm} / \mathrm{dB}$ input level at an ambient temperature of $23^{\circ} \pm 3^{\circ} \mathrm{C}$

Input		Erro	in dB	
Coaxial 75		0.4	0.2	0.3
Balanced	$\begin{aligned} & 150 \Omega \\ & 600 \Omega \end{aligned}$	1.0	0.25	0.35
Frequency range 50		50 Hz	200 Hz	4 kHz

Average variation with temperature

In the range 0 to $+50^{\circ} \mathrm{C}$
$0.0035 \mathrm{~dB} / \mathrm{K}$

Variation with level

Coaxial input, 50/75 Ω

Input level	-90 dB	-80 dB	0 dB	+ 20 dB
	0.15	0.1	0.15	
Input level	-80 dBm	- 70 dBm	10 dBm	30 dBm

Balanced input 150/600 , frequency range II (see section 9.1 on page 9-1)

Input level	$-80 \mathrm{~dB} \quad-70 \mathrm{~dB}$		0 dB	$+20 \mathrm{~dB} / \mathrm{dBm}(600 \Omega)$
	0.15	0.1	0.15	
Input level	- 75 dBm	-65 dBm	+ 5 dBm	+ $25 \mathrm{dBm}(150 \Omega)$

Measurement error due to intrinsic noise (see graph on page 9-7)

Additional errors may be caused by the intrinsic noise of the receiver at levels $<-90 \mathrm{~dB}$ $(-80 \mathrm{dBm})$ coaxial or $<-80 \mathrm{~dB}(-75 \mathrm{dBm})$ balanced. The size of the error depends on the bandwidth.

To check the intrinsic signal to noise ratio, disconnect the test signal from the input and do not activate AUTO RANGING.

9.3.6.3 Broadband measurement

Quasi r.m.s. rectification; the values apply to sinusoidal signals.

Overall error limits

Including variation with temperature, level and frequency response errors.

Input			ror li	in d			
Coaxial 50		-	0.6				
Balanced	$\begin{aligned} & 124 \Omega \\ & 150 \Omega \end{aligned}$	-		1.0	0.7		-
Balanced	$\begin{aligned} & 150 \Omega \\ & 600 \Omega \end{aligned}$	-	0.7			-	
Frequency range 50		50 H	200 Hz	z 10 kHz 60 kHz		Hz	Hz

* Intrinsic error

of level display versus frequency for $0 \mathrm{dBm} / \mathrm{dB}$ input level at an ambient temperature of $23^{\circ} \pm 3^{\circ} \mathrm{C}$

9.3.7 Selectivity and filters

Measurement bandwidth	Effective noise bandwidth $\pm 15 \%$	Spacing $\Delta \mathrm{f}$ from filter center frequency for an attenuation of	
		$>50 \mathrm{~dB}$	$>60 \mathrm{~dB}$
25 Hz	$26 \mathrm{~Hz} \pm 5 \%$	80 Hz	200 Hz
100 Hz	$104 \mathrm{~Hz} \pm 5 \%$	350 Hz	1 kHz
1.74 kHz	$1.74 \mathrm{kHz} \pm 15 \%$		2 kHz
1.95 kHz	$1.95 \mathrm{kHz} \pm 15 \%$	-	
3.1 kHz	$3.1 \mathrm{kHz} \pm 15 \%$		
48 kHz	48 kHz	28 kHz	124 kHz
240 kHz	240 kHz		

[^7]
Filters

Psophometer . frequency response to CCITT O. 41
C message . frequency response to CCITT O. 41
Notch, 804 to 850 Hz frequency response to CCITT O. 132
Notch, 1004 to 1020 Hz. frequency response to CCITT O. 132
AF band limiting

Frequency	Attenuation in dB
$\leq 10 \mathrm{kHz}$	≤ 0.2
$\geq 22 \mathrm{kHz}$	≥ 60 (typ.)

9.4 Other measurement modes

9.4.1 Phase jitter measurement

Measurement in voice channel to CCITT 0.91

Frequency setting . not required
Test tone frequency . $1020 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$
Test tone level range . - 60 dBm to +10 dBm
Test channel bandwidth. 400 Hz to 1800 Hz
Weighting filters $\quad 4 \mathrm{~Hz}$ to 300 Hz
4 Hz to 20 Hz
20 Hz to 300 Hz
Display . digital, resolution $0.1^{\circ} \mathrm{pp}$

Other similar measurements

The above measurement can also be performed on the demodulated signal or on any selectively measured signal. The only difference is the additional band limiting introduced by the 3.1 kHz channel filter (bandpass).

Measurement in the demodulated voice channel (CF systems)
Frequency set to .channel carrier
Frequency range at input 3 kHz to $\mathrm{f}_{\max }$ (see section 9.1 on page 9-1)
Test tone frequency . $1020 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$
Measurement of any signal
Frequency setting . tuned to signal
Carrier frequency at input 3 kHz to $f_{\max }$ (see section 9.1 on page 9-1)
Measurement range
Measurement range . 0.2 to $30^{\circ} \mathrm{pp}$

Overall error limits

The overall error limits (IEC publication 359) apply within the operating ranges of the influence quantities and within the measurement ranges of the measurands.
Overall error limits . $\pm 5 \% \pm 0.1^{\circ} \mathrm{pp}$
Additional intrinsic jitter . $\leq 0.2^{\circ} \mathrm{pp}$
when measuring IF or demodulator signals.

9.4.2 Impulsive noise measurement

Measurement in voice channel to CCITT 0.71

\qquad
Threshold settable in steps of . 1 dB
Threshold deviation . $\pm 0.5 \mathrm{~dB}$
Difference between Ò thresholds . $\leq 0.5 \mathrm{~dB}$
Dead time . $125 \mathrm{~ms} \pm 10 \%$
($143 \mathrm{~ms} \pm 10 \%$ for US version)
Additional NOTCH filter,
50 dB suppression between . 800 Hz and 855 Hz or

Additional bandwidths
Filter 1 (-3 dB) . 600 Hz to 3000 Hz
Filter 2 (-3 dB) . 300 Hz to 500 Hz
Counter, display . capacity up to 9999 events
Timer control
Gate time . 1 min to 99 h 59 min
Measurement start by pressing [START] or timer-controlled

Other similar measurements

The above measurement can also be performed on the demodulated signal. The only difference is the additional band limiting introduced by the 3.1 kHz channel filter (bandpass).

Measurement in the demodulated voice channel
Frequency set to . channel carrier
Frequency range at input 3 kHz to $\mathrm{f}_{\max }$ (see section 9.1 on page 9-1)

9.4.3 Interruption measurement

Measurement in voice channel to CCITT 0.61

Test tone frequency
900 Hz to 2.1 kHz
Test tone level range -50 dBm to +10 dBm
Trigger thresholds referred to test tone -3, -6, -10, -20 dB
Threshold deviation . $\pm 1 \mathrm{~dB}$
Dead time . $3 \mathrm{~ms} \pm 1 \mathrm{~ms}$ or
$125 \mathrm{~ms} \pm 10 \%$
($143 \mathrm{~ms} \pm 10 \%$ in US version)
Counter, display . capacity up to 9999 events

Timer control
Gate time
1 min to 99 h 59 min
Measurement start by pressing [START] or timer-controlled
TTL signal (see section 9.7.2, page 9-15)
logical 0: signal above level threshold
logical 1: signal below level threshold
Other similar measurements
The above measurement can also be performed on the demodulated signal. The only difference is the additional band limiting introduced by the 3.1 kHz channel filter (bandpass).

Measurement in the demodulated voice channel

Frequency set to . channel carrier
Frequency range at input 3 kHz to $f_{\max }$ (see section 9.1 on page 9-1)
Test tone frequency . 900 Hz to 2.1 kHz

9.4.4 Measurement of noise power ratio (NPR)

Measurement sequence

The broadband power at the input and the power in a 1.74 kHz band symmetrical to the tuning frequency are measured. The NPR value is calculated from these two values, taking the number of channels entered (= bandwidth of broadband power level measured) into account.

NPR measurement specifications

Measurement range . 0 to 70 dB
Number of channels . 300 to 3600
Display . digital, resolution 0.1dB
Total input level (broadband level) 50/75 Ω input 0 dBm to -22 dBm
Overall measurement error
The limits of overall measurement error (IEC Publ. 359) are valid within the operating ranges of the influence quantities and within the specified ranges of the measurement quantities.
NPR value $\leq 50 \mathrm{~dB}$. $\pm 1.0 \mathrm{~dB}$ Intrinsic NPR value(see under intrinsic noise power ratio (NPR on page 9-13)

9.5 Demodulator

Single sideband demodulation

Switchable
.upper or lower sideband
Built-in loudspeaker and headphone socket
Output volume . variable

9.6 Dynamic range (intrinsic noise signals)

9.6.1 Noise dependent on the input signal

Non-linear distortions

> For total input level $\leq 0 \mathrm{~dB}$ and manual RF gain (broadband attenuator) setting (AUTORANGING OFF) according to the relationship: $$
\text { RF gain }[\mathrm{dB}] \leq-40 \mathrm{~dB} \text { total input level [dB] }
$$

The above relationship is normally fulfilled for automatic setting of the broadband attenuator (AUTORANGING ON).
If high distortion and intermodulation attenuation ($<60 \mathrm{~dB}$) are being measured, automatic optimization of the drive level (broadband/RF attenuator exchange for optimum noise/ intermodulation ratio) may result in settings of the broadband attenuator which do not fulfil the above requirement. It is therefore a good idea to use manual setting (see example above) for critical measurements.
2nd and 3rd order harmonic distortion attenuation at fundamental frequencies of
\qquad
$\mathrm{f} \geq 300 \mathrm{~Hz}$ (bandwidth 25 Hz typically 70 dB
3rd order intermodulation noise ratio when loaded with two signals spaced by $\Delta f=10 \mathrm{kHz}$ at frequencies of
\qquad
$\geq 1 \mathrm{MHz}$
$\geq 90 \mathrm{~dB}$

Image frequency and IF attenuation

Intermediate frequencies 59.3 MHz / 10.7 MHz / 1.85 kHz
Image frequency attenuation . $\geq 70 \mathrm{~dB}$
IF attenuation . ≥ 70 dB
attenuation of non-harmonic interference signals $\geq 70 \mathrm{~dB}$

Intrinsic noise power ratio (NPR)

when loaded with white noise in the frequency range 0.3 to 12 MHz , measured in any notch in the center band, $\mathrm{B}_{\text {eff }} \geq 20 \mathrm{kHz}$, bandwidth 1.74 kHz and broadband level 0 to -22 dBm
When using the NPR program (software option)
for 300 channels . 22 dB (typically 67 dB)
for 2700 channels . 20 dB (typically 65 dB)
For selective level measurement (LEVEL) . typically 55 dB

9.6.2 Noise independent of the input signal

Intrinsic noise

> Selective level measurement, bandwidth 25 Hz , input terminated with Z_{0} and total signal level $\geq-60 \mathrm{~dB}$ at $\mathrm{f} \geq 10 \mathrm{kHz}$
> 75Ω or 50Ω input . $\leq-140 \mathrm{~dB}$ (typically -145 dB)
> $124 \Omega 150 \Omega$ input . $\leq-130 \mathrm{~dB}$ (typically -135 dB)
> $150 \Omega 600 \Omega$ input . $\leq-130 \mathrm{~dB}$ (typically -135 dB)

Sideband noise ratio

Tuning frequency . $\geq 100 \mathrm{kHz}$
Frequency difference from signal
$\geq 2 \mathrm{kHz}$. typically $103 \mathrm{dBc} \sqrt{\mathrm{Hz}}$
$\geq 20 \mathrm{kHz}$. typically $123 \mathrm{dBc} \sqrt{ } \mathrm{Hz}$

Display of individual discrete interference signals

Inputs terminated with Z_{0}
75Ω or 50Ω input . $\leq-130 \mathrm{~dB}$ (typically -140 dB)
$124 \Omega / 150 \Omega$ input . $\leq-120 \mathrm{~dB}$ (typically -130 dB)
$150 \Omega / 600 \Omega$ input . $\leq-120 \mathrm{~dB}$ (typically -130 dB)

9.7 Connectors

9.7.1 Measurement inputs

Coaxial input

Socket .Versacon 9 universal connector system
Input impedance . $Z=75 \Omega, 50 \Omega$ or high impedance Z approx. $10 \mathrm{k} \Omega \| 40 \mathrm{pF}$
Frequency range $f_{\min }$ to $f_{\max }$ (see section 9.1 on page 9-1)
Return loss at
50 Hz to 2 MHz . $\geq 35 \mathrm{~dB}$ (typically 40 dB)
2 MHz to $\mathrm{f}_{\max }$ (see section 9.1 on page 9-1) . $\geq 30 \mathrm{~dB}$
Insertion loss of high impedance input
$\mathrm{f}=200 \mathrm{~Hz}$ to 1 MHz . $\leq 0.05 \mathrm{~dB}$

Balanced input

Socket . 3-pole CF connector ${ }^{1}$

Frequency range I

(see section 9.1 on page 9-1)
Input impedance
$\mathrm{Z}=124 \Omega, 150 \Omega\left(135 \Omega^{2}\right)$
or high impedance Z approx. $10 \mathrm{k} \Omega$ || $10 \mathrm{mH}|\mid 30 \mathrm{pF}$
Signal balance ratio
60 kHz to 5 MHz
$\geq 40 \mathrm{~dB}$
5 MHz to $\mathrm{f}_{\max }$ (see section 9.1 on page 9-1) typically 30 dB
Return loss at 100 kHz . typically 40 dB
Insertion loss of high impedance input
$\mathrm{f}=60 \mathrm{kHz}$ to 620 kHz
$\leq 0.06 \mathrm{~dB}$

Frequency range II

(see section 9.1 on page 9-1)
Input impedance . Z = $150 \Omega\left(135 \Omega^{2}\right), 600 \Omega$

1	US version:	Frequency range I:	3-pole CF socket;
	Frequency range II:	WECO 310 socket	
	Japanese version:	Frequency ranges I and II:	2-pole I-214B socket with earthing socket
2 US version			

Or high impedance Z approx. $10 \mathrm{k} \Omega||2.5 \mathrm{H}|| 80 \mathrm{pF}$
Signal balance ratio. $\geq 40 \mathrm{~dB}$
Return loss at 10 kHz typically 50 dBInsertion loss of high impedance input$\mathrm{f}=500 \mathrm{~Hz}$ to 300 kHz$\leq 0.06 \mathrm{~dB}$
Permitted input voltage levels for the above inputs
Overload limit when terminated with Z_{0} $\mathrm{V}_{\mathrm{rms}} \leq 10 \mathrm{~V}$
For high impedance input

- Coaxial
Permissible d.c. input voltage $\leq 60 \mathrm{~V}$
The sum of the d.c. input voltage and the peak valueof the superimposed a.c. voltage must not exceed 60 V !
- Balanced
Permissible d.c. input voltage $\leq 100 \mathrm{~V}$
Permissible ringing voltage $\leq 100 \mathrm{~V}$
9.7.2 Other inputs and outputs
Headphone jack (front panel)
Connector. 6.3 mm jack socket
Output impedance 600Ω
Output signal for selective level measurement IF signal
Demodulator operation and tuning to carrier leak 0.3 to 4 kHz
Auxiliary inputs and outputs (back panel)
Connector 9-way submin. D type
Connections

1. Y output (pin 3)
DC output voltage proportional to analog scale 0 to +5 V
2. Alarm output (pins $1 / 2 / 6$)
Settable using the SCALE menu;Relay contacts1 changeover, max. $42 \mathrm{~V} / 2 \mathrm{~A}$
$\operatorname{pin} 1=\mathrm{NO}$, pin $2=\mathrm{NC}$, pin $6=\mathrm{C} / \mathrm{O}$
3. Interrupt measurement event output (pin 4)
TTL signal to CCITT Rec. O.61:Logical "0": signal above level threshold
Logical "1": interruption, signal below level threshold
Ground connections: pins 7 and 8
Input and output for external timebase (back panel)
Connector BNC
When connected as output:
Frequency 10 MHz
Output impedance 600Ω
Voltage $2.5 \mathrm{~V}_{\mathrm{pp}}$ (squarewave) into 600Ω

When connected as input:
Frequencies . $60 \mathrm{kHz}, 300 \mathrm{kHz}, 2048 \mathrm{kHz}$,

$4200 \mathrm{kHz}, 1 \mathrm{MHz}$, $2 \mathrm{MHz}, 5 \mathrm{MHz}$ or 10 MHz
Input impedance . 600Ω
Voltage . 100 mV to 10 V pp
Pulling range . $\pm 2 \mathrm{ppm}$

A check is made to determine if the instrument synchronizes to the external standard frequency.
Power supply for TK-11 test probe
Located on front panel . approx. -11 V

9.8 Tracking generator ${ }^{1}$

Setting ${ }^{2}$

Transmit level
keyboard, rotary control

Resolution
0.1 dB

Display

Absolute level . in dB, dBm, dB $\mu \mathrm{V}$
Voltage . in $\mu \mathrm{V}, \mathrm{mV}$

Operating range

Coaxial output, frequency range (see section 9.1 on page 9-1)

-70 dB to 0 dB
Balanced output, frequency range I (see section 9.1 on page $9-1$)

Balanced output, frequency range II (see section 9.1 on page 9-1))

$\begin{aligned} & \hline 150 \Omega \\ & (135 \Omega \text { US-version) } \end{aligned}$	$\begin{aligned} & -60 \mathrm{dBm} \text { to }-3 \mathrm{dBm} \\ & -69 \mathrm{~dB} \text { to }-9 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { to }+3 \mathrm{dBm} \\ & \text { to }-3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { to }+9 \mathrm{dBm} \\ & \text { to }+3 \mathrm{~dB} \end{aligned}$
600Ω	$\begin{aligned} & -69 \mathrm{dBm} \text { to }-9 \mathrm{dBm} \\ & -69 \mathrm{~dB} \text { to }-9 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { to }-3 \mathrm{dBm} \\ & \text { to }-3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { to }+3 \mathrm{dBm} \\ & \text { to }+3 \mathrm{~dB} \end{aligned}$
$\sim 5 \Omega\left(\mathrm{R}_{\mathrm{L}} \geq 135 \Omega\right)$	-60 dB to -3 dB	to +3 dB	to +9 dB
Frequency range	50 Hz	100 Hz	200 Hz

Error limits

The values quoted apply for generator output impedance = receiver input impedance and automatic level calibration. All table values are quoted in $\pm \mathrm{dB}$.
The frequency values refer to the SPM-39, SPM-139, PSM-39 and PSM-139. The upper limits (see section 9.1 on page 9-1) apply for the other instruments.
The overall error limits (IEC publication 359) apply within the operating ranges of the influence quantities and within the measurement ranges of the measurands.
The intrinsic error limits (IEC publication 359) apply for the reference values or reference ranges for the influence quantities or measurands.

[^8]
Overall error limit of output level

* Intrinsic output level error (included in overall error)
at $0 \mathrm{~dB} / \mathrm{dBm}, \mathrm{f}=10 \mathrm{kHz}$ (100 kHz for frequency range I , (see section 9.1 on page $9-1$), $23^{\circ} \pm 3^{\circ} \mathrm{C}$
Coaxial output
$\pm 0.1 \mathrm{~dB}$
Balanced output.
$\pm 0.2 \mathrm{~dB}$
Dynamic range (intrinsic noise signals) at $R_{\text {in }}=R_{\text {out }}=Z_{0}$
Intrinsic 2nd and 3rd order harmonic distortion ratio
$\geq 40 \mathrm{~dB}$
Ratio of discrete, non-harmonic interference signals
Ratio to wanted signal for levels $\geq-50 \mathrm{~dB}$. $\geq 60 \mathrm{~dB}$

Signal to noise ratio

Referred to 1 Hz bandwidth at an output level of $0 \mathrm{~dB} / \mathrm{dBm}$, output frequency $\geq 10 \mathrm{kHz}$ at $\geq 20 \mathrm{kHz}$ from wanted signal $\geq 120 \mathrm{~dB}$

Blanking

By pressing [BLANK] or, if required, automatically whenever the frequency is changed (AUTO BLANK).
Blanking attenuation for levels $\geq-40 \mathrm{~dB}$. $\geq-60 \mathrm{~dB}$
Blanking attenuation on frequency change for levels $\geq-60 \mathrm{~dB}$. $\geq-40 \mathrm{~dB}$

Coaxial output

Socket. Versacon 9 universal connector system
Permissible reverse voltage . 0 V
Frequency range $f_{\min }$ to $f_{\max }$ (see section 9.1 on page 9-1)
Output impedance, switchable . 75Ω or 50Ω
Return loss at
50 Hz to 2 MHz . $\geq 46 \mathrm{~dB}$
2 MHz to $\mathrm{f}_{\max }($ see section 9.1 on page 9-1) . $\geq 26 \mathrm{~dB}$

Balanced output

Socket.
3-pole CF connector ${ }^{1}$
Permissible reverse voltage . 0 V
Frequency range I $f_{\min }$ to $f_{\max }$ (see section 9.1 on page 9-1)
Output impedance, switchable 124Ω or $150 \Omega\left(135 \Omega^{1}\right)$
Signal balance ratio. $\geq 40 \mathrm{~dB}$
Return loss at 100 kHz $\geq 40 \mathrm{~dB}$
Frequency range II $f_{\text {min }}$ to $f_{\text {max }}$ (see section 9.1 on page 9-1)
Input impedance $150 \Omega\left(135 \Omega^{2}\right), 600 \Omega$ or $\approx 5 \Omega$
Signal balance ratio $\geq 40 \mathrm{~dB}$
Return loss at 10 kHz $\geq 40 \mathrm{~dB}$The return loss is maintained approximately when the instrument is switched off.
Auxiliary inputs and outputs (back panel)
Connector. 9-way submin. D type
External level setting (pin 5, ground pin 9) $\pm 1 \mathrm{~dB}$using $\pm 500 \mathrm{mV}$ auxiliary voltage, variable
9.9 Sweep measurements
The result is shown on the built-in display as a graph.
X axis, frequency
Quasi-continuous frequency sweep within the set frequency limits:
FSTART / FSTOP or FCENT / FSPAN
Frequency step size approx. FSPAN * $35 \mu \mathrm{~s} / \mathrm{SWT}$
Display resolution $S W T=1 \mathrm{~s}$ 51 pixels
$S W T \geq 3$ s 101 pixels
Y axis, amplitude
SCALE, selectable $20 \mathrm{~dB} / \mathrm{div}, 10 \mathrm{~dB} / \mathrm{div}, 5 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$, $1 \mathrm{~dB} / \mathrm{div}$
Display range in each case 4 divisions (div)
Display resolution div/10
Sweep parameters
SWEEP TIME (SWT), selectable, AUTO / MAN $.1 \mathrm{~s}, 3 \mathrm{~s}, 10 \mathrm{~s}, 30 \mathrm{~s}, 100 \mathrm{~s}, 300 \mathrm{~s}$

- AUTO
Automatic selection of SWT
coupled with FSPAN and BANDW (bandwidth)Amplitude error due to settling$\leq 0.5 \mathrm{~dB}$Amplitude error due to settling occurs when large spontaneous changes in level occur during asweep (e.g. during spectrum analysis).
- MAN
Manual selection of SWT

1	US version:	Frequency range I:	3-pole CF socket;
	Frequency range II:	WECO 310 socket	
	Japanese version:	Frequency ranges I and II:	2-pole I-214B socket with earthing socket
1	US version		

If only small changes in level per unit time are expected during a sweep, the SWEEP TIME (SWT) can normally be reduced by one to three steps compared with the automatic SWT setting.

SWEEP, selectable

SING . SINGLE sweep
CONT . CONTINUOUS sweep

MAXHLD ON / OFF (MAXHOLD)

Display of highest amplitude values measured during the entire sweep measurement.

Drive conditions, selectable

LOW NOISE: . preferred setting for network analysis with wide measurement dynamic range
LOW DISTORTION: preferred setting for spectrum analysis with high intrinsic distortion and intermodulation attenuation values

Markers

Numeric evaluation of graphic measurement result display using MARKERS:

- SHOW MARKER ON /OFF

Frequency and amplitude measurement
Frequency resolution
SPAN/100
Amplitude resolution . 0.1 dB

- MRK FRQ ---> FCENT, marker transfer:

The actual marker frequency is set as center frequency FCENT; the frequency span FSPAN setting remains unchanged.

9.10 General specifications

9.10.1 Safety

Basic standards to IEC publication 1010-1Safety classI
Overvoltage category II
Pollution grade II
Safety with regard to the
connection to the telephone network IEC Guide 105 and EN 41003
9.10.2 Electromagnetic compatibility
EMF emission to CISPR 22 class B/EN 55022and EN 50081-1 ${ }^{1}$
Refer also to section 2.8
Immunity to interference to IEC 801-2, -3, -4and EN 50082-1 ${ }^{1}$
9.10.3 Power supply
The built-in power supply also operates as a battery charger.
AC line operation
Nominal voltage range 100 to 240 V
Operating range limits 90 to 264 V
AC line frequency. $50 / 60 \mathrm{~Hz} \pm 5 \%$
Battery operation (see section 9.11.2 on page 9-23)
9.10.4 Display
SPM/PSM-37/-38/-39 LCD
SPM/PSM-137/-138/-139Electroluminescent240×60 pixels,can be blanked by remote control
9.10.5 Timer
Built-in real-time clock and calendar

[^9]
9.10.6 Memory

Internal memory . storage of 100 fixed frequencies
7 setups for user requirements

9.10.7 Service aids

Self test, service support

9.10.8 Temperature and humidity specifications

Temperature

Reference range $23^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$
Operating range to $+40^{\circ} \mathrm{C}$
Limits operating range 0 to $+40^{\circ} \mathrm{C}$
Storage and transport range
SPM/PSM-37/-38/-39 (LC display) -20 to $+60^{\circ} \mathrm{C}$
SPM/PSM-137/-138/-139 (EL display) -40 to $+70^{\circ} \mathrm{C}$
Condensation
Occasional short-term condensation is permitted as a limit condition.
Air humidity
Operating range:
Relative humidity, up to $+40^{\circ} \mathrm{C}$ 5 to 95%
Absolute humidity, above $+40^{\circ} \mathrm{C}$ $\leq 30 \mathrm{~g} / \mathrm{m}^{3}$
9.10.9 Dimensions
Width 320 mm
Height 140 mm
Depth 360 mm

9.10.10 Weight

All SPM versions approx. 8.0 kg
ALL PSM versions approx. 8.7 kg
Rechargeable battery pack approx 2.5 kg

[^10]
9.11 Options

9.11.1 Standard frequency oscillator

Improved frequency accuracy

Tuning frequency error including aging for 1 year . $\pm 5 \times 10^{-7}$
This option can be fitted by a Wandel \& Goltermann service center. Instruments fitted with this option require a warm-up period of approx. 15 minutes before use. Battery operation is restricted.

9.11.2 Battery pack BAZ-2203

$$
\begin{aligned}
& \text { NiCd rechargeable battery . Nominal voltage } 16.8 \mathrm{~V} \\
& \text {. Nominal capacity } 4 \text { Ah } \\
& \text { Battery pack (14 cells, sealed)to IEC 285-2, type KR } 35 / 62 \\
& \text { Operating time, SPM-37/-38/-39 without TK-11 test probe approx. } 5 \text { hours } \\
& \text { Built-in fuse .T4 A (slow-blow) } \\
& \text { Charging } \\
& \text { Charging time . approx. } 14 \text { hours } \\
& \text { The batteries are trickle-charged by the built-in a.c. power supply during measurements. } \\
& \text { Charging can be timer-controlled. }
\end{aligned}
$$

9.11.3 Remote control

(see Options on page 9-24)
IEEE bus and V. 24 interface for control of all instrument functions (operation from AC line only)

9.12 Ordering information

Level meters

SPM-37 . BN 2203/02
SPM-38 . BN 2203/03
SPM-39 . BN 2203/04
SPM-137 . BN 2203/05
SPM-138 . BN 2203/06
SPM-139 . BN 2203/07
Level test sets
PSM-37 . BN 2203/12
PSM-38 . BN 2203/13
PSM-39 . BN 2203/14
PSM-137 . BN 2203/15
PSM-138 . BN 2203/16
PSM-139 . BN 2203/17
Options
Battery pack BAZ 2203 BN 2203/00.04
IEEE 488.2/V. 24 interface BN 2203/00.05
Standard frequency oscillator $5 \times 10^{-7(1)}$ BN 2203/00.06
19" rack conversion kit BN 2203/00.07
US version
Level meter BN 2203/00.10
Level test sets BN 2203/00.10 and BN 2203/00.11
Japanese version
Level meter BN2203/00.12
Level test sets BN 2203/00.12 and BN 2203/00.13
Accessories
Return loss bridge RFZ-12 BN 810/01
Signal balance ratio bridge SDZ-12 BN 811/01
Balanced measurement bridge SDZ-30 BN 2234/01
Return loss bridge RFZ-1 BN 2045/.
Active test probe TK-11 (with contact) BN 573/..
ISDN signal balance ratio bridge ISM-1 BN 2098/..
ISDN impedance bridge IMB-1 BN 3003/01
Coaxial choke MSD-2, 50 Hz to 50 MHz BN 2227/01
Transport covers SD-930 (set of 2) BN 0960/00.01
LeveIPRO Software Package BN 2203/93.01(databases, $A, B, A-B A \& B$ trace manipulation, tolerance masks, etc.)

[^11]
10 Remote control

10.1 Introduction

Standards

The device is a processor-controlled measuring instrument. All measurement parameters which can be set manually can also be controlled from an external controller. Two remote-control interfaces are available for this purpose:
All instruments: RS 232 or V.24/V. 28 serial interface,
SPM/PSM-137 to 139 instruments: IEEE 488 (IEC 625) remote control interface ${ }^{1}$.

The main advantages of the V. 24 / V. 28 interface are:

- Control over long distances (point-to-point connection)
- Control using a PC without additional IEEE bus card

The main advantages of the IEEE bus interface are:

- Fast data transfer rate
- measurement systems (multi-point connections)

Remote control behavior

Remote control behavior corresponds to the standards IEC 625-1:1993/IEEE 488.1-1978 and IEC 625-2:1993/IEEE 488.2-1992 (referred to as IEC/IEEE in this manual).
This allows IEC/IEEE bus or V. 24 programs to be transferred from each other.
SCPI (Standard Commands for Programmable Instruments), which is based on the 488.2 standard, specifies a standardized set of commands for remote control, with standardized syntax and semantics. The remote control commands which are implemented for the device are structured according to the SCPI rules 1994.0.

Differences between IEEE bus and V. 24

The IEEE remote-control interface is a bus system with a talker and a listener. The V. 24 remotecontrol interface is a full-duplex serial link which means that it is possible to transmit and receive simultaneously.
The IEEE bus interface functions are not implemented in V. 24 remote-control. Some of these interface functions are, however, simulated by V. 24 (see section 10.3.2.1 "Interface functions").

LOCAL operation
It is possible to change over to manual operation from remote control mode by pressing the LOCAL key, unless LOCAL LOCKOUT has been programmed.

[^12]
10.2 About this remote-control manual

10.3 Remote-control interfaces of the device

10.3.1 IEC/IEEE remote-control interface

10.3.1.1 Bus connections

Overview

Up to 15 devices can be connected together in an interface system using special IEEE bus cables. The maximum permissible cable length which can be used when a group of devices is connected together in a bus system is 2 m times the number of devices, though no more than 15 m . None of the individual cables must be more than 2 m long. (See also IEC 625 Part 1, Section 39, Page 71.)

Connector

The built-in IEC bus board is equipped with a 24 -pole connector. The pin connections are shown in Fig. 10-1.

DIO 1 ... DIO 8 = Input / Output $\mathrm{EOI}=$ End or Identify

DAV = Data Valid
NRFD = Not Ready for Data
NDAC = Not Data Accepted
IFC = Interface Clear
SRQ = Service Request
ATN = Attention
REN =Remote Enable

Fig. 10-1 IEEE bus connector pin connections

IEC/IEEE bus cables

IEEE bus cables in various lengths are available for connecting the device to other devices or controllers:

- 1.2 m long: K 420
- 2.0 m long: K 421

10.3.1.2 Instrument address

Each device must be given a unique address, to allow it to be activated directly by the controller in a measurement system.

- Press [Blue key] to call up additional functions
- Press [TEST \& CONF] to invoke the TEST \& CONFIGURATION auxiliary function
- Press INTERFACE [F L4] to change to the INTERFACE menu.

Fig. 10-2 Device address

Note: Each device address must only be allocated once in an interface system, and the controller address must not be used. Certain devices with particular addresses are often linked by specific attributes (e.g. printers with address 30).

10.3.1.3 Interface functions

Figure below summarizes the interface functions of the device. They conform to the IEC 625.1 and IEEE 488.1 standards.

Functions	IEEE 488.1	IEEE 488.2, Chapter:
Source Handshake	SH1	5.1 .1
Acceptor Handshake	AH1	5.1 .2
Talker	T6	5.3
Listener	L4	5.4
Service Request	SR1	5.5
Remote/Local	RL1	5.6
Parallel Poll	PP1	5.7
Device Clear	DC1	5.8
Driver/Receiver Ports	E2	5.11

Fig. 10-3 Interface functions

10.3.2 V. 24 / V. 28 remote-control interface

The instrument is also fitted with a V.24/V. 28 connection which can be used for remote control.
Note: When the serial interface is used for remote control, the first command sent must be SYSTEM: COMMUNICATE: REMOTE ON in order to guarantee correct remotecontrolled operation.

10.3.2.1 Interface functions

The IEEE bus interface functions are not implemented in V. 24 remote control.
The following functions are simulated:

IEEE bus command	V. 24 simulation
Service Request (SRQ)	In the event of a SRQ, a special character is sent to the control computer (<BEL > = 07hex)
Device Clear (DCL)	DCL is triggered by sending a BREAK signal to the SPM/PSM.
Remote / Local (RL)	Simulated by the V.24 command: "SYSTEM:COMMUNICATE:REMOTE ON (OFF)"

The following functions cannot be simulated:

- Parallel Poll (PPC / PPU)
- Serial Poll (SPE / SPD)

10.3.2.2 Bus connections

The serial interface is defined by two CCITT recommendations:

1. V. 24 Interface circuits
2. V. 28 Electrical characteristics

The following types of connection can be used with the instrument:

- Connection to a PC 25-pole connection
- Connection to a PC 9-pole connection
- Connection to a PC 3-pole connection

Pin	Pin	$\begin{array}{l\|} \hline \text { DIN } \\ 66020 \end{array}$	$\begin{aligned} & \text { CCITT } \\ & \text { V. } 24 \end{aligned}$	$\begin{aligned} & \text { EIA } \\ & \text { RS } 232 \end{aligned}$	Description		Direction	
9pole	25pole						SPM/PSM	Modem
-	1	E1	101	AA	PG	Protected Ground	-	-
3	2	D1	103	BA	TXD	Transmit Data	Out	In
2	3	D2	104	BB	RXD	Receive Data	In	In
7	4	S2	105	CA	RTS	Request To Send	Out	In
8	5	M2	106	AB	CTS	Clear To Send	In	Out
6	6	M1	107	CC	DSR	Data Set Ready	In	Out
5	7	E2	102	AB	SG	Signal Ground	-	-
1	8	M5	109	CF	DCD	Carrier Detector	In	Out
4	20	S1.2	108.2	CD	DTR	Data Terminal Ready	Out	In
9	22	M3	125	CE	RI	Ring Indicator	In	Out

Connection to a PC

The SPM/PSM is a data terminal equipment (DTE) just like the PC. Azero modem is therefore required for the connection. The following connections should be made:

Fig. 10-4 9 to 25-pole connection

Fig. 10-5 9-pole connection

Fig. 10-6 3-pole connection (XON / XOFF operation)

10.3.2.3 Parameters

To ensure correct transmission, the physical transmission parameters of the SPM/PSM, and PC must be set to the same values. The parameters include:

- Baud rate: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 Bit/s
- Parity: None, Even, Odd
- Data bits per character: 7, 8
- Stop bits per character: 1, 1.5, 2
- Flow control: Software Handshake XON / XOFF, Hardware Handshake RTS / CTS

10.4 Standard reporting system

10.4.1 General structure to SCPI

Fig. 10-7 Structure of the status reporting system

10.4.2 Status Byte Register STB

Program word

Bit assignment

The status byte register contains the sum message of the event status registers, the output queue and the RQS or MSS message

Bit no.	Meaning
2	ERR: Error queue bit This indicates the sum message of the error queue. The ERR bit is true if an error message has been made available for polling.
3	QUE: Questionable Status bit This indicates the sum message of the questionable status register system if abnormal operating conditions prevail.
4	MAV: Message available bit This indicates the sum message of the output queue. The MAV bit is true if the device has made data available for polling in the output queue.
5	ESB: Event status bit This indicates the sum message of the linked event registers (standard event status register and standard event status enable register).
6	RQS: Request service bit The RQS bit changes to "1" if the sum message of the STB register and the SRE register has initiated a service request. The bit is reset by a SERIAL POLL - together with the SRQ message. MSS: Master summary status bit The MSS bit changes to "1" if the sum message of the STB register and the SRE register has initiated a service request. The bit is not reset by a poll with *STB? - the SRQ message thus also remains sett.
7	OPR: Operational status bit This indicates the sum message of the operational status register system under normal operating conditions.

Read the register

SERIAL POLL

The status byte information of a serial poll includes the RQS bit. The RQS bit is reset after the serial poll ($R Q S \equiv S R Q$).

STB?

The status byte information of a poll with the *STB? command includes the MSS bit. The bit is not reset after the poll.

Clearing the register The contents of the register can be cleared with the common * CLS command. The command has no effect on the MAV bit, however.

Status summary messages

Fig. 10-8 Structure of the status byte register

10.4.3 Service Request Enable Register SRE

Program word

Define the register

The status byte register must be masked with the service request enable register, in order to define which sum message initiates a service request.

The contents of the register can be defined with the common*SRE <decimal-no.> command.

Bit no.	Meaning	Decimal no.
7	OPR bit	128
6	Not available	(64)
5	ESB bit	32
4	MAV bit	16
3	QUE bit	8
2	ERR bit	4
1	Not used	(2)
0	Not used	(1)

Read the register

The contents of the register can be read with the common *SRE? command. The result is a decimal number in the range from 0 to 255 .

Clearing the register The contents of the register can be cleared with the common *SRE 0 command.

Fig. 10-9 Service request

10.4.4 Event Standard Register ESR

Program word

Bit assignment

Bit no.	Meaning
0	OPC Operation complete. The bit is set after the device has executed an instruction and is ready to accept new instructions, providing *OPC has been programmed beforehand.
2	QYE Query error. The bit is set if: - An attempt has been made to read the contents of the output queue, but the queue is empty or - The contents of the output queue have been lost, e.g. due to a queue overflow.
3	DDE Device-dependent error. Example: The bit is set if a programming instruction cannot be executed as a result of a device status. It indicates that the error is not a command, query or execution error.
4	EXE Execution error (parameter error). The bit is set, for example, if the parameter value of an instruction is outside the permissible setting range of the device.
5	CME Command error (unknown command). A command error is caused by the following events: Syntax error Semantic error
7	PON Power on. The bit is set after the device is switched on or after it starts up again following a power failure.

Read the register
The standard event status register contains the device states defined by the IEEE 488.2 standard (see bit assignment).

The contents of the register can be read with the common*ESR? command. The result is a decimal number in the range from 0 to 255 . Reading the register causes its contents to be cleared.

Clearing the register The contents of the register can be cleared with the common *CLS and *ESR? commands.

Standard event status register

Read by "ESR?

Fig. 10-10 Structure of the standard event register

10.4.5 Standard event status enable register ESE

Program word

Define the register

The standard event status enable register can be used to mask the standard event status register, in order to define which device states form the sum message (ESB bit) for the status byte register .

The contents of the register can be defined with the common*ESE <decimal-no.> command. The decimal number must be in the range from 0 to 255.

Bit no.	Meaning	Decimal no.
0	Operation complete	1
1	Not used	(2)
2	Query error	4
3	Device-dependent error	8
4	Execution error	16
5	Command error	32
6	Not used	(64)
7	Power on	128

Read the register The contents of the register can be read with the common *ESE ? command. The decimal number must be in the range from 0 to 255.

Clearing the register The contents of the register can either be cleared with the common *ESE 0 command or overwritten with another decimal number.

10.4.6 Output queue

Program word
The output queue is used to buffer the device response messages until they are read by the controller. If the output queue contains data, the MAV bit in the status byte is set..

Fig. 10-11 Standard output queue

10.4.7 Parallel Poll

Program word	The device has a parallel poll function as well as a serial poll one. This interface function (PP 1) conforms to the IEEE 488.2 standard. The primary PPC command (parallel poll configure) is used to configure the device for a parallel poll. The data line on which the device is to respond is then assigned with the secondary PPE command (parallel poll enable). PRE register The status byte register can be masked with the parallel poll enable register.
Define the register \quadThe contents of the register can be defined with the common*PRE <decimal-no.> command. The decimal number must be in the range from 0 to 65535.	
Clearing the register	*PRE 0 clears the contents of the register. They can also be overwritten by entering another decimal number.
Read the register \quadThe contents of the register can be read with the common*PRE? command. The result is a decimal number in the range from 0 to	
65535. (Bits 8 to 15 are not used.)	

Fig. 10-12 Structure of the parallel poll register

Poll sum bit

The internal device message (status bit: "ist") can be polled with the common *IST? command, without initiating a parallel poll. This internal device message is linked with the sense bit when a parallel poll occurs.

10.4.8 Initializing the device

The contents of the standard event status register and the status byte register may cause an SRQ to be initiated during the initialization process with *RST and *CLS, as a result of the instrument setups. The control computer must therefore not be enabled for processing SRQs (SRQ enable) until after the initialization routine has finished.

10.4.9 Extended SCPI status report system

General

The status report system is responsible for management of all device states in accordance with IEEE 488.2, Chapter 11. A special status register management facility with the following enhancements makes this task easier:

- Operation status register system with the summary bit 7 in the status byte
- Questionable status register system with the summary bit 3 in the status byte

Register components

The operation and questionable status groups have the register components. An SCPI status register basically consists of two status registers, namely CONDition and EVENT, whereby the COND register contains the current device status. The EVENT register saves this status as a non-recurring event dependent on the transition registers.

Fig. 10-13 Principle of status polling; \&: logical AND, ≥ 1 : logical OR

COND

Condition register: Contains the current device status. The status does not change as a result of reading the register.

PTR

Positive transition filter: Defines a positive edge for saving in the EVENT register. (A "0 --> 1" transition in the COND register generates a 1 in the EVENT register if the corresponding PTR bit is set.)

NTR

Negative transition filter: Defines a negative edge for saving in the EVENT register. (A "1 --> 0" transition in the COND register generates a 1 in the EVENT register if the corresponding NTR bit is set).

EVENT

Event register: Saves the contents of the condition register until a poll takes place (:STAT:OPER:EVEN?).

ENABLE

Enable register: Contains the mask for the event register and is used as a switch for masking the contents of the event register in the status byte register.

10.4.9.1 Operation Status

The operation status register manages the states occurring during normal operation of the instrument. Every status node (except the nodes of the status byte itself) posesses its own 16 bit wide Condition, Event and Enable Register and Transition Filter. For clarity, not all of the register components are shown in the following diagram.

Operation Register Commands

Reset all SCPI registers

STATus
: PRESet

Operating states

STATus
:OPERation
CONDition?
ENABle <NRf>
ENABle?
EVENT?
NTRansition <NRf>
NTRansition?
PTRansition <NRf>
PTRansition?

Questionable Status

Questionable Status Registers contain bits which indicate the quality of the last measurement values determined or setting parameters. They can be polled (questioned) if required. If a bit is set, the results or setting parameters are outside the specified limits.

Questionable Register Commands

Question status regarding
STATus
:QUEStionable
CONDition?
ENABle <NRf> ENABle? EVENT? NTRansition <NRf> NTRansition? PTRansition <NRf> PTRansition?

Questionable Event
Status Register QUE

Fig. 10-14 Extended SCPI status report system

10.4.10 Initializing the extended SCPI status management system

General SCPI/IEEE 488.2 rules
Initialization to SCPI and IEEE 488.2

	SCPI Trans. Filter	SCPI Enable Register	SCPI Event Register	488.2 Register ESE, SRE	488.2 Register SESR, STB
*RST	none	none	none	none	none
*CLS	none	none	clear	none	clear
power-on	preset\#	preset\#	clear\#	clear\#	clear\#
STATUS :PRESET	preset	preset	none	none	none

\#: If the power-on status clear flag is true. No change if the power-on status clear flag is false.
Register initialization; STATUS:PRESET

Register	Filter/enable	Preset value =
OPERational	ENABle	0 's
	PTR	1 's
	NTR	0 's
QUEStionable	ENABle	0 's
	PTR	1 's
	NTR	0 's

10.5 Syntax

General

A fixed syntax must be observed in order for external controllers and the device to be able to understand one another when they exchange device messages. This syntax is defined in IEEE 488.2 and explained below.

A distinction is made between the talker syntax and the listener syntax. The two basic principles are precision when talking and tolerance when listening.

Program message

The listener syntax applies when a message is sent from the controller to the instrument (program message). A program message comprises the following components:

1. Program message unit(s)

The program message unit is the program word which sets the instrument. A distinction is made between the command message unit and the query message unit. The command message unit causes the instrument to be set, while the query message unit causes the instrument to make data available for output.
2. Program message unit separator(s)

The program message unit separator separates a string of command or query message units within a program message.
3. Program message terminator (PMT)

The program message terminator indicates the end of a program message: either the EOI line is activated at the end of a data transfer (^END) or a line feed character is transmitted in the data stream (NL = LF ASCII character).

Fig. 10-15 Example showing a program message

A programming word (command or query message) comprises the following components:

1. Command or query program header
2. Program header separator <white space>
3. Program data (parameters)

Fig. 10-16 Example showing a program word

Tree structure

The device is programmed with programming words in a tree structure. The components of the programming words are similar to those of a tree in nature.

Fig. 10-17 Example of a programming word tree structure

Input

The device-specific programming words are shown here in their long forms. The short form consists of the uppercase letters in the respective programming word. When programming, you must enter either the complete long form or exactly the short form. When the programming words are entered, either upper or lower-case letters may be used; see also SCPI Vol. 1, Chapter 6.

Program data

Various types of program data are used to enter parameter values in the device:

Character program data

For entering parameters which require an alphanumeric expression, e.g. activation of an operating mode; see also IEEE 488.2, 7.7.1. The character program data of the device is generally based on the menu designations used in manual mode.
SCPI also allows numeric values to be set using character program data, providing the parameter values are defined ones. This alternative method is particularly useful for parameter values with several digits.
MIN corresponds to the minimum value of the parameter
MAX corresponds to the maximum value of the parameter
DEF corresponds to the default value of the parameter
UP increases the value of the parameter by a fixed amount (e.g. FSTEP)
DOWN decreases the value of the parameter by a fixed amount (e.g. FSTEP)
Note: \quad The character program data may be entered in the device in either the short or long form.

Decimal numeric program data

For entering numerical parameter values in the device; see also IEEE 488.2, 7.7.2. Decimal numeric program data can be entered in various ways, as shown by the example below with a selective frequency of 32 MHz :

1. As an integer number <NR1>

32000000
2. As a floating-point number without an exponent <NR2>
32000000.0
3. As a floating-point number with an exponent <NR3>

32 . $\mathbf{E}+6$
The input must always refer to the basic unit (in this case Hz).

Suffix program data

Serves as a suffix for defining the unit of decimal numeric program data; see also IEEE 488.2, 7.7.3.

Example: Frequency $=10 \mathrm{MHz}$
Input: 10MHZ oder 0.01GHZ etc.
If a suffix is not used, 1.E7 must be entered instead in this example, since the basic unit is 'Hz'.

Boolean

For parameters which always have one of two states (e.g. switch functions).

ON 1
 OFF 0

All numbers which are not 0 are interpreted as 1 (ON).
Program header separator
The program header separator <white space> (blank) separates program data from the command program header;
abbreviation <wsp>.

Program data separator

The program data separator $<,>$ (comma) separates program data within a program message unit.

Response message

The talker syntax applies when a message is sent from the instrument to the controller (response message). An device response message comprises the following components:

1. Response message unit(s)
2. Response message terminator <RMT>

The response message terminator indicates the end of a response message (line feed character); see also IEEE 488.2, 8.3 (terminated response messages).

Response data

Various types of response data are used to output parameter values and for general queries:

Character response data

In response to queries concerning parameters containing alphanumeric expressions; see also IEEE 488.2, 8.7.1. The short form is always used in the output.

Numeric response data

In response to normal parameter queries; see also
IEEE 488.2, 8.7.2 ... 4. A suffix is not sent with the numeric response data. The same distinction is made as with decimal numeric data:
<NR1> Integer numbers
<NR2> Floating-point numbers without an exponent
<NR3> Floating-point numbers with an exponent
It should be noted that numeric data must always refer to a fixed basic unit.

0/1

In response to parameter queries (concerning Boolean programming data) for which there are only two possible states; output either $\mathbf{0}$ or $\mathbf{1}$.

String response data

Status or error messages, setup titles, etc. which consist of long character strings are output as string response data; see also IEEE 488.2, 8.7.8.

Arbitrary ASCII response data

In response to queries concerning, for example, the device version, when alphanumeric character blocks of different lengths must be sent (7-bit ASCII code); see also IEEE 488.2, 8.7.11.

Arbitrary block response data

Used to output large volumes of data in 8-bit ASCII code with a fixed block length; see also IEEE 488.2, 8.7.9.

10.6 Common Commands

This section describes the common commands in alphabetical order.

Common Command	Meaning	Page
* CLS	Clear Status Command	10-25
*ESE <num.>	Standard Event Status Enable Command	10-25
*ESE?	Standard Event Status Enable Query	10-26
*ESR?	Standard Event Status Query	10-26
*IDN?	Identification Query	10-27
*IST?	Individual Status Query	10-27
* OPC	Operation Complete Command	10-28
*OPC?	Operation Complete Query	10-28
*PRE <num.>	Parallel Poll Enable Register Command	10-29
*PRE?	Parallel Poll Enable Register Query	10-29
*PSC <NR1>	Power-on Status Clear	10-30
*PSC?	Power-on Status Clear Query	10-30
*RCL <NR1>	Recall Command	10-31
*RST	Reset Command	10-31
*SAV <NR1>	Save Command	10-32
*SRE <num.>	Service Request Enable Command	10-32
*SRE?	Service Request Enable Query	10-33
*STB?	Satus Byte Query	10-33
*WAI	Wait Command	10-34

Fig. 10-18 Common Commands

*CLS

Parameters
Depencencies
Comments

Example

Related commands

*ESE

Parameters

Depencencies
Comments
Example
Related commands
*ESE can be used to define the contents of the standard event status enable register.

* CLS clears all status data structures and forces the:

1. Operation complete command idle state
2. Operation complete query idle state

None
None
If *CLS occurs directly after a program message terminator:

1. The output queue is canceled
2. The MAV bit is reset

* CLS
*RST

Parameter Name	Parameter Type	Range of Values
-	Numeric	0 to 255 । \#B00000000 to \#B11111111 \| \#H00 bis \#HFF

None
None
*ESE 32
*ESE?

*ESE?

	\star ESE? can be used to query the contents of the standard event sta register					
Parameters	None					
Response	Response Name				Response Type	Range of Values
Bit mask	<NR1>	0 to 255				
Depencencies	None					
Comments	None					
Example	*ESE? Response: 32					
Related commands	*ESE					

*ESR?

Parameters

*ESR? can be used to read the contents of the standard event status register. The register contents are cleared at the same time.

Response

Depencencies
Comments
Example

Related commands

None

Response Name	Response Type	Range of Values
Bit field	$<$ NR1>	0 to 255

None
The register contents are cleared at the same time
*ESR?
Response: 16
None

*IDN?

Parameters
 Response

None

Depencencies

Comments

Example

Related commands
*IST?

Parameters

None
Response

Depencencies
Comments

Example

Related commands
None version>
*IDN?

None

None
*IST?

None
*IDN? can be used to identify the device.

Response Name	Response Type	Range of Values
-	$<$ Arbitrary ACII ResponseData>	ASCII character set

The response takes the form of four fields containing the device data and separated by commas: <Company name>,<Model>,<Serial number>,<Software

Response: WANDEL \& GOLTERMANN, SPM-139, C-0039,1.00

* IST? can be used to query the sum bit ("ist") without initiating a parallel poll.

Response Name	Response Type	Range of Values
Status	$<$ NR1>	$0 \mid 1$

$\mathbf{0}=$ "ist" false
$\mathbf{1}=$ "ist" true

Response: 0

*OPC

Parameters

Depencencies
Comments
Example
Related commands

*OPC?

Parameters

Response

Depencencies

Comments

Example

Related commands
*OPC sets bit 0 of the standard event status register after all the preceding programming instructions, setups and internal procedures have been completed.

None
None
None
*OPC
*OPC?, *WAI
*OPC? writes the ASCII character "1" in the output queue after all the preceding programming instructions have been executed.

None

Response Name	Response Type	Range of Values
Identifier	<NR1>	1

None
Bit 0 of the standard event status register is not modified.
*OPC?
Response: 1
*OPC?, *WAI

*PRE

*PRE can be used to define the contents of the parallel poll enable register.

Parameters

Depencencies	None
Comments	None
Example	*PRE
Related commands	*PRE?

*PRE?

Parameters
*PRE? can be used to read the current contents of the parallel poll enable register.

Response

Depencencies	None
Comments	None
Example	$* P R E ?$
	Response: 0
Related commands	$* P R E$

*PSC

*P SC can be used to set the power-on status clear flag in order to control the power-on behavior of the device.

Parameters

Depencencies

Comments

Example

Related commands

*PSC?

Parameters

Response

Depencencies

Comments

Example

Related commands
*P SC? can be used to query the status of the power-on status clear flag.
None

Parameter Name	Parameter Type	Range of Values
-	$<$ NR 1>	$0 \mid 1$

None
$0=S R Q$ after power on. The standard event status enable register, the service request enable register and the parallel poll enable register retain their contents after the power is switched on.
$1=$ No SRQ after power on. The contents of the above-mentioned registers are cleared after the power is switched on.
*PSC
*PSC?

Response Name	Response Type	Range of Values
Status	<NR1>	$0 \mid 1$

None
$\mathbf{0}=\mathrm{SRQ}$ after power on. The standard event status enable register, the service request enable register and the parallel poll enable register retain their contents after the power is switched on.
$1=$ No SRQ after power on. The contents of the above-mentioned registers are cleared after the power is switched on.
*P SC?
Response: 1

* PSC

*RCL

Parameters

Depencencies
Comments
Example
Related commands
*RST

	*RST can be used to initialize the device. The initial setups are restored; see also section 3.
Parameters	None
Depencencies	None
Comments	The initialization procedure has no effect on:
	- The interface status
	- The device address
	- The output queue
	- The standard status enable register
	- The standard event status enable register
	- The power-on status clear flag
Example	*RST
Related commands	*CLS

*SAV

* SAV stores the current device settings (Setup) at the addresses 3 to 9 (10-99 on the MemCard).

Parameters

Depencencies
Comments

Example

Related commands

*SRE

Parameters

Depencencies

Comments

Example
Related commands

* SRE can be used to define the contents of the service request enable register.

Parameter Name	Parameter Type	Range of Values
-	<NR 1>	3 to 9 (to 99 with MemCard)

The number of setups that can be called up depends on the device version.
Setups 0 (DEFAULT), 1 (USER) and 2 (PREVIOUS) cannot be overwritten with this command.
*SAV 5
RCL

Parameter Name	Parameter Type	Range of Values
-	<NR 1>	0 to 255 । \#B00000000 to \#B11111111। \#H00 to \#HFF

None
None
*SRE 16
*SRE?

*SRE?

* SRE ? can be used to read the contents of the service request enable register.

Parameters

None
Response

Depencencies
Comments
Example

Related commands
*STB?

Parameters

Response

Depencencies
Comments
Example

Related commands

Response Name	Response Type	Range of Values
Bit mask	$<$ NR1>	0 to 255

None
Meaningful range: 0-63, 128-191
*SRE?
Response: 32
*SRE
*STB? can be used to read the contents of the status byte register.
None

Parameter Name	Parameter Type	Range of Values
Bit field	$<$ NR 1>	0 to 255

None
The register contents are not modified.

```
*STB?
```

Response: 32
None

*WAI

*WAI prevents the next program message unit from being executed until the current program message unit has been completed.

Parameters	None
Depencencies	None
Comments	Synchronization command
Example	*WAI
Related commands	*OPC, *OPC?

10.7 Programming Commands

10.7.1 Instrument model

The programming commands of the SCPI standard are based on a general model for a remote-controllable measuring instrument. The instrument is split into individual function blocks.

Fig. 10-19 Instrument model according to SCPI

The function blocks are designated as sub-systems, from which the individual programming commands are derived. This results in a hierarchical structure to the commands.
The sub-systems of this instrument are given below:

DISPlay

The commands for this sub-system influence the display of measurement results and parameters on the display.

TRIGger

The commands for this sub-system control the recording of measurement values or the output of signals.

SOURCe

The commands for this sub-system cause a signal to be generated according to specific settings.

SENSe

The commands for this sub-system evaluate the measurement results and convert them for further internal processing.

CALCulate

The commands for this sub-system process the recorded data and pass it on to a sub-system which has data output functions.

INPut
The commands for this sub-system control the receiver input.

OUTPut

The commands for this sub-system control the generator output.

10.7.2 Measurement Commands

This instrument uses the commands: CONFigure, READ?, INITiate and FETCh? for making measurements and the command ABORt to abort a measurement.
CONFigure/READ?
The command CONFigure:Parameter sets the instrument for a measurement. Subsequently, further commands can be inserted, e.g. to set the gain to a specific value.
READ? starts the measurement and queries the result.
CONFigure/INITiate/FETCh?
INITiate/FETCh? in effect splits the READ? command. INITiate starts the measurement and FETCh? queries the result. This makes sense particularly when the measurement takes a longer period of time since using the command READ? the IEEE bus would be blocked during the entire measurement duration or a timeout would occur.

ABORt

ABORt cancels the started measurement (triggered by INITiate: [IMMediate]).

Fig. 10-20 Measurement sequence: a) normal b) aborted

Example
 Related commands
 ABOR
 INITiate: [IMMediate]
 FETCh?
 READ?

CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:[AC]

CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:[AC] sets LEVEL as the current operating mode.

Comments
Example
Related commands

Manual operation: [LEVEL] key
CONFigure:POWer:LEVel:AC
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage](LEVel:AC):LEVel:ASTep:FAST
[VOLTage](LEVel:AC):LEVel:ASTep:MASTer
[VOLTage](LEVel:AC):LEVel:ASTep:TIMe
[VOLTage](LEVel:AC):LEVel:ASTep:THResh
[VOLTage](LEVel:AC):LEVel:HOTTone
[VOLTage](LEVel:AC):LEVel:JITTer: [AC]
[VOLTage](LEVel:AC):LEVel:NPR: [AC]
[VOLTage](LEVel:AC):DEMod: [AC]
[VOLTage](LEVel:AC): DEMod:INOise
[VOLTage](LEVel:AC):DEMod:INTerruption
[VOLTage](LEVel:AC):DEMod:JITTer:[AC]
[VOLTage](LEVel:AC):VOICeband: [AC]
[VOLTage](LEVel:AC):VOICeband:INOise
[VOLTage](LEVel:AC)
:VOICeband:INTerruption
[VOLTage](LEVel:AC):VOICeband: JITTer: [AC]

CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:ASTep:FAST

```
CONFigure:[SCALar]:[POWer] | [VOLTage] : LEVel:ASTep: FAST sets the device for loop measurement in autostep mode.
```

Comments

Example

Related Commands

Manual operation: MODE FAST; Operating mode AUTOSTEP (PSM).
CONF:LEV:AST:FAST
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage](LEVel:AC):LEVel: [AC]
[VOLTage](LEVel:AC):LEVel:ASTep:MASTer
[VOLTage](LEVel:AC):LEVel:ASTep:TIMe
[VOLTage](LEVel:AC):LEVel:ASTep:THResh
[VOLTage](LEVel:AC):LEVel:HOTTone
[VOLTage](LEVel:AC):LEVel:JITTer:[AC]
[VOLTage](LEVel:AC):LEVel:NPR: [AC]
[VOLTage](LEVel:AC):DEMod:[AC]
[VOLTage](LEVel:AC):DEMod:INOise
[VOLTage](LEVel:AC): DEMod:INTerruption
[VOLTage](LEVel:AC):DEMod:JITTer:[AC]
[VOLTage](LEVel:AC):VOICeband: [AC]
[VOLTage](LEVel:AC):VOICeband:INOise
[VOLTage](LEVel:AC)
:VOICeband:INTerruption
[VOLTage](LEVel:AC):VOICeband: JITTer: [AC]

CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:ASTep:MASTer

	CONFigure: [SCALar]:[POWer] \| [VOLTage](LEVel:AC) : LEVel: ASTep:MASTer sets the instrument as MASTER for AUTOSTEP mode.	
Comments	Manual operation: MODE MASTER; Operating mode AUTOSTEP (PSM)	
Example	CONF : LEV:AST:MAST	
Related commands	CONFigure:[SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel: [AC]
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):ASTep:FAST
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel:ASTep:TIMe
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel:ASTep:THResh
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel: HOTTone
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel:JITTer:[AC]
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):LEVel:NPR:[AC]
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):DEMod: [AC]
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC): DEMod:INOise
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC): DEMod:INTerruption
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):DEMod:JITTer:[AC]
	CONFigure: [SCALar]: [POWer]	[VOLTage](LEVel:AC):VOICeband: [AC]
	CONFigure:[SCALar]: [POWer]	[VOLTage](LEVel:AC):VOICeband:INOise
	CONFigure:[SCALar]: [POWer]	[VOLTage](LEVel:AC)
		:VOICeband:INTerruption
	CONFigure:[SCALar]: [POWer]	[VOLTage](LEVel:AC):VOICeband:JITTer:[AC]
	CONFigure?	

CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:ASTep:TIMe

CONFigure:[SCALar]:[POWer] [VOLTage](LEVel:AC) : LEVel:ASTep:TIMe sets the instrument as SLAVE with timer controlled frequency switching in AUTOSTEP mode.

Manual operation: MODE TIME; Operating mode AUTOSTEP.

Comments
Example
Related commands

```
CONF:LEV:AST:TIM
```

CONF:LEV:AST:TIM
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]:[POWer]
[VOLTage](LEVel:AC):LEVel:[AC]
[VOLTage](LEVel:AC):LEVel:[AC]
[VOLTage](LEVel:AC):LEVel:ASTep:FAST
[VOLTage](LEVel:AC):LEVel:ASTep:FAST
[VOLTage](LEVel:AC):LEVel:ASTep:MASTer
[VOLTage](LEVel:AC):LEVel:ASTep:MASTer
[VOLTage](LEVel:AC):LEVel:ASTep:THResh
[VOLTage](LEVel:AC):LEVel:ASTep:THResh
[VOLTage](LEVel:AC):LEVel:HOTTone
[VOLTage](LEVel:AC):LEVel:HOTTone
[VOLTage](LEVel:AC):LEVel:JITTer:[AC]
[VOLTage](LEVel:AC):LEVel:JITTer:[AC]
[VOLTage](LEVel:AC):LEVel:NPR:[AC]
[VOLTage](LEVel:AC):LEVel:NPR:[AC]
[VOLTage](LEVel:AC):DEMod:[AC]
[VOLTage](LEVel:AC):DEMod:[AC]
[VOLTage](LEVel:AC):DEMod:INOise
[VOLTage](LEVel:AC):DEMod:INOise
[VOLTage](LEVel:AC):DEMod:INTerruption
[VOLTage](LEVel:AC):DEMod:INTerruption
[VOLTage](LEVel:AC):DEMod:JITTer:[AC]
[VOLTage](LEVel:AC):DEMod:JITTer:[AC]
[VOLTage](LEVel:AC):VOICeband:[AC]
[VOLTage](LEVel:AC):VOICeband:[AC]
[VOLTage](LEVel:AC):VOICeband:INOise
[VOLTage](LEVel:AC):VOICeband:INOise
[VOLTage](LEVel:AC)
[VOLTage](LEVel:AC)
:VOICeband:INTerruption
:VOICeband:INTerruption
[VOLTage](LEVel:AC):VOICeband:JITTer: [AC]
[VOLTage](LEVel:AC):VOICeband:JITTer: [AC]
CONFigure?

```
CONFigure?
```


CONFigure:[SCALar]:[POWer] | [VOLTage](LEVel:AC):LEVel:ASTep:THResh

Comments

Example
Related commands

CONFigure:[SCALar]:[POWer] [VOLTage](LEVel:AC):LEVel : ASTep: THResh sets the instrument as SLAVE with threshold-controlled frequency switching in AUTOSTEP mode

Manual operation: MODE THRESH; Operating mode AUTOSTEP.
CONF:LEVel:AST:THR

```
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]:[POWer]
CONFigure?
```

```
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer:[AC]
[VOLTage]:LEVel:JITTer:[AC]
[VOLTage]:LEVel:NPR:[AC]
[VOLTage]:LEVel:NPR:[AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]:DEMod:INTerruption
[VOLTage]:DEMod:JITTer:[AC]
[VOLTage]:DEMod:JITTer:[AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]:VOICeband:INOise
[VOLTage]
[VOLTage]
:VOICeband:INTerruption
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer:[AC]
```

```
[VOLTage]:VOICeband:JITTer:[AC]
```

```

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel:HOTTone}

\section*{Comments}

Example
Related commands

CONFigure:[SCALar]: [POWer] | [VOLTage]:LEVel : HOTTone sets HOT TONE SEARCH as the current operating mode.

Manual operation: [HOT] key.
CONF: LEV: HOTT
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC] [VOLTage]:LEVel:ASTep:FAST [VOLTage]:LEVel:ASTep:MASTer [VOLTage]:LEVel:ASTep:TIMe [VOLTage]:LEVel:ASTep:THResh [VOLTage]:LEVel:JITTer:[AC] [VOLTage]:LEVel:NPR: [AC] [VOLTage]:DEMod:[AC] [VOLTage]:DEMod:INOise [VOLTage]:DEMod:INTerruption [VOLTage]:DEMod:JITTer:[AC] [VOLTage]:VOICeband: [AC] [VOLTage]:VOICeband:INOise [VOLTage] :VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel:JITTer:[AC]}

CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel : JITTer: [AC] sets JITTER as the current operating mode.

Comments
Example
Related commands

Manual operation:[Blue key] and [LEVEL] key.
CONF: LEV: JITT
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]:DEMod:JITTer:[AC]
[VOLTage]: VOICeband: [AC]
[VOLTage]:VOICeband:INOise [VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer:[AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel:NPR:[AC]}

CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel : NPR: [AC] sets NPR as the current operating mode.

\section*{Comments}

Example
Related commands

Manual operation: [NPR] key
CONF:LEV:NPR

CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]: [POWer] CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]:[POWer] CONFigure:[SCALar]:[POWer] CONFigure:[SCALar]:[POWer] CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]:[POWer] CONFigure:[SCALar]: [POWer] CONFigure:[SCALar]: [POWer] CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]: [POWer] CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel: [AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer [VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]: DEMod:JITTer:[AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer:[AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel:SWEep:[AC]}

CONFigure: [SCALar]: [POWer] sets the actual operating mode to SWEEP.

Manual operation: [Blue Key] and [HOT] key
CONF : LEVel:SWE
CONFigure: [SCALar]: [POWer] CONFigure:[SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:SWEep

Comments Example

Related commands
[VOLTage]:LEVel: [AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer:[AC]
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]: DEMod:JITTer: [AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:DEMod:[AC]}

CONFigure: [SCALar]: [POWer] | [VOLTage]:DEMod:[AC] sets DEMODULATION as the current operating mode.

Comments
Example
Related commands

Manual operation: [DMOD] key
CONF: DEM
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer [VOLTage]:LEVel:ASTep:TIMe [VOLTage]:LEVel:ASTep:THResh [VOLTage]:LEVel:HOTTone [VOLTage]:LEVel:JITTer:[AC] [VOLTage]:LEVel:NPR:[AC] [VOLTage]:DEMod:INOise [VOLTage]:DEMod:INTerruption [VOLTage]:DEMod:JITTer:[AC] [VOLTage]:VOICeband: [AC] [VOLTage]:VOICeband:INOise [VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:DEMod:INOise}

\section*{Comments}

\section*{Example}

Related commands

CONFigure: [SCALar]: [POWer] [VOLTage] : DEMod: INOi se sets IMPULSIVE NOISE DEMODULATION in the operating mode IMPULSIVE NOISE as the current measurement mode.

Manual operation: Measurement mode IMPULSIVE NOISE DEMODULATION; Operating mode IMPULSIVE NOISE.

CONF: DEM: INO
CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer [VOLTage]:LEVel:ASTep:TIMe [VOLTage]:LEVel:ASTep:THResh [VOLTage]:LEVel:HOTTone [VOLTage]:LEVel:JITTer: [AC] [VOLTage]:LEVel:NPR:[AC] [VOLTage]: DEMod:[AC] [VOLTage]:DEMod:INTerruption [VOLTage]:DEMod:JITTer:[AC] [VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise [VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:DEMod:INTerruption}

\author{
CONFigure:[SCALar]:[POWer] [VOLTage] \\ : DEMod: INTerruption sets INTERRUPTIONS DEMODULATION in the operating mode INTERRUPTIONS as the current measurement mode. \\ \section*{Comments} \\ Example \\ Related commands Manual operation: INTERRUPTIONS DMOD; Operating mode INTERRUPTIONS. \\ CONF: DEM:INT \\ ```
CONFigure:[SCALar]:[POWer] | [VOLTage]:LEVel:[AC] \\ CONFigure:[SCALar]: [POWer] \\ CONFigure:[SCALar]:[POWer] \\ CONFigure:[SCALar]: [POWer] \\ CONFigure:[SCALar]:[POWer] \\ CONFigure:[SCALar]:[POWer] \\ CONFigure?
``` \\ [VOLTage]:LEVel: [AC] \\ [VOLTage]:LEVel:ASTep:FAST \\ [VOLTage]:LEVel:ASTep:MASTer \\ [VOLTage]:LEVel:ASTep:TIMe \\ [VOLTage]:LEVel:ASTep:THResh \\ [VOLTage]:LEVel:HOTTone \\ [VOLTage]:LEVel:JITTer: [AC] \\ [VOLTage]:LEVel:NPR: [AC] \\ [VOLTage]: DEMod: [AC] \\ [VOLTage]:DEMod:INOise \\ [VOLTage]: DEMod: JITTer: [AC] \\ [VOLTage]:VOICeband: [AC] \\ [VOLTage]:VOICeband:INOise \\ [VOLTage] \\ :VOICeband:INTerruption \\ [VOLTage]:VOICeband:JITTer: [AC]
}

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:DEMod:JITTer:[AC]}

CONFigure:[SCALar]:[POWer] [VOLTage]:DEMod : JITTer: [AC] sets TONE JITTER DEMODULATION in the operating mode JITTER as the current measurement mode.

\section*{Comments}

Example
Related commands

Manual operation: Measurement mode DEMODULATION TONE JITTER; Operating mode JITTER.

CONF:DEM: JITT
```

CONFigure:[SCALar]:[POWer] [VOLTage](LEVel:AC):LEVel:[AC]
CONFigure:[SCALar]:[POWer]
CONFigure:[SCALar]: [POWer]
CONFigure?

```
[VOLTage]:LEVel: [AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer:[AC]
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer:[AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:VOICeband:[AC]}

\section*{Comments}

Example
Related commands

CONFigure: [SCALar]: [POWer] | [VOLTage] : VOICeband: [AC] sets VOICE as the current operating mode.
crutul

Manual operation: [VOICE] key

\section*{CONF: VOIC}

CONFigure:[SCALar]:[POWer] CONFigure: [SCALar]: [POWer] CONFigure:[SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC] [VOLTage]:LEVel:ASTep:FAST [VOLTage]:LEVel:ASTep:MASTer [VOLTage]:LEVel:ASTep:TIMe [VOLTage]:LEVel:ASTep:THResh [VOLTage]:LEVel:HOTTone [VOLTage]:LEVel:JITTer:[AC] [VOLTage]:LEVel:NPR: [AC] [VOLTage]: DEMod: [AC] [VOLTage]:DEMod:INOise [VOLTage]:DEMod:INTerruption [VOLTage]: DEMod:JITTer:[AC] [VOLTage]:VOICeband:INOise [VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:VOICeband:INOise}

CONFigure:[SCALar]:[POWer] [VOLTage] : VOICeband: INOi se sets IMPULSIVE NOISE VOICEBAND in the operating mode IMPULSIVE NOISE as the current measurement mode.

\section*{Comments}

\section*{Example}

Related commands
Manual operation: Measurement mode IMPULSIVE NOISE VOICEBAND; Operating mode IMPULSIVE NOISE.

CONF:VOIC:INO

CONFigure: [SCALar]: [POWer] CONFigure: [SCALar]: [POWer]

CONFigure: [SCALar]: [POWer] CONFigure?
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer:[AC]
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise [VOLTage]: DEMod:INTerruption [VOLTage]: DEMod:JITTer: [AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]
:VOICeband:INTerruption
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:VOICeband:INTerruption}

CONFigure:[SCALar]:[POWer] [VOLTage] : VOICeband: INTerruption sets INTERRUPTIONS VOICEBAND in the operating mode INTERRUPTIONS as the current measurement mode.

\section*{Comments}

Example
Related commands
Manual operation: Measurement mode INTERRUPTIONS VOICEBAND; Operating mode INTERRUPTIONS.
```

CONF:VOIC:INT
CONFigure:[SCALar]:[POWer]

```
[VOLTage]:LEVel:[AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]: LEVel:JITTer: [AC]
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]:DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]:DEMod:JITTer:[AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]:VOICeband:JITTer: [AC]

\section*{CONFigure:[SCALar]:[POWer] | [VOLTage]:VOICeband:JITTer:[AC]}

CONFigure:[SCALar]:[POWer] [VOLTage] :VOICeband: JITTer: [AC] sets TONE JITTER in the operating mode JITTER as the current measurement mode.

Manual operation: Measurement mode TONE JITTER; Operating mode JITTER
CONF:VOIC:JITT
```

CONFigure:[SCALar]:[POWer] [VOLTage](LEVel:AC):LEVel:[AC]
CONFigure:[SCALar]:[POWer]

```
[VOLTage]:LEVel: [AC]
[VOLTage]:LEVel:ASTep:FAST
[VOLTage]:LEVel:ASTep:MASTer
[VOLTage]:LEVel:ASTep:TIMe
[VOLTage]:LEVel:ASTep:THResh
[VOLTage]:LEVel:HOTTone
[VOLTage]:LEVel:JITTer: [AC]
[VOLTage]:LEVel:NPR: [AC]
[VOLTage]:DEMod:[AC]
[VOLTage]: DEMod:INOise
[VOLTage]:DEMod:INTerruption
[VOLTage]:DEMod:JITTer: [AC]
[VOLTage]:VOICeband: [AC]
[VOLTage]:VOICeband:INOise
[VOLTage]
:VOICeband:INTerruption

\section*{CONFigure?}

CONFigure? determines the current setting of the operating mode and measurement mode.

\section*{Response}
\begin{tabular}{|c|c|c|}
\hline Response Name & Response Type & Range of Values \\
\hline MODE & String & \begin{tabular}{l}
LEV \\
LEV:AST:FAST \\
LEV:AST:MAST \\
LEV:AST:TIM \\
LEV:AST:THR \\
LEV:HOTT \\
LEV:JITT \\
LEV:NPR \\
LEV:SWE \\
DEM \\
DEM:INO \\
DEM:INT \\
DEMod:JITT \\
VOIC \\
VOIC:INO \\
VOIC:INT \\
VOIC:JITT
\end{tabular} \\
\hline
\end{tabular}

Example

Related commands

CONF?
Response: LEV
\begin{tabular}{|c|c|}
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel: [AC] \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:ASTep:FAST \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:ASTep:MASTer \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:ASTep:TIMe \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:ASTep:THResh \\
\hline CONFigure: [SCALar]: [POWer] & [VOLTage]:LEVel: HOTTone \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:JITTer: [AC] \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:LEVel:NPR: [AC] \\
\hline CONFigure: [SCALar]: [POWer] & [VOLTage]: DEMod: [AC] \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]: DEMod:INOise \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]: DEMod:INTerruption \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]: DEMod: JITTer: [AC] \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:VOICeband: [AC] \\
\hline CONFigure: [SCALar]: [POWer] & [VOLTage]:VOICeband:INOise \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage] \\
\hline & :VOICeband:INTerruption \\
\hline CONFigure:[SCALar]: [POWer] & [VOLTage]:VOICeband: JITTer: [AC] \\
\hline
\end{tabular}

\section*{INITiate:[IMMediate]}

INITiate: [IMMediate] triggers a measurement.

Fig. 10-21 INITiate trigger model

Measurements with this instrument can be triggered by the INITiate command. Since no other trigger events (event detection states) need be considered, the measurements can be controlled using the simple model.

\section*{Comments}

\section*{Example}

Related Commands

Idle state is assumed again at the end of the measurement sequence.
INIT
ABORt
FETCh?
READ?

\section*{FETch?}

FETch? causes output of the current measured value once the measurement has been triggered at least once by the INItiate command. The measured value is placed ready in the instrument's output buffer at the end of the measurement sequence.

\section*{Response}

\section*{Error codes}

Example

Related commands
\begin{tabular}{|c|c|c|}
\hline Operating mode & Response name & Response type \\
\hline \multirow[t]{2}{*}{LEVEL, DEMOD, VOICE} & Level (logarithmic UNIT) & <NR2> \\
\hline & Level (linear UNIT) & <NR3> \\
\hline NPR & NPR value, Input power, Selective channel noise. & <NR2>, <NR2> <NR2> \\
\hline \multirow[t]{2}{*}{HOT TONE SEARCH} & \begin{tabular}{l}
One pair of values for each hot tone found: \\
Frequency, \\
Level (logarithmic UNIT)
\end{tabular} & \[
\begin{aligned}
& \text { <NR3>, } \\
& \text { <NR2> }
\end{aligned}
\] \\
\hline & Frequency, Level (linear UNIT) & \[
\begin{aligned}
& \text { <NR3> } \\
& \text { <NR3> }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{AUTOSTEP} & \begin{tabular}{l}
One pair of values for each measurement: \\
Frequency, \\
Level (logarithmic UNIT)
\end{tabular} & <NR3>, <NR2> \\
\hline & Frequency, Level (linear UNIT) & \[
\begin{aligned}
& \hline \text { <NR3> } \\
& \text { <NR3> }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{SWEEP} & \begin{tabular}{l}
51 (Sweeptime 1 sec) or \\
101 (Sweeptime >1sec) \\
Values: \\
Level (Logarithmic UNIT)
\end{tabular} & <NR2> \\
\hline & Level (linear UNIT) & <NR3> \\
\hline JITTER & Jitter value & <NR3> \\
\hline IMPULSIVE NOISE & Events & <NR1> \\
\hline INTERRUPTIONS & Events & <NR1> \\
\hline
\end{tabular}

Overflow/underflow monitoring is possible by querying the relevant status register.
If the result is queried before the end of the first measurement after a *RST, the error code -230 "Data corrupt or stale" is generated.

\section*{FETC?}

Response: -20.00,

\section*{READ?}

INITiate
ABORt

\section*{READ?}

READ? triggers a measurement and queries the result.
```

Response
Table as for FETCh? command (see above).
Example
READ?
Response: -20.00 dBm
Related commands FETCh?
INITiate:[IMMediate]
ABORt

```

\section*{CALCulate:AVERage:[STATe]}

CALCulate: AVERage: [STATe] activates or deactivates the result averaging function or calls up the default setting of this parameter.

\section*{Parameters}

\section*{Comments}

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AVRG & Boolean & ON | OFF | DEFault | 0 | 1 \\
\hline
\end{tabular}

Manual operation: AVRG; Operating modes LEVEL, DEMODULATION, NPR, VOICE

CALC:AVER ON
CALCulate:AVERage: [STATe]?

\section*{CALCulate:AVERage:[STATe]?}

CALCulate: AVERage: [STATe] ? determines the current status of the result averaging function

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AVRG & Character data & <none>| DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{Example}

Related Commands

CALC:AVER? DEF
Response: 0
CALCulate:AVERage: [STATe]

\section*{CALibration:AUTO}

CALibration: AUTO controls the instrument autocalibration function;
AUTO ON: Switch on autocalibration
AUTO OFF: Switch off autocalibration
AUTO ONCE: Perform autocalibration once

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline CAL & Boolean & ON | OFF | DEFault | ONCE | 0 | 1 \\
\hline
\end{tabular}

Comments
Manual operation: [CAL] key
Example
Related commands
CAL:AUTO ON
CALibration:AUTO?
CALibration:DATA?
CALibration:STATe
CALibration:STATe?

\section*{CALibration:AUTO?}

CALibration:AUTO? determines the current statu of the autocalibration function.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline CAL & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{Example}

Related commands

CAL:AUTO? DEF
Response: 0
CALibration:AUTO
CALibration:DATA?
CALibration:STATe
CALibration:STATe?

\section*{CALibration:DATA?}

CALibration:DATA? reads out the current calibration data.

\section*{Operating mode LEVEL:}

Correction as <NR2> in dB or 9.91E+37 (Not a Number), e.g. with calibration switched off.
Operating mode DEMODULATION:
Correction as <NR2> in dB
or 9.91E+37 (Not a Number), e.g. with calibration switched off.

\section*{Operating mode VOICE:}

Correction as <NR2> in dB
or 9.91E+37 (Not a Number), e.g. with calibration switched off.
Operating mode AUTOSTEP:
Correction as <NR2> in dB
or 9.91E+37 (Not a Number), e.g. with calibration switched off.
Operating mode HOT TONE SEARCH:
Correction as <NR2> in dB
or 9.91E+37 (Not a Number), e.g. with calibration switched off.

\section*{Operating mode NPR:}

Two corrections as <NR2>, <NR2> in dB or 9.91E+37 (Not a Number).
1st correction for the selective channel noise
2nd correction for the input power
or only one correction 9.91E+37 (NoN), e.g. with calibration switched off.
Operating mode IMPULSIVE NOISE:
Correction after starting the measurement. Before starting, 9.91E+37 (NoN) is output.

Operating modes JITTER and INTERRUPTIONS:
No correction. 9.91E+37 (NoN) is always output.
Related commands
CALibration:AUTO
CALibration:AUTO?
CALibration:STATe
CALibration:STATe?

\section*{CALibration:STATe}

CALibration:STATe determines whether the calibration data are to be applied or not.
STATe ON: Calibration data are applied as corrections to the measured values. STATe OFF: Calibration data are ignored.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline--- & Boolean & ON | OFF | DEFault | 0 | 1 \\
\hline
\end{tabular}

Comments
STATe is set to ON by *RST.

\section*{Example}

Related commands

\section*{CAL:STAT ON}

CALibration:STATe?
CALibration:AUTO
CALibration:AUTO?
CALibration:DATA?

\section*{CALibration:STATe?}

CALibration:STATe? determines the current status as to whether the current calibration data are to be applied or not.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{Example}

Related commands

CAL: STAT? DEF
Response: 1
CALibration:STATe
CALibration:AUTO
CALibration:AUTO?
CALibration:DATA?

\section*{DISPlay:ENABle}

DISPlay: ENABle switches the screen display during remote-controlled operation on or off.
ENABLE ON: Display on
ENABLE OFF: display off

\section*{Parameters}

Comments

\section*{Example}

Related commands

DISPlay:ENABIe?

DISPlay: ENABle? Determines the current status of the display.
0 = Display off
1 = Display on

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

\section*{Comments}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

The measurement finishes faster since the screen display does not have to be computed.

DISP:ENAB? DEF
Response: 1
DISPlay:ENABle

\section*{DISPlay:[WINDow]:TRACe:Y:[SCALe]:PDIVision}

DISPlay:[WINDow]:TRACe:Y:[SCALe]:PDIVision sets the Y axis resolution.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SCALE & Numeric data & DEFault | \(1|2| 5|10| 20 \mathrm{~dB} /\) Div \\
\hline
\end{tabular}

Comments.

\section*{Example}

Related commands

The measurement finishes faster since the screen display does not have to be computed.

DISP:TRAC:Y:PDIV 1
DISPlay:[WINDow]:TRACe: Y: [SCALe]:PDIVision?

\section*{DISPlay:[WINDow]:TRACe:Y:[SCALe]:PDIVision?}

DISPlay: [WINDow]:TRACe:Y:[SCALe]:PDIVision? queries the actual \(Y\) axis resolution setting.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SCALE & <NR1> & <none \(>\) |DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Scale division & \(<\) NR1> & \(1|2| 5|10| 20\) \\
\hline
\end{tabular}

Example

Related commands

DISP:TRAC:Y:PDIV? DEF
Response: 20
DISPlay:[WINDow]:TRACe:Y:[SCALe]:PDIVision

\section*{DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel}

DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel sets the Y reference for the modes AUTOSTEP and SWEEP.

\section*{Parameter}

\section*{Comments}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Numeric data & \begin{tabular}{l}
MINimun | MAXimum | DEFault | -170 to \\
170 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit and the input impedance; the specified range of values applies for the " dB " unit.

DISP:TRAC:Y:RLEV DEF
DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel?

\section*{DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel?}
```

DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel?

```
queries the actual Y reference setting.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & \begin{tabular}{l}
<none> | MINimum | MAX|mum | DE- \\
Fault
\end{tabular} \\
\hline
\end{tabular}

\section*{Response}

Comments

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline \begin{tabular}{l}
Scale reference \\
level
\end{tabular} & <NR2> & -170 to 170 dB \\
\hline
\end{tabular}

The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.

DISP:TRAC:Y:RLEV? DEF
Response: 0.00
DISPlay:[WINDow]:TRACe:Y:[SCALe]:RLEVel

\section*{INPut:CHANnel}

INPut: CHANnel switches the receiver input.
UNBalanced = Coaxial input
HFBalanced = Balanced input I (HIGH FREQUENCY BALANCED)
LFBalanced = Balanced input II (LOW FREQUENCY BALANCED)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline RX & Character data & \begin{tabular}{l}
UNBalanced | HFBalanced | LFBalanced \\
| DEFault
\end{tabular} \\
\hline
\end{tabular}

The correct setting for the receiver input includes the input (INPut:CHANnel), the impedance (INPut:IMPedance) and the termination (INPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline INPut:CHANnel & & & & & & & & & & & & \\
\hline UNBalanced & X & X & X & X & & & & & & & & \\
\hline HFBalanced & & & & & X & X & X & X & & & & \\
\hline LFBalanced & & & & & & & & & X & X & X & X \\
\hline INPut:IMPedance & & & & & & & & & & & & \\
\hline 50 & X & X & & & & & & & & & & \\
\hline 75 & & & X & X & & & & & & & & \\
\hline 124 & & & & & X & X & & & & & & \\
\hline 135 (US version) & & & & & & & X & X & X & X & & \\
\hline 150 (European version) & & & & & & & & X & X & \\
\hline 600 & & & & & & & & & & & X & X \\
\hline INPut:TERMination & & & & & & & & & & & & \\
\hline MATChed & X & & X & & X & & X & & X & & X & \\
\hline HIMPedance & & X & & X & & X & & X & & X & & X \\
\hline
\end{tabular}

\section*{Comments}

Example
Related Commands

Manual operation: [IMPED] key.
Switch the receiver input with a "Program Message".
```

INP:CHAN UNB; IMP 75; TERM MATC

```

INPut: CHANnel?
INPut:IMPedance
INPut: IMPedance?
INPut:TERMination
INPut:TERMination?

\section*{INPut:CHANnel?}

INPut: CHANnel? determines the current input setting.
UNB = Coaxial input
HFB = Balanced input I
LFB = Balanced input II

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline RX & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

Example

Related Commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Input & \begin{tabular}{l}
Character \\
response data
\end{tabular} & UNB | HFB | LFB \\
\hline
\end{tabular}

INP: CHAN? DEF
Response: UNB
INPut: CHANnel
INPut:IMPedance
INPut:IMPedance?
INPut:TERMination
INPut:TERMination?

\section*{INPut:GAIN}

INPut: GAIN sets the input signal gain in DEMODULATION mode.
Units are dB .

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline Gain & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 0 to \\
120 dB in 5 dB steps)
\end{tabular} \\
\hline
\end{tabular}

Manual operation: GAIN, Operating modes DEMODULATION, VOICE This setting is not coupled to the input attenuator.
The value on *RST depends on the instrument setting.
Range setting in 5 dB steps.
INPut: GAIN MIN
INPut: GAIN?
INPut:GAIN AUTO
INPut: GAIN AUTO?

\section*{INPut:GAIN?}

INPut: GAIN? determines the current gain setting for the operating mode DEMODULATION.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline GAIN & Character data & \begin{tabular}{l}
<none> | DEFault | MINimum | MAXi- \\
mum
\end{tabular} \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Gain & \(<\) NR2> & 0 to 120 dB \\
\hline
\end{tabular}

Comments

\section*{Example}

Related commands

Range setting in 5 dB steps. Units are always dB .
INP: GAIN? MAX
Response: 120.00
INPut: GAIN
INPut: GAIN: AUTO
INPut: GAIN: AUTO?

\section*{INPut:GAIN:AUTO}

INPut:GAIN:AUTO
ON: Automatic level control is on. The input and measurement amplifiers are optimized as they are controlled by the input level.
(Operating mode LEVEL).
OFF: Input and measurement amplifier settings are not altered. The amplifiers may therefore be over- or underdriven which can lead to noise and distortion. If the level conditions are known and the amplifiers are set correctly, however, measurements will be faster than in auto mode.
(Operating mode LEVEL).
ONCE: The overall gain is matched once to the input signal (Operating modes DEMODULATION, VOICE).

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
AUTO \\
RANGING \\
AUTO GAIN \\
GAIN
\end{tabular} & Boolean & ON | OFF | DEFault | ONCE | \(0 \mid 1\) \\
\hline
\end{tabular}

Manual operation:
AUTO RANGING (Aux. function TEST\& CONFIG) same as AUTO ON/OFF. AUTO SET (Operating mode DEMODULATION, VOICE) same as AUTO ONCE; After *RST this parameter is set to ON.

INPut: GAIN:AUTO ONCE
INPut: GAIN: AUTO?
INPut: GAIN
INPut: GAIN?
INPut: GAIN: IF
INPut: GAIN:IF?
INPut: GAIN: RF
INPut: GAIN: RF?

\section*{INPut:GAIN:AUTO?}

INPut : GAIN : AUTO? determines if automatic level control is on or off in LEVEL operating mode.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AUTORANGING & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<N R 1>\) & \(0 \mid 1\) \\
\hline
\end{tabular}

Comments
After *RST this parameter is set to ON.
Example
INP: GAIN AUTO?
Response: 1
Related commands InPut:GAIN:AUTO
INPut: GAIN
INPut: GAIN?
INPut: GAIN:IF
INPut: GAIN:IF?
INPut:GAIN:RF
INPut: GAIN: RF?

\section*{INPut:GAIN:IF}

INPut: GAIN: IF sets the IF gain (Operating mode LEVEL). IF MINimum: Minimum IF gain IF MAXimum: Maximum IF gain

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline IF & Numeric data & MINimum | MAXimum | DEFault | 0 to 80 \\
\hline
\end{tabular}

Manual operation: IF GAIN, deactivate auto level control. Range setting in 5 dB steps. Units are always dB .
```

INPut:GAIN:IF MINimum

```

INPut: GAIN: AUTO
INPut: GAIN
INPut: GAIN?
INPut:GAIN:IF?
INPut: GAIN:RF
INPut: GAIN: RF?

\section*{INPut:GAIN:IF?}

INPut: GAIN: IF? determines the current IF gain.

\section*{Parameters}

Response

Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline IF & Character data & \begin{tabular}{l}
<none> | DEFault | MINimum | MAXi- \\
mum
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Gain & <NR2> & 0 to 80 \\
\hline
\end{tabular}

Range setting in 5 dB steps. Units are always dB
INP: GAIN:IF? MAX
Response: 80.00
INPut: GAIN: AUTO
INPut: GAIN
INPut: GAIN?
INPut: GAIN: IF
INPut: GAIN: RF
INPut: GAIN: RF?

\section*{INPut:GAIN:RF}

INPut: GAIN: RF sets the RF gain for LEVEL operating mode.

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline RF & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 20 to \\
-40 dB
\end{tabular} \\
\hline
\end{tabular}

Manual operation: RF GAIN, deactivate auto level control. Range setting in 5 dB steps. Units are always dB .
```

INP:GAIN:RF DEF

```

INPut: GAIN: AUTO
INPut: GAIN
INPut: GAIN?
INPut: GAIN:IF
INPut:GAIN:IF?
INPut:GAIN:RF?

\section*{INPut:GAIN:RF?}

INPut: GAIN: RF? determines the current IF gain setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline RF & Character Data & \begin{tabular}{l}
<none> | DEFault | MINimum | MAXi- \\
mum
\end{tabular} \\
\hline
\end{tabular}

Response

Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Gain & <NR2> & 20 to -40 \\
\hline
\end{tabular}

Range setting in 5 dB steps. Units are always dB .
INP: GAIN: RF? MIN
Response: - 40.00
INPut:GAIN:AUTO
INPut: GAIN
INPut: GAIN?
INPut: GAIN:IF
INPut: GAIN:IF?
INPut: GAIN: RF

\section*{INPut:IMPedance}

INPut: IMPedance sets the impedance of the receiver input.
IMPedance 50: The impedance is \(50 \Omega\).
IMPedance 75: The impedance is \(75 \Omega\).
IMPedance 124: The impedance is \(124 \Omega\).
IMPedance 135: The impedance is \(135 \Omega\) (US version).
IMPedance 150: The impedance is \(150 \Omega\) (European version).
IMPedance 600: The impedance is \(600 \Omega\).

\section*{Parameters}

\section*{Dependencies}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline IMPED & Numeric data & DEFault \(50|75| 124|135| 150 \mid 600\) \\
\hline
\end{tabular}

The correct setting for the receiver input includes the input (INPut:CHANnel), the impedance (INPut:IMPedance) and the termination (INPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline INPut:CHANnel & & & & & & & & & & & & \\
\hline UNBalanced & X & X & X & X & & & & & & & & \\
\hline HFBalanced & & & & & X & X & X & X & & & & \\
\hline LFBalanced & & & & & & & & & X & X & X & X \\
\hline INPut:IMPedance & & & & & & & & & & & & \\
\hline 50 & X & X & & & & & & & & & & \\
\hline 75 & & & X & X & & & & & & & & \\
\hline 124 & & & & & X & X & & & & & & \\
\hline 135 (US version) & & & & & & & X & X & X & X & & \\
\hline 150 (European version) & & & & & & & & X & X & X & & \\
\hline 600 & & & & & & & & & & & X & X \\
\hline INPut:TERMination & & & & & & & & & & & & \\
\hline MATChed & X & & X & & X & & X & & X & & X & \\
\hline HIMPedance & & X & & X & & X & & X & & X & & X \\
\hline
\end{tabular}

Manual operation: [IMPED] key.
Switch the receiver input with a "Program Message".
INPut: CHAN UNB; IMP 75; TERM MATC
INPut: CHANnel
INPut: CHANel?
INPut:IMPedance?
INPut:TERMination
INPut:TERMination?

\section*{INPut:IMPedance?}

INPut: IMPedance? queries the impedance setting of the receiver input.
IMPedance 50: The impedance is \(50 \Omega\).
IMPedance 75: The impedance is \(75 \Omega\).
IMPedance 124: The impedance is \(124 \Omega\).
IMPedance 135: The impedance is \(135 \Omega\) (US version).
IMPedance 150: The impedance is \(150 \Omega\) (European version).
IMPedance 600: The impedance is \(600 \Omega\).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline IMPED & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Impedanz & \(<\) NR2> & \(50|75| 124|135| 150 \mid 600\) \\
\hline
\end{tabular}

Example

Related commands
INPut:IMPedance?
Response: 600
INPut:CHANnel
INPut: CHANel?
INPut:IMPedance
INPut:TERMination
INPut:TERMination?

\section*{INPut:TERMination}

INPut:TERMination sets the input termination.
TERMination MATChed: The input is terminated with the selected impedance. TERMination HIMPedance: The input is terminated with a high impedance. The impedance value is used to compute power-based results (units such as dBm).

\section*{Parameters}

\section*{Dependencies}

\section*{Comments}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TERM & Character data & MATChed | HIMPedance | DEFault \\
\hline
\end{tabular}

The correct setting for the receiver input includes the input (INPut:CHANnel), the impedance (INPut:IMPedance) and the termination (INPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline INPut:CHANnel & & & & & & & & & & & & \\
\hline UNBalanced & X & X & X & X & & & & & & & & \\
\hline HFBalanced & & & & & X & X & X & X & & & & \\
\hline LFBalanced & & & & & & & & & X & X & X & X \\
\hline INPut:IMPedance & & & & & & & & & & & & \\
\hline 50 & X & X & & & & & & & & & & \\
\hline 75 & & & X & X & & & & & & & & \\
\hline 124 & & & & & X & X & & & & & & \\
\hline 135 (US version) & & & & & & & & & & \\
\hline 150 (European version) & & & & & & & X & X & X & X & & \\
\hline 600 & & & & & & & & & & & X & X \\
\hline INPut:TERMination & & & & & & & & & & & & \\
\hline MATChed & X & & X & & X & & X & & X & & X & \\
\hline HIMPedance & & X & & X & & X & & X & & X & & X \\
\hline
\end{tabular}

Manual operation: [IMPED] key.
Switch the receiver input with a "Program Message".
INP:CHAN UNB; IMP 75; TERM MATC
```

INPut:CHANnel
INPut:CHANel?
INPut:IMPedance
INPut:IMPedance?
INPut:TERMination?

```

\section*{INPut:TERMination?}

INPut: TERMination? queries the input termination setting.
MATC: The input is terminated with the selected impedance.
HIMP: The input is terminated with a high impedance.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TERM & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Termination & \begin{tabular}{l}
Character \\
response data
\end{tabular} & MATC | HIMP \\
\hline
\end{tabular}

Example
INPut: TERMination?
Response: MATC
Related commands
INPut:CHANnel
INPut: CHANel?
INPut:IMPedance
INPut:IMPedance?
INPut: TERMination?

\section*{MIXer:LEVel}

MIXer: LEVel sets the receiver dynamic range conditions.
LEVel LNOise: Low noise setting
LEVel LDIStortion: Low distortion setting

\section*{Parameter}

Comments
Manual operation: LOW NOISE or LOW DISTORTION; SWEEP mode
Example
Related commands

\section*{MIXer:LEVel LNOIse}

MIXer:LEVel?

\section*{MIXer:LEVel?}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & LNOise | LDIStortion | DEFault \\
\hline
\end{tabular}

MIXer:LEVel? queries the actual receiver dynamic range conditions.
LNO: Low noise setting
LDIS: Low distortion setting

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & <none>| DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Mixer setting & \begin{tabular}{l}
Character \\
response data
\end{tabular} & LNO | LDIS \\
\hline
\end{tabular}

\section*{Example}

Related commands

\section*{MIXer:LEVel?}

Response: LNO
MIXer:LEVel

\section*{OTHers:GTIMe}

OTHers: GTIMe sets the gate time for operating modes IMPULSIVE NOISE and INTERRUPTIONS.
The gate time format is: hh:mm

\section*{Parameters}

Comments

\section*{Example}

Related commands

\section*{OTHers:GTIMe?}

OTHers: GTIMe? queries the current gate time status in operating modes IMPULSIVE NOISE and INTERRUPTIONS.

\section*{Response}

Example

Related commands
Manual operation: GATE TIME; operating modes IMPULSIVE NOISE, INTERRUPTIONS

OTH:GTIM 02,30
OTHers: GTIMe?
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Gate time & \(<\) NR1 \(>,<\) NR1 \(>\) & 1 min to 99 h 59 min \\
\hline
\end{tabular}

OTH: GTIM?
Response: 02, 30
OTHers:GTIMe
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline GATE TIME & \begin{tabular}{l}
Decimal data, \\
Decimal data
\end{tabular} & \(0 \mathrm{~h}, 1 \mathrm{~min}\) to 99 h 59 min \\
\hline
\end{tabular}

\section*{OTHers:INTerruption:DTIMe}

OTHers:INTerruption: DTIMe sets the dead time, after which interruptions are recorded.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline DEAD TIME & Numeric data & DEFault \(|0.125| 0.003 \mid 0.143\) \\
\hline
\end{tabular}

Manual operation: DEAD TIME; operating mode INTERRUPTIONS. Units are seconds.

OTH:INT:DTIM 0.003
OTHers:INTerruption:DTIMe?

\section*{OTHers:INTerruption:DTIMe?}

OTHers:INTerruption: DTIMe? queries the current dead time.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline DEAD TIME & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Dead time & \(<\) NR2> & \(0.125|0.003| 0.143\) \\
\hline
\end{tabular}

\section*{Example}

Related commands

OTHers:INT:DTIM?
Response: 0.125
OTHers:INTerruption:DTIMe

\section*{OTHers:MAXHold}

OTHers:MAXHold determines whether the maximum value is stored in operating mode HOT TONE SEARCH.
MAXHold ON: Maximum value is stored.
MAXHold OFF: Maximum value is not stored.

\section*{Parameters}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAXHold & Boolean & ON | OFF | DEFault |0|1 \\
\hline
\end{tabular}

Manual operation: MAX HLD
OTHers:MAXH ON
OTHers:MAXHold?

\section*{OTHers:MAXHold?}

OTHers:MAXHold? queries whether the maximum values are stored in operating mode HOT TONE SEARCH.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAXHLD & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & <NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

1: Maximum value is stored.
0 : Maximum value is not stored.
OTH:MAXH? DEF
Response: 0
OTHers:MAXHold

\section*{OTHers:NPR:SCHannels}

OTHers: NPR: SCHannels sets the channel system for which the NPR measurement is performed.

\section*{Parameters}

Dependencies
Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SYSTEM & Numeric data & DEFault | \(12|24| 36|48| 60|72| 80 \mid\) \\
& & \(96|120| 132|192| 240|252| 300 \mid 312\) \\
& & \(|432| 480|540| 600|612| 792|900|\) \\
& & \(960|972| 1092|1200| 1260|1332|\) \\
& \(1380|1500| 1800|1872| 2100|2400|\) \\
& & \(2580|2700| 3600\) \\
\hline
\end{tabular}

With the SPM/PSM-(1)37 devices, only up to channel system 1800.
Manual operation: SYSTEM.
OTHers:NPR:SCHannels 2700
OTHers:NPR:SCHannels?

\section*{OTHers:NPR:SCHannels?}

OTHers:NPR:SCHannels? queries the current number of transmission channels for the NPR measurement.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SYSTEM & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Channel system & <NR1> & \(12|24| 36|48| 60|72| 80|96| 120 \mid\) \\
& & \(132|192| 240|252| 300|312| 432 \mid\) \\
& & \(480|540| 600|612| 792|900| 960 \mid\) \\
& & \(972|1092| 1200|1260| 1332|1380|\) \\
& & \(2500|1800| 1872|2100| 2400|2580|\) \\
& & \\
& & \\
\hline
\end{tabular}

OTHers: NPR:SCHannels?
Response: 2700
OTHers:NPR:SCHannels

\section*{OTHers:SIDeband}

OTHers: SIDeband sets the sideband.
SIDeband UPPer: The upper sideband is measured (USB)
SIDeband LOWer: The lower sideband is measured (LSB)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SIDeband & Character data & UPPer | USB | LOWer | LSB | DEFault \\
\hline
\end{tabular}

Comments

\section*{Example}

Related commands
Manual operation: LSB or USB; operating modes DEMODULATION, Measurement mode IMPULSIVE NOISE DEMODULATION, Measurement mode INTERRUPTION DEMODULATION Measurement mode JITTER DEMODULATION TONE

OTH:SID LOW
OTHers:SIDeband?

\section*{OTHers:SIDeband?}

OTHers: SIDeband? queries the current sideband setting.
UPP: The upper sideband is measured (USB)
LOW: The lower sideband is measured (LSB)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline LSB/USB & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Sideband & \begin{tabular}{l}
Character re- \\
sponse data
\end{tabular} & USB | LSB \\
\hline
\end{tabular}

Example

Related commands

OTH:SID?
Response: USB
OTHers:SIDeband

\section*{OTHers:THReshold:ASTep}

OTHers:THReshold:ASTep sets the level threshold in master-slave operation for operating mode AUTOSTEP. When the threshold is reached, the slave switches frequency in sync. with the master. The threshold is based on the reference level (upper scale end).

\section*{Parameters}

Comments

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
START \\
THRESHOLD \\
or STEP \\
THRESHOLD
\end{tabular} & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
-70 to 0 dB
\end{tabular} \\
\hline
\end{tabular}

Manual operation:
STEP THRESH; AUTOSTEP mode THRESH
START THRESH; AUTOSTEP TIME.
Units are always dB.

\section*{Example}

OTH:THR:AST MIN
OTHers:THReshold:ASTep
DISPlay: [WINDow]:TRACe:Y:[SCALe]:RLEVel

\section*{OTHers:THReshold:ASTep?}

OTHers:THReshold:ASTep? queries the current level threshold in master-slave operation for operating mode AUTOSTEP.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
START \\
THRESHOLD \\
or STEP \\
THRESHOLD
\end{tabular} & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Level threshold & <NR2> & -70 to 0 \\
\hline
\end{tabular}

OTH:THR:AST? MIN
Response: - 70.00
OTHers:THReshold:ASTep

\section*{OTHers:THReshold:HOTTone:[ABSolute]}

OTHers:THReshold:HOTTone: [ABSOlute] sets the search threshold above which the input level is recorded in operating mode HOT TONE SEARCH. Level reference LEVEL ABSOLUTE.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
-80 to 6 dB
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

Comments

\section*{Example}

Related commands
The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.
Manual operation: THR
OTH:THR: HOTT MAX
OTHers:THReshold: HOTTone: [ABSolute]?
[SENSe]:POWer|VOLTage:[AC]|[DC]:REFerence:STATe
[SENSe]:POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT: POWer|VOLTage

\section*{OTHers:THReshold:HOTTone:[ABSolute]?}

OTHers:THReshold:HOTTone: [ABSOlute] ? queries the current level threshold setting above which the input level is recorded.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR & Character data & \begin{tabular}{l}
<none> | MINimum | MAXimum | DE- \\
Fault
\end{tabular} \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Search threshold & <NR2> & -80 to 6 \\
\hline
\end{tabular}

\section*{Dependencies}

\section*{Example}

Related commands
The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.
```

OTH:THR:HOTT? MIN
Response: -80
OTHers:THReshold:HOTTone:[ABSolute]?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence:STATe
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:HOTTone:REFerence}

OTHers:THReshold:HOTTone:REFerence sets the search threshold above which the input level is recorded in operating mode HOT TONE SEARCH. Level reference LEVEL ABS-REF.

\section*{Parameters}

\section*{Dependencies}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
-80 to 6 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

Manual operation: THR
OTH:THR:HOTT:REF MIN
OTHers:THReshold:HOTTone:REFerence?
[SENSe]:POWer|VOLTage: [AC]|[DC]:REFerence
[SENSe]: POWer|VOLTage:[AC]|[DC]:REFerence:STATe
UNIT:POWer|VOLTage

\section*{OTHers:THReshold:HOTTone:REFerence?}

OTHers:THReshold:HOTTone:REFerence? queries the current level threshold setting above which the input level is recorded.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

Dependencies

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Search threshold & \(<\) NR2> & -80 to 6 \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

OTH:THR:AST:HOTT:REF? MIN
Response: - 80.00
```

OTHers:THReshold:HOTTone:REFerence?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:HOTTone:TLP}

OTHers: THReshold: HOTTone:TLP sets the search threshold above which the input level is recorded in operating mode HOT TONE SEARCH. Level reference LEVEL RELATIVE.

\section*{Parameters}

\section*{Dependencies}

\section*{Comments}

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
-80 to 6 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

Manual operation: THR
OTHers:THReshold:ASTep:TLP MIN
OTHers:THReshold:ASTep:TLP?
[SENSe]:POWer|VOLTage:[AC]|[DC]:TLP
[SENSe]:POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT: POWer|VOLTage

\section*{OTHers:THReshold:HOTTone:TLP?}

OTHers: THReshold: HOTTone:TLP? queries the current level threshold setting above which the input level is recorded.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR/x & Character data & <none> |MINimum|MAXimum| DEFault \\
\hline
\end{tabular}

Response

\section*{Dependencies}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Search threshold & <NR2> & -80 to 6 \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.
```

OTHers:THReshold:HOTTone:TLP? MIN
Response:-80.00
OTHers:THReshold:ASTep:TLP?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:INOise:[ABSolute]}

OTHers:THReshold:INOise:[ABSolute] sets the level threshold above which events are registered in operating mode IMPULSIVE NOISE. Level reference LEVEL ABSOLUTE

\section*{Parameters}

\section*{Dependencies}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | -70 to \\
0 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.
Manual operation: THRESH
OTH:THR:INO MIN
OTHers:THReshold:INOise:[ABSolute]?
[SENSe]: POWer|VOLTage:[AC]|[DC]:REFerence:STATe
[SENSe]:POWer|VOLTage: [AC]|[DC]:TLP:STATe
UNIT: POWer|VOLTage

\section*{OTHers:THReshold:INOise:[ABSolute]?}

OTHers:THReshold:INOise: [ABSolute] ? queries the current level threshold above which events are registered in operating mode IMPULSIVE NOISE.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THR/x & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

\section*{Dependencies}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Level threshold & <NR2> & -70 to 0 \\
\hline
\end{tabular}

The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.
```

OTH:THR:INO? MIN
Response: -70.00
OTHers:THReshold:INOise:[ABSolute]?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence:STATe
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:INOise:REFerence}

OTHers:THReshold:INOise:REFerence sets the level threshold above which events are registered in operating mode IMPULSIVE NOISE. Level reference LEVEL ABS-REF.

\section*{Parameters}

Dependencies

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH -REF & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | -70 to \\
0 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

Manual operation: THRESH
OTH:THR:INO:REF MIN
OTHers:THReshold:INOise:REFerence?
[SENSe]: POWer|VOLTage: [AC]|[DC]:REFerence
[SENSe]: POWer|VOLTage: [AC]|[DC]:REFerence:STATe
UNIT: POWer|VOLTage

\section*{OTHers:THReshold:INOise:REFerence?}

OTHers:THReshold:INOise:REFerence? queries the current level threshold above which events are registered in operating mode IMPULSIVE NOISE.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH-REF & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}

\section*{Dependencies}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Level threshold & <NR2> & -70 to 0 \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.
```

OTH:THR:INO:REF? MIN
Response: -70.00
OTHers:THReshold:INOise:REFerence?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:REFerence:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:INOise:TLP}

OTHers:THReshold:INOise:TLP sets the level threshold above which events are registered in operating mode IMPULSIVE NOISE. Level reference LEVEL RELATIVE.

\section*{Parameters}

\section*{Dependencies}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH-TLP & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | -70 to \\
0 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

Manual operation: THRESH
OTH:THR:INO:TLP MIN
OTHers:THReshold:INOise:TLP?
[SENSe]:POWer|VOLTage:[AC]|[DC]:TLP
[SENSe]:POWer|VOLTage: [AC]|[DC]:TLP:STATe
UNIT:POWer|VOLTage

\section*{OTHers:THReshold:ASTep:TLP?}

OTHers:THReshold:INOise:TLP? queries the current level threshold above which events are registered in operating mode IMPULSIVE NOISE.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH-TLP & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

Dependencies

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Level threshold & <NR2> & 70 to 0 \\
\hline
\end{tabular}

The range of values depends on the active unit, the input impedance and the reference level; the specified range of values applies for the "dB" unit and the 0 dB reference level.

OTH:THR:INO:TLP? MIN
Response: - 70.00
```

OTHers:THReshold:INOise:TLP?
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP
[SENSe](FREQuency:MODE?):POWer|VOLTage:[AC]|[DC]:TLP:STATe
UNIT:POWer|VOLTage

```

\section*{OTHers:THReshold:INTerruption}

OTHers:THReshold:INTerruption sets the level threshold from which events are registered in operating mode INTERRUPTIONS.

\section*{Parameters}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH & Numeric data & DEFault |-3|-6|-10|-20 \\
\hline
\end{tabular}

Manual operation: THRESH. Units are always dB.
Example
OTH:THR:INT -20 dB
Related commands
OTHers:THReshold:INTerruption?

\section*{OTHers:THReshold:INTerruption?}

OTHers:THReshold:INTerruption? queries the current level threshold from which events are registered in operating mode INTERRUPTIONS.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline THRESH & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Level threshold & \(<\) NR1> & \(-3|-6|-10 \mid-20\) \\
\hline
\end{tabular}

\section*{Example}

Related commands
OTH:THR: INT?
Response: -20
OTHers:THReshold:INTerruption

\section*{OUTPut:CHANnel}

OUTPut: CHANnel switches the generator output.
UNBalanced = Coaxial output
HFBalanced = Balanced output I
LFBalanced = Balanced output II

\section*{Parameter}

\section*{Dependencies}

\section*{Comments}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX & Character data & \begin{tabular}{l}
UNBalanced | HFBalanced | LFBalanced \\
| DEFault
\end{tabular} \\
\hline
\end{tabular}

The correct setting for the generator output includes the output (OUTPut:CHANnel), the impedance (OUTPut:IMPedance) and the termination (OUTPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline OUTPut:CHANnel & & & & & & & \\
\hline UNBalanced & X & X & & & & & \\
\hline HFBalanced & & & X & X & & & \\
\hline LFBalanced & & & & & X & X & X \\
\hline OUTPut:IMPedance & & & & & & & \\
\hline 50 & X & & & & & & \\
\hline 75 & & X & & & & & \\
\hline 124 & & & X & & & & \\
\hline 135 (US-Version) & & & & X & X & & \\
\hline 150 (Europa) & & & & & & & \\
\hline 600 & & & & & & X & X \\
\hline OUTPut:TERMination & & & & & & & \\
\hline MATChed & X & X & X & X & X & X & \\
\hline LIMPedance & & & & & & & X \\
\hline
\end{tabular}

Manual operation: [IMPED] key.
Instrument versions PSM-37 to 139.
Switch the generator output with a "Program Message".
OUTP:CHAN UNB; IMP 75; TERM MATC
OUTPut: CHANnel?
OUTPut:IMPedance
OUTPut:IMPedance?
OUTPut:TERMination
OUTPut:TERMination?

\section*{OUTPut:CHANnel?}

OUTPut: CHANnel? determines the current setting of the generator output.
UNB = Coaxial output
HFB = Balanced output I
LFB = Balanced output II

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Output & \begin{tabular}{l}
Character re- \\
sponse data
\end{tabular} & UNB \| HFB | LFB \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139.
OUTP: CHAN?
Response: UNB
OUTPut: CHANnel

\section*{OUTPut:IMPedance}

OUTPut: IMP edance sets the impedance of the generator output.
IMPedance50: The impedance is \(50 \Omega\)
IMPedance 75: The impedance is \(75 \Omega\)
IMPedance 124: The impedance is \(124 \Omega\)
IMPedance 135: The impedance is \(135 \Omega\) (US version)
IMPedance 150: The impedance is \(150 \Omega\) (European version)
IMPedance 600: The impedance is \(600 \Omega\)

\section*{Parameters}

Dependencies

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline IMPED & Numeric data & DEFault | 50 | 75 \| 124 | 135 | 150 | 600 \\
\hline
\end{tabular}

The correct setting for the generator output includes the output (OUTPut:CHANnel), the impedance (OUTPut:IMPedance) and the termination (OUTPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline OUTPut:CHANnel & & & & & & & \\
\hline UNBalanced & X & X & & & & & \\
\hline HFBalanced & & & X & X & & & \\
\hline LFBalanced & & & & & X & X & X \\
\hline OUTPut:IMPedance & & & & & & & \\
\hline 50 & X & & & & & & \\
\hline 75 & & X & & & & & \\
\hline 124 & & & X & & & & \\
\hline 135 (US-Version) & & & & X & X & & \\
\hline 150 (Europa) & & & & & & & \\
\hline 600 & & & & & & X & X \\
\hline OUTPut:TERMination & & & & & & & \\
\hline MATChed & X & X & X & X & X & X & \\
\hline LIMPedance & & & & & & & X \\
\hline
\end{tabular}

Manual operation: [IMPED] key.
Instrument versions PSM-37 to 139.
Switch the generator output with a "Program Message".
OUTP: CHAN UNB; IMP 75; TERM MATC
```

OUTPut:CHANnel
OUTPut:CHANnel?
OUTPut:IMPedance?
OUTPut:TERMination
OUTPut:TERMination?

```

\section*{OUTPut:IMPedance?}

OUTPut: IMPedance? queries the current setting of the impedance of the generator output.
IMPedance50: The impedance is \(50 \Omega\)
IMPedance 75: The impedance is \(75 \Omega\)
IMPedance 124: The impedance is \(124 \Omega\)
IMPedance 135: The impedance is \(135 \Omega\) (US version)
IMPedance 150: The impedance is \(150 \Omega\) (European version)
IMPedance 600: The impedance is \(600 \Omega\)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Parameter Name & Parameter Type & Range of Values \\
\hline IMPED & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline Response Name & Response Type & Range of Values \\
\hline Impedance & \(<\) NR1> & \(50|75| 124|135| 150 \mid 600\) \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139.
OUTPut: IMP?
Response: 600
OUTPut: CHANnel
OUTPut: CHANnel
OUTPut:IMPedance
OUTPut:TERMination

\section*{OUTPut:[STATe]}

OUTPut: [STATe] sets whether the generator is blanked or a signal is present at the output.
OUTPut:[STATe] ON: The TX level is present at the output.
OUTPut:[STATe] OFF: the generator is blanked.

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline Parameter Name & Parameter Type & Range of Values \\
\hline BLANK & Boolean & ON |OFF| DEFault \(|0| 1\) \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139.
Manual operation: [BLANK] key.
OUT: ON

OUTPut: [STATe]?
OUTPut:STATe:AUTO
OUTPut:STATe:AUTO?

\section*{OUTPut:[STATe]?}

OUTPut: [STATe] ? determines whether the output signal is blanked.
1 : The TX level is present at the output.
0 : The generator is blanked.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline BLANK & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & <NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139
OUTPut?
Response: 1
OUTPut: [STATe]
OUTPut: STATe:AUTO
OUTPut:STATe:AUTO?

\section*{OUTPut:[STATe]:AUTO}

OUTPut: [STATe]: AUTO sets whether the TX level is automatically blanked each time the frequency is changed.
ON: The TX level is blanked when the frequency changes.
OFF: The TX level is not blanked when the frequency changes.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AUTO BLANK & Boolean & ON | OFF| DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}

> Instrument versions PSM-37 to 139.
> Manual operation: AUTO BLANK

OUTPut:AUTO ON
OUTPut: [STATe]:AUTO?
OUTPut: [STATe]
OUTPut: [STATe]?

\section*{OUTPut:[STATe]AUTO?}

OUTPut : [STATe] : AUTO? queries whether the TX level is automatically blanked each time the frequency is changed.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AUTO BLANK & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

Comments

Example

Related commands

1: AUTO ON; The TX level is blanked when the frequency changes.
0 : AUTO OFF; The TX level is not blanked when the frequency changes. Instrument versions PSM-37 to 139.

OUTPut: AUTO?
Response: 1
OUTPut: [STATe]:AUTO
OUTPut: [STATe]
OUTPut: [STATe]?

\section*{OUTPut:TERMination}

OUTPut: TERMination Isets the output termination.
TERMination MATChed: The output is terminated with the selected impedance.
TERMination LIMPedance: The output is terminated with \(R_{i}=0\).

\section*{Parameters}

\section*{Dependencies}

\section*{Comments}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline Termination & Character data & MATChed | LIMPedance | DEFault \\
\hline
\end{tabular}

The correct setting for the generator output includes the output (OUTPut:CHANnel), the impedance (OUTPut:IMPedance) and the termination (OUTPut:TERMination). The following are valid combinations:
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline OUTPut:CHANnel & & & & & & & \\
\hline UNBalanced & X & X & & & & & \\
\hline HFBalanced & & & X & X & & & \\
\hline LFBalanced & & & & & X & X & X \\
\hline OUTPut:IMPedance & & & & & & & \\
\hline 50 & X & & & & & & \\
\hline 75 & & X & & & & & \\
\hline 124 & & & X & & & & \\
\hline 135 (US-Version) & & & & X & X & & \\
\hline 150 (Europa) & & & & & & & \\
\hline 600 & & & & & & X & X \\
\hline OUTPut:TERMination & & & & & & & \\
\hline MATChed & X & X & X & X & X & X & \\
\hline LIMPedance & & & & & & & X \\
\hline
\end{tabular}

Manual operation: [IMPED] key.
Instrument versions PSM-37 to 139.
Switch the generator output with a "Program Message".
OUT: CHAN UNB; IMP 75; TERM MATC
```

OUTPut:CHANnel
OUTPut:CHANnel?
OUTPut:IMPedance
OUTPut:IMPedance?
OUTPut:TERMination?

```

\section*{OUTPut:TERMination?}

OUTPut: TERMination? queries the current termination of the output.
MATC: The output is terminated with the selected impedance.
LIMP: The output is terminated with \(R_{i}=0\).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TERM & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Termination & \begin{tabular}{l}
Character \\
response data
\end{tabular} & MATC | LIMP \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139.
OUTPut: TERM?
Response: MATC
OUTPut: CHANnel
OUTPut: CHANnel?
OUTPut:IMPedance
OUTPut:IMPedance?
OUTPut:TERMination

\section*{[SENSe]:BANDwidth | BWIDth:[RESolution]}

SENSe]: BANDwidth | BWIDth:[RESolution] sets the resolution bandwidth of the IF filter.
WIDEband: Wideband level measurement.
DEFault: Default setting.
25: 25 Hz filter is set.
100: 100 Hz filter is set.
1740: 1740 Hz filter is set.
3100: 3100 Hz filter is set.
48000: 48 kHz filter (swept bandwidth) is effective.
240000: 240 kHz filter (swept bandwidth) is effective.

\section*{Parameters}

Comments

\section*{Example \\ Related commands}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline BANDW & Character data & \begin{tabular}{l}
DEFault | WIDEband | 25 | 100 | 1740 | \\
\(3100|48000| 240000\)
\end{tabular} \\
\hline
\end{tabular}

The following can be entered instead of WIDEband:
SPM/PSM-37/137 = 8000000
SPM/PSM-38/138 = 18000000
SPM/PSM-39/139 = 32000000
If an optional filter is installed, this can be set by entering its bandwidth.
Manual operation: BANDW; operating modes LEVEL, HOTTONE SEARCH, AUTOSTEP and SWEEP.
The 48 kHz and 240 kHz IF filters are only available in the operating mode LEVEL.
BAND 3100
SENSe]:BANDwidth | BWIDth:[RESolution]?

\section*{[SENSe]:BANDwidth | BWIDth:[RESolution]?}

SENSe]:BANDwidth | BWIDth:[RESolution]? queries the current setting of the IF filter bandwidth.

\section*{Response}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bandwidth & <NR1> & \(25|100| 1740|3100| 48000 \mid 240000\) I \\
& & \(8000000|18000000| 32000000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Comments & \begin{tabular}{l}
SPM/PSM-37/137 \(=8000000\) : Wideband level measurement is set. SPM/PSM-38/138 = 18000 000: Wideband level measurement is set. SPM/PSM-39/139 = 32000000 : Wideband level measurement is set. \\
\(25: 25 \mathrm{~Hz}\) filter is set. \\
100: 100 Hz filter is set. \\
1740: 1740 Hz filter is set. \\
3100: 3100 Hz filter is set. \\
\(48000: 48 \mathrm{kHz}\) filter (swept bandwidth) is effective. \\
240 000: 240 kHz filter (swept bandwidth) is effective. \\
The 48 kHz and 240 kHz IF filters are only available in the operating mode LEVEL.
\end{tabular} \\
\hline Example & BAND \\
\hline & Response: 3100 \\
\hline Related commands & [SENSe]:BANDwidth | BWIDth:[RESolution] \\
\hline
\end{tabular}

\section*{[SENSe]:FILTer:CCITt:[STATe]}
[SENSe]:FILTer:CCITt: [STATe] sets evaluation of the signal using the psophometer filter (operating modes DEMODULATION and VOICE).

ON: Das Psophmeter filter is on.
OFF: Das Psophmeter filter is off.

\section*{Parameters}

Dependencies
Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline PSOPH & Boolean & ON | OFF | DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}

If CCITt ON is set, the C-message filter is automatically deactivated.
Manual operation: WEIGHTING; Aux. function TEST \& CONFIG.
FILT:CCIT
[SENSe]:FILTer:CCITt:[STATe]?
[SENSe]:FILTer:CMESsage:[STATe]
[SENSe]:FILTer:CMESsage:[STATe]?
[SENSe]:FILTer:CCITt:[STATe]?

SENSe]:FILTer:CCITt:[STATe]? queries if the psophometer filter is active.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline PSOPH & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & <NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & 1: Psophometer filter is on. \\
& \(0:\) Psophometer filter is off. \\
Example & FILT:CCIT? \\
& Response: 1 \\
Related commands & [SENSe]:FILTer:CCITt:[STATe] \\
& [SENSe]:FILTer:CMESsage:[STATe] \\
& {\([\) SENSe]:FILTer:CMESsage:[STATe]? }
\end{tabular}

\section*{[SENSe]:FILTer:CMESsage:[STATe]}

SENSe]:FILTer:CMESsage: [STATe] sets evaluation of the signal using the C-message weighting filter (operating modes DEMODULATION and VOICE).
ON: C-message weighting filter is on.
OFF: C-message weighting filter is off.

\section*{Parameters}

Dependencies
Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline C-MESS & Boolean & ON | OFF | DEFault | 0 | 1 \\
\hline
\end{tabular}

If CMES ON is set, the psophometer filter is automatically deactivated.
Manual operation: WEIGHTING; Aux. function TEST \& CONFIG.
```

FILT:CMES ON

```
[SENSe]:FILTer:CCITt:[STATe]
[SENSe]:FILTer:CCITt:[STATe]?
[SENSe]:FILTer:CMESsage:[STATe]?
[SENSe]:FILTer:CMESsage:[STATe]?

SENSe]:FILTer:CMESsage: [STATe]? queries whether the Cmessage weighting filter is activated.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline C-MESS & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & <NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

Comments \(\quad 1: \mathrm{C}\)-message weighting filter is on.
Example

Related commands

\section*{[SENSe]:FILTer:INOis}
[SENSe]: FILTer:INOi se sets the weighting filter for the operating mode IMPULSIVE NOISE.

INOise FLAT: The signal is not weighted.
INOise LRANge: 300 to 500 Hz (lower range)
INOise URANge: 600 to 3000 Hz (upper range)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FILTER & Character data & DEFault | FLAT | LRANge | URANge \\
\hline
\end{tabular}

Comments

\section*{Example}

Related commands

Manual operation: FILTER; operating mode IMPULSIVE NOISE.
FILT:INO URANG
[SENSe]:FILTer:INOise?
[SENSe]:FILTer:INOise?
[SENSe] : FILTer:INOise? queries the current weighting filter for the operating mode IMPULSIVE NOISE.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FILTER & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Setting & \begin{tabular}{l}
Character \\
response data
\end{tabular} & FLAT | LRAN | URAN \\
\hline
\end{tabular}

Comments FLAT: The signal is not weighted.
LRANge: Weighting 300 to 500 Hz
URANge: Weighting 600 to 3000 Hz

\section*{Example}

Related commands

FILT:INO?
Response: URAN

\section*{[SENSe]:FILTer:JITTer}
[SENSe]:FILTer: JITTer sets the weighting filter for the jitter measurement.

LRANge: 4 to 20 Hz (Lower range)
FRANge: 4 to 300 Hz (Full range)
URANge: 20 to 300 Hz (Upper range)

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FILTER & Character data & LRANge | FRANge | URANge | DEFault \\
\hline
\end{tabular}

Comments
Manual operation: FILTER; operating mode JITTER
Example
Related commands
FILT:JITT LRANG
[SENSe]:FILTer:JITTer?

\section*{[SENSe]:FILTer:JITTer?}
[SENSe]:FILTer: JITTer? queries the current weighting filter setting for the jitter measurement.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FILTER & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

Comments

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Setting & \begin{tabular}{l}
Character \\
response data
\end{tabular} & LRAN | FRAN | URAN \\
\hline
\end{tabular}

LRAN: 4 to 20 Hz
FRAN: 4 to 300 Hz
URAN: 20 to 300 Hz
FILT: JITT?
Response: FRAN
[SENSe]:FILTer:JITTer

\section*{[SENSe]:FILTer:NOTCh}
[SENSe] : FILTer: NOTCh Isets the notch filter.
825: The center frequency of the notch filter is 825 Hz .
1010: The center frequency of the notch filter is 1010 Hz .
OFF: The notch filter is off.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline NOTCH & Numeric data & \(0|825| 1010 \mid\) OFF | DEFault \\
\hline
\end{tabular}

Manual operation: NOTCH; operating mode DEMODULATION, measurement mode IMPULSIVE NOISE DEMODULATION.

FILT:NOTC 1010
[SENSe]:FILTer:NOTCh?
[SENSe]:FILTer:NOTCh?
[SENSe]:FILTer:NOTCh? queries the current notch filter setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline NOTCH & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Filter & <NR1> & \(0|825| 1010\) \\
\hline
\end{tabular}

0 : The notch filter is off.
825: The center frequency of the notch filter is 825 Hz . 1010: The center frequency of the notch filter is 1010 Hz .

Example

Related commands

FILT:NOTC?
Response: 825
[SENSe]:FILTer:NOTCh

\section*{[SENSe]:FREQuency:AFC}
[SENSe]: FREQuency:AFC switches automatic frequency control on or off. AFC ON: Automatic frequency control is on.
AFC OFF: Automatic frequency control is off.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AFC & Boolean & ON | OFF | DEFault \(|0| 1\) \\
\hline
\end{tabular}

Comments
Manual operation: AFC; operating mode LEVEL.
Example
Related commands
FREQ:AFC ON
[SENSe]:FREQuency:AFC?

\section*{[SENSe]:FREQuency:AFC?}
[SENSe]: FREQuency:AFC? queries the current automatic frequency control setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AFC & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & 1: Automatic frequency control is on. \\
& \(0:\) Automatic frequency control is off. \\
Example & FREQ:AFC? DEF \\
& Response: 0 \\
Related commands & [SENSe] :FREQuency:AFC
\end{tabular}
[SENSe]:FREQuency:ASTep
[SENSe]: FREQuency:ASTep sets the frequency step width for operating mode AUTOSTEP.

\section*{Parameters}

Dependencies

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STEP WIDTH & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
1 to \(31999955 ~ H z \mid ~\) \\
1 to \(17999955 \mathrm{~Hz} \mid\) \\
1 to 8999955 Hz
\end{tabular} \\
\hline
\end{tabular}

The frequency step width depends on the frequency range setting, ([SENSe]:FREQuency:STOP) and on the number of steps setting, ([SENSe:FREQuency:ASTep:COUNt).

Manual operation: STEP WIDTH; operating mode AUTOSTEP.
It is a good idea to first select the frequency range and the number of frequency steps. The frequency step width is then calculated automatically.

FREQ:AST 2000
[SENSe]:FREQuency:ASTep?

\section*{[SENSe]:FREQuency:ASTep?}
[SENSe]: FREQuency:ASTep? queries the frequency step width setting for operating mode AUTOSTEP.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STEP WIDTH & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline \begin{tabular}{l}
Frequency step \\
width
\end{tabular} & <NR3> & \begin{tabular}{l}
1 to 31999955 \\
1 to 17999955 \\
1 to 8999955
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Related commands

FREQuency:AST?
Response: 2000.0E+0
[SENSe]:FREQuency:ASTep

\section*{[SENSe]:FREQuency:ASTep:COUNt}
[SENSe] : FREQuency: ASTep: COUNt sets the number of frequency steps.

\section*{Parameters}

Dependencies
Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STEPS & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 1 to \\
100
\end{tabular} \\
\hline
\end{tabular}

The number of frequency steps affects the step width ([SENSe:Frequency:ASTep). Manual operation: STEPS; operating mode AUTOSTEP.

FRE:AST:COUN
[SENSe]:FREQuency:ASTep:COUNt?

\section*{[SENSe]:FREQuency:ASTep:COUNt?}
[SENSe]:FREQuency:ASTep: COUNt? queries the number of frequency steps.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STEPS & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Number of steps & <NR1> & 1 to 100 \\
\hline
\end{tabular}

Example

Related commands

FREQ:AST:COUN?
Response: 90
[SENSe] :FREQuency:ASTep: COUNt

\section*{[SENSe]:FREQuency:CENTer}
[SENSe]:FREQuency: CENTer sets the actual center frequency in SWEEP mode.

\section*{Parameters}

Dependencies

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FCENT & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 45 Hz \\
to \(8 \mathrm{MHz},(18 \mathrm{MHz}),(32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the selected input and output and on the instrument version.

Manual operation: FCENT operating mode SWEEP
FREQu:CENT 200000
[SENSe]: FREQuency:CENTer?
[SENSe]:FREQuency:SPAN
[SENSe]:FREQuency: SPAN?
[SENSe]:FREQuency:CENTer?
[SENSe]: FREQuency: CENTer? queries the actual center frequency in SWEEP mode.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FCENT & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

\section*{Dependencies}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Center frequency & \(<\) NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

The frequency range depends on the selected input and output and on the instrument version.

FREQ:CENT?
Response: 200000 .0E+0
```

[SENSe](FREQuency:MODE?) :FREQuency:CENTer
[SENSe](FREQuency:MODE?):FREQuency:SPAN
[SENSe](FREQuency:MODE?) :FREQuency:SPAN?

```

\section*{[SENSe]:FREQuency:[CW] | [FIXed]}
[SENSe]: FREQuency: [CW] | [FIXed] sets the receive or transmit frequency.

\section*{Parameters}

Dependencies
Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FRQ|CAR & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | UP | \\
DOWN | 45 Hz to 8 MHz, (18 MHz), \\
\((32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the instrument version.
Manual operation: FRQ (operating modes LEVEL, NPR)
CAR (operating modes DEMODULATION, JITTER)
FREQ: 5MHz
[SENSe]:FREQuency:[CW] | [FIXed]?

\section*{[SENSe]:FREQuency:[CW] | [FIXed]?}
[SENSe]: FREQuency: [CW]| [FIXed] ? queries the current transmit or receive frequency setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FRQICAR & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Frequenz & <NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

Dependencies
Example

Related commands

The frequency range depends on the input or output selected and on the instrument version.

FREQ?
Response: 5000000 .0E+0
[SENSe]:FREQuency: [CW]|[FIXed]

\section*{[SENSe]:FREQuency:MODE}
[SENSe]: FREQuency: MODE switches the fixed frequency function on or off.
CW: Switch off fixed frequency function
LIST: Switch on fixed frequency function
Parameters
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FMEM & Character data & CW | FIXed | LIST | DEFault \\
\hline
\end{tabular}

Comments
Manual operation: USE FMEM ON/OFF
Related commands
```

```

\section*{[SENSe]:FREQuency:MODE?}
[SENSe]: FREQuency:MODE?
determines the current setting of the fixed frequency function.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FMEM & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{ll}
Comments & CW: Fixed frequency function off \\
& LIST:Fixed frequency function on \\
Example & FREQ:MODE? \\
& Response: CW \\
Related commands & [SENSe]:FREQuency:MODE \\
& [SENSe]:LIST:FREQuency \\
& [SENSe]:LIST:FREQuency:POINts? \\
& [SENSe]:LIST:SEuence:SINGle \\
& [SENSe]:LIST:SEQuence:STARt \\
& [SENSe]:LIST:SEQuence:STOP \\
& [SENSe]:LIST:SEQuence:POINts?
\end{tabular}

\section*{[SENSe]:FREQuency:SPAN}
[SENSe] :FREQuency: SPANP sets the sweep span in SWEEP mode.

\section*{Parameters}

Dependencies

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SPAN & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 0 Hz to \\
\(8 \mathrm{MHz},(18 \mathrm{MHz}),(32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the selected input and output and on the instrument version.

Manual operation: SPAN; operating mode SWEEP
FREQuency:SPAN 4000
[SENSe]:FREQuency:SPAN?
[SENSe]:FREQuency:CENTer
[SENSe]:FREQuency:CENTer?

\section*{[SENSe]:FREQuency:SPAN?}
[SENSe]:FREQuency: SPAN? queries the actual sweep span setting in SWEEP mode.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SPAN & Character data & <none> MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Sweep span & <NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

Dependencies
Example

Related commands

The frequency range depends on the selected input and output and on the instrument version.

\section*{FREQ:SPAN?}

Response: 4000 .0E+0
[SENSe]:FREQuency:SPAN
[SENSe]:FREQuency:CENTer
[SENSe]:FREQuency:CENTer?

\section*{[SENSe]:FREQuency:STARt}
[SENSe]: FREQuency: STARtsets the start frequency for the operating modes AUTOSTEP and HOTTONE SEARCH.

\section*{Parameters}

\section*{Dependencies}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTART & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | UP | \\
DOWN | 45 Hz to 8 MHz, (18 MHz), \\
\((32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the input or output selected and on the instrument version.

Manual operation: FSTART; operating modes AUTOSTEP, HOTTONE SEARCH.
FREQ:STAR 12000
[SENSe]: FREQuency:STARt?
[SENSe]:FREQuency:STOP
[SENSe]:FREQuency:STOP?

\section*{[SENSe]:FREQuency:STARt?}
[SENSe]:FREQuency:STARt? queries the current start frequency setting for operating modes AUTOSTEP and HOTTONE SEARCH.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTART & Character data & <none> MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}

Dependencies
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Start frequency & <NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

The frequency range depends on the input or output selected and on the instrument version.

FREQ: STAR?
Response: 12000.0E+0
[SENSe]: FREQuency:STARt
[SENSe]:FREQuency:STOP
[SENSe]: FREQuency:STOP?

\section*{[SENSe]:FREQuency:STEP}
[SENSe] : FREQuency: STEP sets the frequency step width for the operating mode LEVEL.

\section*{Parameters}

\section*{Dependencies}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTEP & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 45 Hz \\
to \(8 \mathrm{MHz},(18 \mathrm{MHz}),(32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the input or output selected and on the instrument version.

Example
Related commands
Manual operation: FSTEP; operating mode LEVEL
FREQ:STEP 2000
[SENSe]:FREQuency:STEP?
[SENSe]:FREQuency UP|DOWN

\section*{[SENSe]:FREQuency:STEP?}
[SENSe]: FREQuency: STEP? queries the current frequency step width setting for operating mode LEVEL.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTEP & Character data & <none> MINimum | MAXimum | DEFault) \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline \begin{tabular}{l}
Frequency step \\
width
\end{tabular} & \(<\) NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

Dependencies
Example

Related commands

The frequency range depends on the input or output selected and on the instrument version.

FREQ:STEP?
Response: 2000.0E+0
[SENSe]:FREQuency:STEP

\section*{[SENSe]:FREQuency:STOP}
[SENSe]:FREQuency: STOP sets the stop frequency for the operating modes AUTOSTEP and HOT TONE SEARCH.

\section*{Parameters}

\section*{Dependencies}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTOP & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | UP | \\
DOWN | 45 Hz to 8 MHz, (18 MHz), \\
\((32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the input or output selected and on the instrument version.

Manual operation: FSTOP; operating modes AUTOSTEP, HOT TONE SEARCH.
FREQ:STOP 233000
[SENSe]: FREQuency: STOP?
[SENSe]:FREQuency:STARt
[SENSe]: FREQuency:STARt?
[SENSe]:FREQuency:STOP?
[SENSe] : FREQuency: STOP? queries the current stop frequency setting for the operating modes AUTOSTEP and HOT TONE SEARCH.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FSTOP & Character data & <none \(>\) MINimum | MAXimum | DEFault) \\
\hline
\end{tabular}

\section*{Response}

Dependencies
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Stop frequency & <NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

The frequency range depends on the input or output selected and on the instrument version.

FREQ: STOP?
Response: 233000.0E+0
[SENSe]:FREQuency:STOP
[SENSe]:FREQuency:STARt
[SENSe]:FREQuency:STARt?

\section*{[SENSe]:FREQuency:TONE}
[SENSe]:FREQuency:TONE sets the test tone frequency.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TONE & <NR2> & DEFault | 800 | 1020 \\
\hline
\end{tabular}

Manual operation: TONE -> \(800 \mathrm{~Hz} \mid 1020 \mathrm{~Hz}\)
Operating mode JITTER, measurement modes JITTER DEMODULATION and JITTER TONE

FREQ:TONE 1020
[SENSe]:FREQuency:TONE?

\section*{[SENSe]:FREQuency:TONE?}
[SENSe]: FREQuency:TONE? queries the current setting of the test tone frequency.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TONE & Character data & <none> | DEFault) \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Test tone & Numeric data & \(1020 \mid 800\) \\
\hline
\end{tabular}

Example

Related commands

FREQ:TONE?
Response: 1020.0E+0
[SENSe]:FREQuency:TONE
[SENSe]:LIST:FREQuency
[SENSe] : LIST:FREQuency writes to the fixed frequency memory starting at memory location 0 .

\section*{Parameters}

Dependencies

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
FMEM \\
EDIT FRQ
\end{tabular} & \begin{tabular}{l}
Numeric data, \\
Numeric data,...
\end{tabular} & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 45 Hz \\
to \(8 \mathrm{MHz},(18 \mathrm{MHz}),(32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the selected input and output and on the instrument version.

Manual operation: FMEM - EDIT Up to 100 values can be transferred.
```

LIST:FREQ 10000,20000,30000,40000
[SENSe](FREQuency:MODE?):FREQuency:MODE
[SENSe](FREQuency:MODE?):LIST:FREQuency:POINts?
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle?
[SENSe](FREQuency:MODE?) :LIST:SEQuence:STARt
[SENSe](FREQuency:MODE?):LIST:SEQuence:STOP
[SENSe](FREQuency:MODE?):LIST:SEQuence:STOP?
[SENSe](FREQuency:MODE?):LIST:SEQuence:POINts?

```

\section*{[SENSe]:LIST:FREQuency:POINts?}
[SENSe]:LIST:FREQuency:POINts? queries the current number of stored fixed frequencies.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline List length & \(<\) NR1> & 0 to100 \\
\hline
\end{tabular}

\section*{Example}

Related commands

\section*{LIST:FREQ:POIN?}

Response: 4
```

[SENSe](FREQuency:MODE?) :FREQuency:MODE?
[SENSe](FREQuency:MODE?):LIST:FREQuency
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle?
[SENSe](FREQuency:MODE?):LIST:SEQuence:STARt
[SENSe](FREQuency:MODE?):LIST:SEQuence:STOP
[SENSe](FREQuency:MODE?):LIST:SEQuence:POINts?

```

\section*{[SENSe]:LIST:SEQuence:POINts?}
[SENSe]:LIST:SEQuence:POINts? queries the number of selected fixed frequencies.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Frequency count & <NR1> & 1 to 100 \\
\hline
\end{tabular}

\section*{Example}

Related commands

LIST:SEQ:POINts?
Response: 4
[SENSe]:FREQuency:MODE
[SENSe]:FREQuency:MODE?
[SENSe]:LIST:FREQuency
[SENSe]:LIST:FREQuency:POINts?
[SENSe]:LIST:SEQuence:SINGle
[SENSe]:LIST:SEQuence:SINGle?
[SENSe]:LIST:SEQuence:STARt
[SENSe]:LIST:SEQuence:STARt?
[SENSe]:LIST:SEQuence:STOP
[SENSe]:LIST:SEQuence:STOP?

\section*{[SENSe]:LIST:SEQuence:SINGle}
[SENSe]:LIST:SEQuence:SINGle selects the desired fixed frequency (operating modes LEVEL, DEMOD, NPR, JITTER, IMPULSE NOISE DEMOD and INTERRUPTIONS DEMOD).

\section*{Parameters}

Comments
A fixed frequency can be selected only if a value is stored for it.
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline ACT FMEM & Decimal data & 0 to 99, (199) \\
\hline
\end{tabular}
```

LIST:SEQ:SING 3
[SENSe](FREQuency:MODE?):FREQuency:MODE
[SENSe](FREQuency:MODE?):LIST:FREQuency
[SENSe](FREQuency:MODE?):LIST:FREQuency:POINts?
[SENSe](FREQuency:MODE?):LIST:SEQuence:POINts?
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle?
[SENSe](FREQuency:MODE?):LIST:SEQuence:STARt
[SENSe](FREQuency:MODE?):LIST:SEQuence:STOP

```

\section*{[SENSe]:LIST:SEQuence:SINGIe?}
[SENSe]:LIST:SEQuence:SINGle? queries the current fixed frequency number (operating modes LEVEL, DEMOD, NPR, JITTER, IMPULSE NOISE DEMOD und INTERRUPTIONS DEMOD).

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline ACT FMEM & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline List space & <NR1> & 0 to 99, (199) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Example & LIST:SEQ:SING? \\
& Response: 3 \\
Related commands & {\([\) [SENSe]:FREQuency:MODE } \\
& {\([\) SENSe]:LIST:FREQuency } \\
& {\([S E N S e]:\) LIST:FREQuency:POINts? } \\
& {\([\) SENSe]:LIST:SEQuence:POINts? } \\
& {\([\) SENSe]:LIST:SEQuence:SINGle } \\
& {\([\) SENSe]:LIST:SEQuence:STARt } \\
& {\([\) SENSe]:LIST:SEQuence:STOP } \\
& {\([S E N S e]:\) LIST:SEQuence:STOP? }
\end{tabular}

\section*{[SENSe]:LIST:SEQuence:STARt}
[SENSe] : LIST: SEQuence : STARt selects the desired first fixed frequency (operating mode AUTOSTEP).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline START FMEM & Decimal data & 0 to 99, (199) \\
\hline
\end{tabular}

Comments
Example
Related commands
A fixed frequency can be selected only if a value is stored for it.
```

LIST:SEQ:STAR 1

```
[SENSe]:FREQuency:MODE
[SENSe]:LIST:FREQuency
[SENSe]:LIST:FREQuency:POINts?
[SENSe]:LIST:SEQuence:POINts?
[SENSe]:LIST:SEQuence:SINGle
[SENSe]:LIST:SEQuence:SINGle?
[SENSe]:LIST:SEQuence:STARt?
[SENSe]:LIST:SEQuence:STOP

\section*{[SENSe]:LIST:SEQuence:STARt?}
[SENSe]:LIST:SEQuence:STARt? fragt die Festfrequenznummer der ersten Festfrequenz ab (operating mode AUTOSTEP).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline START FMEM & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Typ & Range of Values \\
\hline List start & <NR1> & 0 to 99, (199) \\
\hline
\end{tabular}

Example
LIST:SEQ: STAR?
Response: 2
Related commands [SENSe]:FREQuency:MODE
[SENSe]:LIST:FREQuency
[SENSe]:LIST:FREQuency:POINts?
[SENSe]:LIST:SEQuency:POINts?
[SENSe]:LIST:SEQuence:SINGle
[SENSe]:LIST:SEQuence:SINGle?
[SENSe]:LIST:SEQuence:STARt
[SENSe]:LIST:SEQuence:STOP
[SENSe]:LIST:SEQuence:STOP
[SENSe]:LIST:SEQuence:STOP selects the desired last fixed frequency (operating mode AUTOSTEP)..

\section*{Parameters}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STOP FMEM & Decimal data & 0 to 99, (199) \\
\hline
\end{tabular}

A fixed frequency can be selected only if a value is stored for it.
Example
Related commands
```

LIST:SEQ:STOP 4
[SENSe](FREQuency:MODE?):FREQuency:MODE
[SENSe](FREQuency:MODE?):LIST:FREQuency
[SENSe](FREQuency:MODE?):LIST:FREQuency:POINts?
[SENSe](FREQuency:MODE?):LIST:SEQuence:POINts?
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGLE
[SENSe](FREQuency:MODE?):LIST:SEQuence:SINGle?
[SENSe](FREQuency:MODE?):LIST:SEQuence:STARt
[SENSe](FREQuency:MODE?):LIST:SEQuence:STOP?

```

\section*{[SENSe]:LIST:SEQuence:STOP?}
[SENSe]:LIST:SEQuence:STOP? queries the fixed frequency number of the last fixed frequency (operating mode ATUOSTEP).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STOP FMEM & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline List end & <NR1> & 0 to 99, (199) \\
\hline
\end{tabular}
```

LIST:SEQ:STOP?

```

Response: 4
```

```

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:REFerence}
[SENSe]:POWer | VOLTage:[AC] [DC]:REFerence sets the reference level. This value is deducted from the measurement result (operating modes LEVEL, DEMODULATION, VOICE) or from the curent level threshold (IMPULSIVE NOISE).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline REF & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | -150 to \\
+20 dB
\end{tabular} \\
\hline
\end{tabular}

Dependencies
Comments
Example
Related commands

The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.
Manual operation: LEVEL ABS-REF (UNITS menu).
POW:REF MIN
\begin{tabular}{l|l|l}
[SENSe]:POWer & VOLTage:[AC] & [DC]:REFerence? \\
[SENSe]:POWer & VOLTage:[AC] & [DC]:REFerence:STATE \\
{\([\) [SENSe]:POWer } & VOLTage: \([A C]\) & {\([D C]:\) REFerence \(:\) STATE? }
\end{tabular}

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:REFerence?}
[SENSe]:POWer | VOLTage: [AC] | [DC]:REFerence? queries the reference level.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline REF & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}

Dependencies
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Reference level & <NR2> & -150 to +20 dB \\
\hline
\end{tabular}

The range of values depends on the active unit and the input impedance; the specified range of values applies for the "dB" unit.

POWer:REF?
Response: - 70.00
\begin{tabular}{l|l|l}
[SENSe]:POWer & VOLTage:[AC] & [DC]:REFerence \\
[SENSe]:POWer & VOLTage:[AC] & [DC]:REFerence:STATE \\
{\([\) [SENSe]:POWer } & VOLTage:[AC] & [DC]:REFerence:STATE?
\end{tabular}

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:REFerence:STATe}
[SENSe]:POWer | VOLTage:[AC] | [DC]:REFerence:STATe switches on the level difference display.
\(\mathrm{ON}=\) Level difference display on.
OFF= Level difference display off.
Parameters
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline & LEVEL ABS-REF & Boolean & ON | OFF | DEFault | 0 | 1 \\
\hline Dependencies & \multicolumn{3}{|l|}{If POWer:REFerence:STATe ON is set, the relative level display is automatically switched off.} \\
\hline Comments & \multicolumn{3}{|l|}{Manual operation: LEVEL ABS-REF (UNITS menu).} \\
\hline Example & \multicolumn{3}{|l|}{POW:REF:STAT OFF} \\
\hline Related commands & \multicolumn{3}{|l|}{[SENSe]:POWer | voluage:[AC] | [DC]:REFerence:STATe?} \\
\hline & \multirow[t]{2}{*}{[SENSe]:POWer [SENSe]:POWer} & Voltage: [AC] & \multirow[t]{2}{*}{\begin{tabular}{l}
[DC]:REFerence \\
[DC]:REFerence?
\end{tabular}} \\
\hline & & voltage: [AC] & \\
\hline
\end{tabular}
[SENSe]:POWer | VOLTage:[AC] | [DC]:REFerence:STATe?
[SENSe]:POWer VOLTage: [AC]
[DC]:REFerence:STATe? queries whether the level difference display is switched on.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
LEVEL \\
ABS-REF
\end{tabular} & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & <NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{POW:REF:STAT?}

Response: 1
\begin{tabular}{l|l|l}
{\([\) SENSe]:POWer } & VOLTage:[AC] & [DC]:REFerence:STATe \\
{\([\) [SENSe]:POWer } & VOLTage:[AC] & [DC]:REFerence \\
{\([\) [SENSe]:POWer } & VOLTage:[AC] & [DC]:REFerence?
\end{tabular}

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:TLP}
[SENSe]:POWer | VOLTage: [AC] [DC]:TLP sets the transmission level point.

\section*{Parameters}

Dependencies
Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter-typ & Range of Values \\
\hline TLP & <NR2> & \begin{tabular}{l}
MINimum | MAXimum | DEFault | -30 to \\
-120 dBr
\end{tabular} \\
\hline
\end{tabular}

The range of values for TLP depends on the TX level setting (PSM)
Manual operation: LEVEL RELATIVE TLP (UNITS menu); operating modes LEVEL, DEMODULATION, VOICE, IMPULSIVE NOISE, . Units are always dBr.

\section*{POW:TLP MIN}
```

[SENSe](FREQuency:MODE?):POWer |OLTage:[AC] [DC]:TLP?
[SENSe](FREQuency:MODE?):POWer | VOLTage:[AC] [DC]:REFerence:STATE
[SENSe](FREQuency:MODE?):POWer | VOLTage:[AC] | [DC]:REFerence:STATE?

```

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:TLP?}
[SENSe]:POWer | VOLTage:[AC] | [DC]:TLP? queries the current setting of the transmission level point.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TLP & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Relative level & \(<\) NR2> & -30 to -120 \\
\hline
\end{tabular}

Example

Related commands

\section*{POW:TLP?}

Response: - 25.00
\begin{tabular}{l|l|l}
[SENSe]:POWer & VOLTage:[AC] & [DC]:TLP \\
[SENSe]:POWer & VOLTage:[AC] & [DC]:REFerence:STATE \\
{\([\) [SENSe]:POWer } & VOLTage:[AC] & [DC]:REFerence:STATE?
\end{tabular}

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:TLP:STATe}
[SENSe]: POWer|VOLTage: [AC]| [DC]:TLP:STATe sets whether the relative level is effective.

\section*{Parameters}

Dependencies

Example
Related commands

Comments Manual operation: LEVEL RELATIVE TLP (UNITS menu); operating modes LEVEL, DEMODULATION, VOICE, IMPULSIVE NOISE.
If POWer:TLP:STATe ON is set, the level dfference display is switched off automatically.

\section*{POW:TLP:STAT ON}
```

[SENSe](FREQuency:MODE?):POWer vOLTage:[AC] [DC]:TLP:STATe?
[SENSe](FREQuency:MODE?):POWer | VOLTage:[AC] | [DC]:TLP
[SENSe](FREQuency:MODE?):POWer | VOLTage:[AC] | [DC]:TLP?

```
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
LEVEL \\
RELATIVE
\end{tabular} & Boolean & ON | OFF | DEFault | 0 \| 1 \\
\hline
\end{tabular}

\section*{[SENSe]:POWer | VOLTage:[AC] | [DC]:TLP:STATe?}
[SENSe]: POWer \(\mid\) VOLTage: [AC]| [DC]:TLP:STATe? queries whether the relative level is effective.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
LEVEL \\
RELATIVE
\end{tabular} & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
Example
Related commands

POWer:TLP:STAT?
Response: 1
\begin{tabular}{l|l|l}
{\([\) SENSe]:POWer } & VOLTage:[AC] & [DC]:TLP:STATe? \\
{\([\) SENSe]:POWer } & VOLTage:[AC] & [DC]:TLP \\
{\([\) SENSe]:POWer } & VOLTage:[AC] & [DC]:TLP?
\end{tabular}

\section*{[SENSe]:ROSCillator:EXTernal:FREQuency}
[SENSe]:ROSCillator:EXTernal:FREQuency sets the external reference frequency to which the instrument is to synchronize.

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline EXT REF FRQ & Numeric data & \begin{tabular}{l}
DEFault | \(60 \mathrm{kHz}|300 \mathrm{kHz}| 2048 \mathrm{kHz} \mid\) \\
\(4200 \mathrm{kHz}|1 \mathrm{MHz}| 2 \mathrm{MHz}|5 \mathrm{MHz}|\) \\
10 MHz
\end{tabular} \\
\hline
\end{tabular}

The command [SENSe]:ROSCillator:SOURce EXTernal switches socket [52] as an input. Manual operation: REF FRQ; Aux. function TEST \& CONFIG
```

ROSC:EXT:FREQ . 06 MHz

```
[SENSe]:ROSCillator:EXTernal:FREQuency?
[SENSe]:ROSCillator:SOURce
[SENSe]:ROSCillator:SOURce?
[SENSe]:ROSCillator:EXTernal:FREQuency?
[SENSe]:ROSCillator:EXTernal:FREQuency? queries the frequency to which the instrument is to synchronize.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline EXT REF FRQ & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Anwtorttyp & Range of Values \\
\hline \begin{tabular}{lll}
Reference \\
frequency
\end{tabular} & <NR1> & \begin{tabular}{l}
\(60000|300000| 2048000|4200000|\) \\
\(1000000|2000000| 5000000 \mid\) \\
10000000
\end{tabular} \\
\hline
\end{tabular}

Comments
Output is always in Hz
Example

Related commands
ROSC:EXT:FREQ?
Response: 1000000
```

```
[SENSe]:ROSCillator:SOURce
[SENSe]:ROSCillator:SOURce sets the reference frequency source. The timebase may be the internal oscillator or an external oscillator connected to socket [52].
SOURce INTernal: The timebase is derived from the internal oscillator.
SOURce EXTernal: The instrument synchronizes to the frequency of the external oscillator.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline REF FRQ & Character data & INTernal | EXTernal | DEFault \\
\hline
\end{tabular}

Manual operation: REF FRQ; Aux. function TEST \& CONFIG
If the external oscillator is selected, the reference frequency must be specified with the command [SENSe]:ROSCillator:EXTernal:FREQuency.
```

ROSC:SOUR EXT
[SENSe](FREQuency:MODE?):ROSCillator:SOURce?
[SENSe](FREQuency:MODE?):ROSCillator:EXTernal:FREQuency
[SENSe](FREQuency:MODE?):ROSCillator:EXTernal:FREQuency?

```

\section*{[SENSe]:ROSCillator:SOURce?}
[SENSe]:ROSCillator:SOURce? queries the source of the reference frequency.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Parameter Name & Parameter Type & Range of Values \\
\hline REF FRQ & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline Response Name & Response Type & Range of Values \\
\hline \begin{tabular}{l}
Reference \\
frequency source
\end{tabular} & \begin{tabular}{l}
Character re- \\
sponse data
\end{tabular} & INT \| EXT \\
\hline
\end{tabular}

INT: The timebase is derived from the internal oscillator.
EXT: The instrument synchronizes to the frequency of the external oscillator.
ROSC:SOUR?
Response: EXT
```

```

\section*{[SENSe]:SWEep:COUNt}
[SENSe] : SWEep: COUNt sets the number of measurement cycles which are triggered by INITiate (operating modes AUTOSTEP, SWEEP and HOT TONE SEARCH).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | 1 to \\
65635
\end{tabular} \\
\hline
\end{tabular}

Comments
The value is set to 1 by *RST.
Example
Related commands
```

SWE:COUN 5

```
[SENSe] : SWEep: COUNt?
[SENSe]:SWEep:DWELI
[SENSe]:SWEep:DWELI?

\section*{[SENSe]:SWEep:COUNt?}
[SENSe] : SWEep: COUNt? queries the number of measurement cycles triggered by INITiate (operating modes AUTOSTEP, SWEEP and HOT TONE SEARCH).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Character data & <none> | DEFault | MINimum | MAXimum \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Number & <NR1> & 1 to 65535 \\
\hline
\end{tabular}

\section*{Example}

SWE : COUN?
Response: 20
Related commands
```

```

\section*{[SENSe]:SWEep:DWELI}
[SENSe]: SWEep: DWELl sets the dwell time for each measurement point (operating mode AUTOSTEP).

\section*{Parameters}

Comments
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TIME/STEP & Numeric data & DEFault | \(1 \mid 3\) \\
\hline
\end{tabular}

Units are seconds.
Example
Related commands
SWE:DWEL 1
[SENSe]:SWEep:DWELI?
[SENSe] : SWEep: COUNt
[SENSe] : SWEep: COUNt?

\section*{[SENSe]:SWEep:DWELI?}
[SENSe] : SWEep:DWELl? queries the current setting of the dwell time (operating mode AUTOSTEP).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TIME/STEP & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Dwell time & <NR1> & \(1 \mid 3\) \\
\hline
\end{tabular}

Example

Related commands
SWE: DWEL?
Response: 3
[SENSe]:SWEep:DWELI
[SENSe]: SWEep: COUNt
[SENSe]: SWEep:COUNt?

\section*{[SENSe]:SWEep:TIME}
[SENSe] : SWEep:TIME sets the time taken for a sweep in SWEEP mode.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SWEEP TIME & Numeric data & DEFault | \(1|3| 10|30| 100 \mid 300 \mathrm{~s}\) \\
\hline
\end{tabular}

Comments
Example
Related commands

Units are seconds.
SWE:TIME 1
[SENSe]:SWEep:TIME?
[SENSe]:SWEep:TIME:AUTO
[SENSe]: SWEep:TIME:AUTO?

\section*{[SENSe]:SWEep:TIME?}
[SENSe] : SWEep: TIME? queries the sweep time setting in SWEEP mode.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline SWEEP TIME & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Sweep time & \(<\) NR1> & \(1|3| 10|30| 100 \mid 300\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Example & SWE:TIME? \\
& Response: 3 \\
Related commands & [SENSe]:SWEep:TIME \\
& {\([\) SENSe]:SWEep:TIME:AUTO } \\
& {\([\) SENSe]:SWEep:TIME:AUTO? }
\end{tabular}

\section*{[SENSe]:SWEep:TIME:AUTO}
[SENSe] : SWEep: TIME: AUTO determines how the instrument sweep time is selected:
AUTO ON: The sweep time is selected automatically to match the sweep width and bandwidth settings.
AUTO OFF: The sweep time is not changed.
AUTO ONCE: The sweep time is optimized once.

\section*{Parameter}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AUTO & Boolean & ON | OFF \| DEFault | ONCE \| 0 \| 1 \\
\hline
\end{tabular}

Manual operation: SWEEP TIME
```

SWE:TIME:AUTO ON

```
[SENSe]:SWEep:TIME:AUTO?
[SENSe]:SWEep:TIME
[SENSe]:SWEep:TIME?

\section*{[SENSe]:SWEep:TIME:AUTO?}
[SENSe] : SWEep: TIME : AUTO? queries the actual setting of the automatic sweep time selection function.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline AUTO & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{Example}

Related commands

SWE:TIME:AUTO? DEFault
Response: 1
[SENSe]:SWEep:TIME:AUTO?
[SENSe]:SWEep:TIME
[SENSe]:SWEep:TIME?

\section*{SOURce:FREQuency:LIMit:LOWer}

SOURce:FREQuency:LIMit: LOWer sets the lower limit of the TX frequency setting.

\section*{Parameters}

\section*{Dependencies}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MIN FRQ & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | UP | DOWN | \\
DEFault | 45 Hz to 8 MHz, (18 MHz), \\
\((32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the selected input and output and on the instrument version.

Instrument versions PSM 37 to 139
Manual operation: MIN FRQ; operating modes LEVEL, AUTOSTEP, JITTER
SOUR:FREQ:LIM:LOW MAX
SOURce:FREQuency:LIMit:LOWer?
SOURce:FREQuency:LIMit:STATe
SOURce:FREQuency:LIMit:STATe?

\section*{SOURce:FREQuency:LIMit:LOWer?}

SOURce:FREQuency:LIMit:LOWer? queries the lower limit of the TX frequency setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MIN FRQ & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline \begin{tabular}{l}
TX frequency \\
limit
\end{tabular} & <NR3> & 45 to \(8000000|18000000| 32000000\) \\
\hline
\end{tabular}

Comments
Instrument versions PSM 37 to 139
Example
```

SOUR:FREQ:LIM:LOW?
Response: 50.0E+0
SOURce:FREQuency:LIMit:LOWer
SOURce:FREQuency:LIMit:STATe
SOURce:FREQuency:LIMit:STATe?

```

\section*{SOURce:FREQuency:LIMit:STATe}

SOURce:FREQuency:LIMit:STATe determines whether the TX frequency limits set using LIMIT UPPER/LOWER are to be applied.
STATe ON: The TX frequency limits are set by LIMIT: UPPER and LIMIT: LOWER. STATe OFF: The TX frequency limits do not depend on LIMIT: UPPER and LIMIT: LOWER.
If the frequency setting is outside one of the frequency limits, the generator is blanked.

\section*{Parameters}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FRQ LIMIT & Boolean & ON | OFF | DEFault \(|0| 1\) \\
\hline
\end{tabular}

Instrument versions PSM 37 to 139
Manual operation: FRQ LIMIT; operating mode LEVEL, AUTOSTEP, JITTER If the frequency setting is outside one of the frequency limits, the generator is blanked.

\section*{SOURce:FREQuency:LIMit:STATe?}

SOURce:FREQuency:LIMit:STATe? queries whether the frequency limits set with LIMIT UPPER/LOWER are being applied.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline FRQ LIMIT & Character data & <none> | DEFault \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Response} \\
\hline & Response Name & Response Type & Range of Values \\
\hline & Status & <NR1> & 0|1 \\
\hline & \multicolumn{3}{|l|}{1: The TX frequency limits are set by LIMIT: UPPER and LIMIT: LOWER.} \\
\hline Comments & \multicolumn{3}{|l|}{0 : The TX frequency limits do not depend on LIMIT: UPPER and LIMIT: LOWER.} \\
\hline \multirow[t]{2}{*}{Example} & \multicolumn{3}{|l|}{SOUR:FREQ:LIM: STAT?} \\
\hline & \multicolumn{3}{|l|}{Response: 1} \\
\hline \multirow[t]{4}{*}{Related commands} & \multicolumn{3}{|l|}{SOURCe:FREQuency:LIMit:STATe} \\
\hline & \multicolumn{3}{|l|}{SOURce:FREQuency:LIMit:LOWer} \\
\hline & \multicolumn{3}{|l|}{SOURce:FREQuency:LIMit:LOWer?} \\
\hline & \multicolumn{3}{|l|}{SOURCe:FREQuency:LIMit:UPPer} \\
\hline
\end{tabular}

\section*{SOURce:FREQuency:LIMit:UPPer}

SOURce: FREQuency:LIMit:UPPer sets the upper limit for the TX frequency.

\section*{Parameters}

\section*{Dependencies}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAX FRQ & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | UP | DOWN | \\
DEFault | 45 Hz to 8 MHz, (18 MHz), \\
\((32 \mathrm{MHz})\)
\end{tabular} \\
\hline
\end{tabular}

The frequency range depends on the selected output and on the instrument version

Instrument versions PSM 37 to 139 Manual operation: MAX FRQ; operating mode LEVEL, AUTOSTEP, JITTER
```

SOUR:FREQ:LIM:UPP 32000000

```

SOURce:FREQuency:LIMit:UPPer?
SOURce:FREQuency:LIMit:LOWer
SOURce:FREQuency:LIMit:LOWer?
SOURCe:FREQuency:LIMit:STATe
SOURce:FREQuency:LIMit:STATe?

\section*{SOURce:FREQuency:LIMit:UPPer?}

SOURce:FREQuency:LIMit:UPPer? queries the current setting of the upper TX frequency limit.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAX FRQ & Character data & <none> |MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline \begin{tabular}{l}
TX frequency \\
limit
\end{tabular} & <NR3> & 45 to \(32000000|18000000| 8000000\) \\
\hline
\end{tabular}

Comments
Instrument versions PSM-37 to 139
Example
SOUR:FREQ:LIM:UPP?
Response: 32000000.0E+0
Related commands
SOURCe:FREQuency:LIMit:UPPer
SOURce:FREQuency:LIMit:LOWer
SOURce:FREQuency:LIMit:LOWer?
SOURce:FREQuency:LIMit:STATe
SOURce:FREQuency:LIMit:STATe?

\section*{SOURce:POWer | VOLTage:ELControl}

SOURce:POWer | VOLTage:ELControl switches to external level control.
ON: External level control on.
OFF: External level control off.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter-typ & Range of Values \\
\hline EXT LEVLG & Boolean & ON | OFF| DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}

Comments Manual operation: EXT LEVLG
Example
SOUR:POW:ELC OFF
Related commands
SOURce:POWer | VOLTage:ELControl?

\section*{SOURce:POWer | VOLTage:ELControl?}

SOURCe:POWer | VOLTage:ELControl? queries whether external level control is active or not.

\section*{Response}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values & Default setting \\
\hline Status & <NR1> & \(0 \mid 1\) & 0 \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & 1: External level control on. \\
\(0:\) External level control off.
\end{tabular}

Example SOUR:ELC?
Response: 1
Related commands SOURce:POWer | VOLTage:ELControl

\section*{SOURce:POWer | VOLTage:[LEVel]}

SOURce: POWer|VOLTage: [LEVel] sets the TX level.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
\(0.0 \mathrm{~dB}(9.0 \mathrm{~dB})^{1}\) to -70 dB
\end{tabular} \\
\hline
\end{tabular}

Comments
Instrument versions PSM-37 to 139
Manual operation: TX POWER; operating mode LEVEL, AUTOSTEP, SWEEP, JITTER

\section*{Example}

SOUR:POW MAX
Related commands
\begin{tabular}{l|l}
SOURce:POWer & VOLTage:[LEVel]? \\
SOURce:POWer & VOLTage:LIMIT:[AMPLITUDE] \\
SOURce:POWer & VOLTage:LIMIT:[AMPLITUDE]? \\
SOURce:POWer & VOLTage:LIMIT:STATe \\
SOURce:POWer & VOLTage:LIMIT:STATe?
\end{tabular}

\section*{SOURce:POWer | VOLTage:[LEVel]?}

SOURce: POWer|VOLTage: [LEVel] ? queries the current TX level setting.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline TX level & <NR2> & \(0.0 \mathrm{~dB}(9.0 \mathrm{~dB})^{1}\) to -70 dB \\
\hline
\end{tabular}

Comments
Example

Related commands

Instrument versions PSM-37 to 139
SOUR: POW? MAX
Response: 9

VOLTage:[LEVel]
VOLTage:LIMIT: [AMPLITUDE]
VOLTage:LIMIT: [AMPLITUDE]?
VOLTage:LIMIT:STATe
VOLTage:LIMIT:STATe?

\footnotetext{
\({ }^{1)}\) see chapter 9.8
}

\section*{SOURce:POWer | VOLTage:LIMit:[AMPLitude]}

SOURce:POWer VOLTage:LIMit:[AMPLitude] sets the amplitude limit for the current constant TX level.

\section*{Parameters}

Dependencies
Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAX LEVEL & Numeric data & \begin{tabular}{l}
MINimum | MAXimum | DEFault | \\
10 dB to -75 dB
\end{tabular} \\
\hline
\end{tabular}

The range of values depends on the active unit and the output impedance; the specified range of values applies for the "dB" unit.
Instrument versions PSM-37 to 139
Manual operation: MAX LEVEL; operating mode LEVEL, AUTOSTEP, JITTER
SOUR:POW:LIM -20 dBm
SOURce:POWer | VOLTage:LIMit:[AMPLitude]?
SOURce:POWer | VOLTage:LIMIT:STATe
SOURCe:POWer | VOLTage:LIMIT:STATe?
SOURce:POWer | VOLTage:LIMIT:[LEVel]

\section*{SOURce:POWer | VOLTage:LIMit:[AMPLitude]?}

SOURce:POWer | VOLTage:LIMit:[AMPLitude] ? queries the TX amplitude level limit.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline MAX LEVEL & Character data & <none> | MINimum | MAXimum | DEFault \\
\hline
\end{tabular}

\section*{Response}

Dependencies
Comments
Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline TX level limit & <NR2> & 10 to -75 \\
\hline
\end{tabular}

The range of values depends on the active unit and the output impedance; the specified range of values applies for the "dB" unit.
Instrument versions PSM-37 to 139
SOUR:POW:LIM?
Response: -20.00
```

SOURce:POWer | VOLTage:LIMit:[AMPLitude]
SOURce:POWer | VOLTage:LIMIT:STATe
SOURce:POWer | VOLTage:LIMIT:STATe?
SOURce:POWer VOLTage:LIMIT:[LEVel]
SOURce:POWer | VOLTage:LIMIT:[LEVel]?

```

\section*{SOURce:POWer | VOLTage:LIMit:STATe}

SOURce:POWer | VOLTage:LIMit:STATe determines whether the TX level limiting is effective or not.
ON: TX level limiting is on.
OFF: TX level limiting is off.
Parameters

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline LEVEL LIMIT & Boolean & ON | OFF | DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}

Instrument versions PSM-37 to 139
Manual operation: LEVEL LIMIT; operating mode LEVEL, AUTOSTEP, JITTER
SOUR:POW:LIM:STAT ON
SOURce:POWer | VOLTage:LIMit:STATe?
SOURce:POWer VOLTage:LIMit:[AMPLitude]
SOURce:POWer | VOLTage:LIMit:[AMPLitude]?
SOURCe:POWer | VOLTage:LIMIT:[LEVel]
SOURce:POWer | VOLTage:LIMIT:[LEVel]?

\section*{SOURce:POWer | VOLTage:LIMit:STATe?}

SOURce:POWer| VOLTage:LIMit:STATe? queries whether the TX level limiting is effective or not.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline LEVEL LIMIT & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

Comments \(\quad 1:\) TX level limiting is on.
0 : TX level limiting is off.
Example

Related commands
```

SOUR:POW:LIM:STAT?

```

Response: 1
SOURce:POWer | VOLTage:LIMit:STATe
SOURce:POWer | VOLTage:LIMit:[AMPLitude]
SOURce:POWer | VOLTage:LIMit:[AMPLitude]?
SOURce:POWer | VOLTage:LIMIT:[LEVel]

\section*{SOURce:[STATe]}

SOURce: STATe switches the generator on or off.
ON: Generator on.
OFF: Generator off.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX POWER & Boolean & ON | OFF | DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & \begin{tabular}{l}
Instrument versions \\
Manual operation: \\
Example
\end{tabular} \\
Related commands & SOUR: STAT ON \\
&
\end{tabular}

\section*{SOURce:[STATe]?}

SOURce: STATe? queries whether the generator is on or off.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline TX POWER & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & 1: Generator on \\
\(0:\) Generator off
\end{tabular}

Example
SOUR:STAT?
Response: 1
Related commands
SOURce: STATe

\section*{STATus:OPERation:CONDition?}

STATus: OPERation:CONDition? queries the current status of the instrument (see COND on page 10-16).

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit field & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Comments
This register is not updated for the SPM/PSM.
Example
STAT:OPER:COND?
Response: 15
Related commands
```

STATus:OPERation:CONDition
STATus:OPERation:ENABle
STATus:OPERation:ENABle?
STATus:OPERation:[EVENt]?
STATus:OPERation:NTRansition
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition
STATus:OPERation:PTRansition?

```

\section*{STATus:OPERation:ENABle}

STATus:OPERation:ENABle sets the Enable Register mask. The Enable Register masks the contents of the Event Register in the Status Byte Register, see fig. 10-10.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & <NR1> & \begin{tabular}{l}
0 to 65535 | \\
\#B00000000000000000 to \\
\#B1111111111111111 \\
\#H0000 to \#HFFFF
\end{tabular} \\
& & \begin{tabular}{l}
\#H
\end{tabular} \\
\hline
\end{tabular}

\section*{Comments}
Example
Related commands

Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.
```

STAT:OPER:ENAB 22463
STATus:OPERation:CONDition
STATus:OPERation:ENABle?
STATus:OPERation:[EVENt]?
STATus:OPERation:NTRansition
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition
STATus:OPERation:PTRansition?

```

\section*{STATus:OPERation:ENABle?}

STATus:OPERation:ENABle? queries the Enable Register mask.
Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Comments

Example

Related commands

Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.

STAT:OPER:ENAB?
Response: 17
```

STATus:OPERation:CONDition
STATus:OPERation:ENABle
STATus:OPERation:[EVENt]?
STATus:OPERation:NTRansition
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition
STATus:OPERation:PTRansition?

```

\section*{STATus:OPERation:[EVENt]?}

STATus: OPERation: [EVENt]? queries the contents of the Event Register.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit field & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Comments
This register is not updated for the SPM/PSM.
Example
STAT:OPER:?
Response: 15
Related commands
```

STATus:OPERation:CONDition
STATus:OPERation:ENABle
STATus:OPERation:ENABle?
STATus:OPERation:NTRansition
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition
STATus:OPERation:PTRansition?

```

\section*{STATus:OPERation:NTRansition}

STATus: OPERation:NTRansition sets the contents of the Negative Transition Filter. When the corresponding bit in this register is 1 , a " \(1-->0\) " transition in the COND Register generates a 1 in the Event Register (see fig. 10-13).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & <NR1> & \begin{tabular}{l}
0 to \(65535 \mid\) \\
\#B0000000000000000 to \\
\#B1111111111111111। \\
\#H0000 to \#HFFFF
\end{tabular} \\
& & \\
\hline
\end{tabular}

\section*{Comments}
Example
Related commands

Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.
```

STAT:OPER:NTR }2

```
STATus:OPERation:CONDition
STATus: OPERation:ENABle
STATus:OPERation:ENABle?
STATus: OPERation:[EVENt]?
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition
STATus: OPERation:PTRansition?

\section*{STATus:OPERation:NTRansition?}

STATus: OPERation:NTRansition? queries the contents of the Negative Transition Filter.

\section*{Response}

Comments

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.
```

STAT:OPER:NTR?

```

Response: 15
```

STATus:OPERation:CONDition
STATus:OPERation:ENABle
STATus:OPERation:ENABle?
STATus:OPERation:[EVENt]?
STATus:OPERation:NTRansition
STATus:OPERation:PTRansition
STATus:OPERation:PTRansition?

```

\section*{STATus:OPERation:PTRansition}

STATus: OPERation:PTRansition sets the contents of the Positive Transition Filter. If the corresponding bit of this register is 1 , a " \(0-->1\) " transition in the COND Register generates a 1 in the Event Register (see fig. 10-13).

\section*{Parameters}

\section*{Comments}

Example
Related commands
\begin{tabular}{|c|c|c|}
\hline Parameter Name & Parameter Type & Range of Values \\
\hline - & <NR1> & \begin{tabular}{l}
0 to 65535 | \\
\#B0000000000000000 to \#B111111111111111111 \\
\#H0000 to \#HFFFF
\end{tabular} \\
\hline
\end{tabular}

Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.
```

STAT:OPER:PTR 23465

```

STATus:OPERation:CONDition
STATus: OPERation:ENABle
STATus:OPERation:ENABle?
STATus:OPERation: [EVENt]?
STATus:OPERation:NTRansition
STATus: OPERation:NTRansition?
STATus:OPERation:PTRansition?

\section*{STATus:OPERation:PTRansition?}

STATus: OPERation:PTRansition? queries the contents of the Positive Transition Filter.

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Comments
Part of the extended status reprting system. The Operation Status Register handles states which occur in normal operation, e.g. setting parameters, measurement sequence.

\section*{Example}

Related commands

STAT:OPER:PTR?
Response: 15
```

STATus:OPERation:CONDition
STATus:OPERation:ENABle
STATus:OPERation:ENABle?
STATus:OPERation:[EVENt]?
STATus:OPERation:NTRansition
STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition

```

\section*{STATus:QUEStionable:CONDition?}

STATus:QUEStionable:CONDition? queries the current status of the measurement results (see COND on page 10-16).

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit field & <NR1> & 0 to 65535 \\
\hline
\end{tabular}
\begin{tabular}{ll}
Comments & This register is not updated for the SPM/PSM \\
Example & STAT:QUES:COND? \\
& Response: 15 \\
Related commands & STATus:QUEStionable:ENABle \\
& STATus:QUEStionable:ENABle? \\
& STATus:QUEStionable:[EVENt]? \\
& STATus:QUEStionable:NTRansition \\
& STATus:QUEStionable:NTRansition? \\
& STATus:QUEStionable:PTRansition \\
& STATus:QUEStionable:PTRansition?
\end{tabular}

\section*{STATus:QUEStionable:ENABle}

STATus: QUEStionable: ENABle sets the mask for the Enable Register. The Enable Register masks the contents of the Event Register in the Status Byte Register, see fig. 10-10.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & <NR1> & \begin{tabular}{l}
0 to 65535 | \\
\#B00000000000000000 to \\
\\
\#B1111111111111111। \\
\#H0000 to \#HFFFF
\end{tabular} \\
\hline
\end{tabular}

\section*{Comments}

Example
Related commands
Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STAT:QUES:ENAB }2
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle?
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

```

\section*{STATus:QUEStionable:ENABle?}

STATus: QUEStionable: ENABle? queries the Enable Register mask.

\section*{Response}

\section*{Comments}

Example

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STATus:QUEStionable:ENABle?

```

Response: 15
```

STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

```

\section*{STATus:QUEStionable:[EVENt]?}

STATus: QUEStionable: [EVENt] ? queries the contents of the Event Register.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit field & <NR1> & 0 to 65535 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Comments & This register is not updated for the SPM/PSM \\
\hline \multirow[t]{2}{*}{Example} & STAT: QUES? \\
\hline & Response: 15 \\
\hline \multirow[t]{7}{*}{Related commands} & STATus: QUEStionable:CONDition? \\
\hline & STATus:QUEStionable:ENABle \\
\hline & STATUS:QUEStionable:ENABle? \\
\hline & STATus:QUEStionable:NTRansition \\
\hline & STATus: QUEStionable:NTRansition? \\
\hline & STATus:QUEStionable:PTRansition \\
\hline & STATus: QUEStionable:PTRansition? \\
\hline
\end{tabular}

\section*{STATus:QUEStionable:NTRansition}

STATus:QUEStionable:NTRansition sets the contents of the Negative Transition Filter. When the corresponding bit in this register is 1, a "1-->0" transition in the COND Register generates a 1 in the Event Register (see fig. 10-13).

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & <NR1> & \begin{tabular}{l}
0 to 65535 | \\
\#B0000000000000000 to \\
\#B1111111111111111 । \\
\#H0000 to \#HFFFF
\end{tabular} \\
\hline
\end{tabular}

\section*{Comments}

\section*{Example}

Related commands

Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STAT:QUES:NTR 37
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:ENABle?
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

```

\section*{STATus:QUEStionable:NTRansition?}

STATus:QUEStionable:NTRansition? queries the contents of the Negative Transition Filter.
Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65535 \\
\hline
\end{tabular}

Comments

Example

Related commands
Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STAT: QUES:NTR?

```

Response: 15
```

STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:ENABle?
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

```

\section*{STATus:QUEStionable:PTRansition}

STATus: QUEStionable:PTRansition sets the contents of the Positive Transition Filter. If the corresponding bit of this register is 1 , a " \(0-->1\) " transition in the COND Register generates a 1 in the Event Register (see fig. 10-13).

\section*{Parameters}

Comments

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & <NR1> & \begin{tabular}{l}
0 bis 65535 | \\
\#B0000000000000000 to \\
\#B1111111111111111 | \\
\#H0000 to \#HFFFF
\end{tabular} \\
\hline
\end{tabular}

Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STAT:QUES:PTR 37563
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:ENABle?
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition?

```

\section*{STATus:QUEStionable:PTRansition?}

STATus:QUEStionable:PTRansition? queries the contents of the Positive Transition Filter.

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Bit mask & <NR1> & 0 to 65536 \\
\hline
\end{tabular}

Comments

Example

Related commands

Part of the extended status reporting system. The QUEStionable Status Register handles states indicating the quality of the measured values or setting parameters last determined.
```

STAT:QUES: PTR?

```

Response: 15
```

STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:ENABle?
STATus:QUEStionable:[EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition

```

\section*{STATus:PRESet}
\begin{tabular}{ll}
& \begin{tabular}{l}
STATUs: PRESet sets all status registers to a defined default setting \\
(see page 10-19).
\end{tabular} \\
Example & STAT:PRES
\end{tabular}

\section*{SYSTem:BEEPer:[IMMediate]}

SYSTem:BEEPer:[IMMediate] triggers a short warning beep.

\author{
Example \\ Related commands \\ SYST: BEEP \\ SYSTem:BEEPer:STATe \\ SYSTem:BEEPer:STATe?
}

\section*{SYSTem:BEEPer:STATe}

SYSTem: BEEPer:STATe determines whether events occurring during an impulsive noise or interruptions measurement are signalled by a beep.

ON: Events are signalled by a beep.
OFF: Events are not signalled by a beep.

\section*{Parameters}

Comments
Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline BEEP & Boolean & ON | OFF| DEFault | \(0 \mid 1\) \\
\hline
\end{tabular}

Manual operation: BEEP; operating modes IMPULSIVE NOISE, INTERRUPTION.
SYST:BEEP:STAT ON
SYSTem:BEEPer:STATe?
SYSTem:BEEPer:[IMMediate]

\section*{SYSTem:BEEPer:STATe?}

SYSTem: BEEPer:STATe? queries whether an event occurring during an impulsive noise or interruptions measurement is indicated by a beep.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline BEEP & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{ll}
Comments & 1: Events are signalled by a beep. \\
0: Events are not signalled by a bee \\
Example & \begin{tabular}{l}
SYST \(:\) BEEP :STAT? \\
Response: 1
\end{tabular} \\
Related commands & \begin{tabular}{l}
SYSTem:BEEPer:[IMMediate] \\
SYSTem:BEEPer:STATe
\end{tabular}
\end{tabular}

\section*{SYSTem:COMMunicate:GPIB:[SELF]:ADDRess}

SYSTem: COMMunicate: GPIB: [SELF]: ADDRess sets the instruments own IEC/IEEE address.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
IEC BUS \\
ADDRESS
\end{tabular} & Numeric data & MINimum | MAXimum | DEFault | 0 to 30 \\
\hline
\end{tabular}

Comments
Manual operation: IEC BUS ADDRESS, Aux. function TEST \& CONFIG
Example
Related commands
SYST: COMM: GPIB:ADDR
SYSTem:COMMunicate:GPIB:[SELF]:ADDRess?

\section*{SYSTem:COMMunicate:GPIB:[SELF]:ADDRess?}

SYSTem: COMMunicate: GP IB: [SELF]: ADDRess? queries the current setting of the instrument's own IEC/IEEE address.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline \begin{tabular}{l}
IEC BUS \\
ADDRESS
\end{tabular} & Character data & \begin{tabular}{l}
<none> | MINimum | MAXimum | \\
DEFault
\end{tabular} \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Address & <NR1> & 0 to 30 \\
\hline
\end{tabular}

Example

Related commands
SYST: COMM: GPIB:ADDR?
Response: 4
SYSTem: COMMunicate: GPIB: [SELF]:ADDRess

\section*{SYSTem:COMMunicate:REMote:[STATe]}

SYSTem:COMMunicate:REMote:[STATe] switches the instrument to remote-control.

ON: Remote control on.
OFF: Remote control off.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline- & Boolean & ON | OFF | \(0 \mid 1\) \\
\hline
\end{tabular}

Comments

\section*{Example}

Related commands

When remote-controlling via V.24/V.28, the command to switch to remote control operation must be transmitted first (see section 10.3.2).
This command is superfluous for IEC/IEEE remote control.
SYST:COMM:REM ON

SYSTem: COMMunicate:REMote:[STATe]?

\section*{SYSTem:COMMunicate:REMote:[STATe]?}

SYSTem: COMMunicate:REMote:[STATe]? determines whether the device is currently in remote control mode.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Typ & Range of Values \\
\hline Status & \(<\) NR1> & \(0 \mid 1\) \\
\hline
\end{tabular}

\section*{Example}

Related commands

\section*{SYST:COMM: REM?}

Response: 1
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:BAUD

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:BAUD}

SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit] : BAUD sets the baud rate. The baud rate determines the speed at which data is transmitted (1 Baud \(=1 \mathrm{bit} / \mathrm{s}\)). For example, if the data format is one start, seven data and two stop bits and the baud rate is 9600 , exactly 960 characters will be transmitted per second.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline BAUDRATE & Numeric data & \begin{tabular}{l}
\(300|600| 1200|2400| 4800|9600|\) \\
\(19200|38400|\) DEFault
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Related commands

SYST:COMM:SER:BAUD 9600
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:BAUD?

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:BAUD?}

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit] : BAUD? queries the set baud rate of the serial interface

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Typ & Range of Values \\
\hline BAUDRATE & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Typ & Range of Values \\
\hline Baud rate & <NR1> & \begin{tabular}{l}
\(300|600| 1200|2400| 4800|9600|\) \\
\(19200 \mid 38400\)
\end{tabular} \\
\hline
\end{tabular}

SYST:COMM:SER:BAUD? DEF
Response: 2400
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:BAUD

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:BITS}

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]:
BITS sets the number of data bits used over the serial interface. The LSB (least significant bit) is transmitted first, the MSB (most significant bit) last.
7 = Characters are transmitted in 7-bit ASCII.
8 = Characters are transmitted in 8 -bit ITU-T Code No. 5.

\section*{Parameters}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline DATABITS & Numeric data & \(7|8|\) DEFault \\
\hline
\end{tabular}

SYST:COMM:SER:BITS
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:BITS?

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:BITS?}

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit] : BITS? queries the number of data bits for the serial interface.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline DATABITS & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Typ & Range of Values \\
\hline Data bits & \(<\) NR1> & \(7 \mid 8\) \\
\hline
\end{tabular}

Example

Related commands
SYST:COMM:SER:BITS? DEF
Response: 8
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:BITS

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:SBITs}

SYSTem: COMMunicate:SERial: [RECeive]|[TRANsmit]
: SBITs? queries the number of data bits for the serial interface.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STOPBITS & - & \(1|1.5| 2 \mid\) DEFault \\
\hline
\end{tabular}

Example
Related commands

SYST:COMM:SER:SBIT 1
SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit]:SBITs?

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:SBITs?}

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit] : SBITs? queries the number of stop bits for the serial interface.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline STOPBITS & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Typ & Range of Values \\
\hline Stop bits & <NR2> & \(1|1.5| 2\) \\
\hline
\end{tabular}

Example

Related commands

SYST:COMM:SER:SBIT? DEF
Response: 1
SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]:SBITs

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:PACE}
```

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]

```
: PACE sets the handshake method for data communications.
NONE = No interface control.
RTS/CTS = Receiver controls data communication with hardware handshake.
XON = Receiver controls data communication with software handshake. The receiver accepts data until its buffer is full. It then sends XOFF (13h, Ctrl S) via TxD (Pin2) to the generator. On receiving this character, the generator goes into the wait state. When the receiver buffer is empty again, it transmits the signal XON (11h, Ctrl Q).

\section*{Parameters}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline HANDSHAKE & Character data & NON | XON | RTS | DEFault \\
\hline
\end{tabular}

SYST:COMM:SER:PACE NONE
SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]:PACE?

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:PACE?}

SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit] : PACE? queries the handshake procedure for the serial interface.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline HANDSHAKE & Character data & <none> | DEFault \\
\hline
\end{tabular}

\section*{Response}

\section*{Example}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Handshake & \begin{tabular}{l}
Charcter \\
response data
\end{tabular} & NONE | XON | RTS \\
\hline
\end{tabular}

SYST:COMM:SER:PACE? DEF
Response: XON
SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]:PACE

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:PARity}

SYSTem: COMMunicate:SERial:[RECeive]|[TRANsmit] : PARity sets the serial interface parity. The generator can insert a parity bit after the data bits for detecting errors. The receiver checks the bit stream as determined by this parity bit and can detect any transmision errors.
NONE = No parity check.
EVEN = Even parity, the number of " 1 " bits including the parity bit is always even; i.e. the generator sets the parity bit if the number of "1" bits in the data word is odd. ODD = Odd parity, the number of "1" bits including the parity bit is always odd; i.e. the generator sets the parity bit if the numberof " 1 " bits in the data word is even.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline PARITY & Charakter data & NON | EVEN | ODD | DEFault \\
\hline
\end{tabular}

\section*{Example}

Related commands
SYST:COMM:SER:PAR ODD
SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit]:PARity?

\section*{SYSTem:COMMunicate:SERial:[RECeive] | [TRANsmit]:PARity?}

SYSTem:COMMunicate:SERial:[RECeive]|[TRANsmit] : PARity? queries the parity setting for the serial interface.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline PARITY & Character data & <none> | DEFault \\
\hline
\end{tabular}

Response
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Parity & \begin{tabular}{l}
Character \\
response data
\end{tabular} & NONE | EVEN | ODD \\
\hline
\end{tabular}

\section*{Example}

Related commands

\section*{SYSTem:DATE}

SYSTem: DATE sets the date for the instrument clock. The clock is battery powered and continues running even when the instrument is switched off. The date format is:
YY,MM,DD

\section*{Parameters}

Comments
Example
Related commands

\section*{SYSTem:DATE?}

SYSTem: DATE? queries the instrument date setting.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Date & \begin{tabular}{l}
<NR1>, \\
<NR1>, \\
<NR1>
\end{tabular} & \begin{tabular}{l}
0 to 99 \\
1 to 12 \\
1 to 31
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Parameter \\
Name
\end{tabular} & Parameter Type & Range of Values \\
\hline DATE & \begin{tabular}{l}
Numeric data, \\
Numeric data, \\
Numeric data
\end{tabular} & \begin{tabular}{l}
0 to 99 \\
1 to 12 \\
1 to 31
\end{tabular} \\
\hline
\end{tabular}

Manual operation: ENTER DATE, Aux. function TEST \& CONFIG
SYST:DATE 94,08,05
SYSTem:DATE?

\section*{SYST:DATE?}

Response: 94, 08,05
SYSTem:DATE

\section*{SYSTem:ERRor?}

SYSTem: ERRor? queries error messages from the error queue. The error queue is a FIFO register (first in first out).

\section*{Response}

\section*{Comments}

Example

\section*{SYSTem:PRESet}

\section*{Parameters}

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Error message & \begin{tabular}{l}
<NR2>,<String \\
response data>
\end{tabular} & see under "Error messages" \\
\hline
\end{tabular}

The error queue can store up to 30 error messages. Messages which have been queried are deleted.

SYST:ERR?
Response: -102,"Syntax error"

SYSTem: PRESet sets all parameters to a defined default setting (DEFault). none

SYST:PRES
*RST?

\section*{SYSTem:TIME}

SYSTem: TIME sets the time for the instrument clock. The instrument clock is battery powered and continues running even if the instrument is switched off. The time is entered in the following format:
hh,mm,ss

\section*{Parameters}

Comments
Example
Related commands

\section*{SYSTem:TIME?}

SYSTem:TIME? queries the current time of the instrument clock.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline Time & \begin{tabular}{l}
<NR1> \\
<NR1> \\
<NR1>
\end{tabular} & \begin{tabular}{l}
0 to 23 \\
0 to 59 \\
0 to 59 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Related commands

\section*{SYST:TIME?}

Response: 11,55,55
SYSTem:TIME

\section*{SYSTem:VERSion?}

SYSTem:VERSion? queries the SCPI version.

\section*{Response}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Response \\
Name
\end{tabular} & Response Type & Range of Values \\
\hline SCPI version & <NR2>, & 1993.0 or greater \\
\hline
\end{tabular}

\section*{Example}

Related commands

SYST:VERS?
Response: 1993.0

\section*{UNIT:POWer | VOLTage?}

UNIT: POWer \(\mid\) VOLTage? sets the level units.

\section*{Parameters}

Comments

Example
Related commands
\begin{tabular}{|l|l|l|}
\hline Parameter Name & Parameter Type & Range of Values \\
\hline UNIT & Character data & \begin{tabular}{l}
DEFault I V I MV I UV I W I PW I \\
\\
\end{tabular} \\
& \\
& DB I DBV I DBUV I DBW I DBMW I \\
& DBM I DBPW I DBRN
\end{tabular}

In remote controlled operation, the level is always shown on the display in dB , regardless of the valid units for setting and meaurement values.
Value meanings
V Voltage in V
MV Voltage in mV
UV Voltage in \(\mu \mathrm{V}\)
W Power in W
PW Power in pW
DB Voltage ratio in dB , referred to 0.775 V
DBV Voltage ratio in dB, referred to 1 V
DBUV Voltage ratio in dB , referred to \(1 \mu \mathrm{~V}\)
DBW Power ratio in dB , referred to 1 W
DBMW,
DBM Power ratio in dB, referred to 1 mW
DBPW,
DBRN Power ratio in dB , referred to 1 pW
UNIT:POW DBM
UNIT:POWer | VOLTage?

\section*{UNIT:POWer | VOLTage}

UNIT: POWer | VOLTage? queries the current level unit setting.

\section*{Response}

\section*{Index}

\section*{Numerics}

10 MHz reference frequency \(3-10\)
100 Hz 5-84
1010 Hz 5-86
\(124 \infty 150\) 5-55
\(150 \infty 6005-55\)
\(1740 \mathrm{~Hz} 5-84\)
19" rack mounting 3-2
20 ... \(300 \mathrm{~Hz} \mathrm{5-85}\)
240 kHz (SWEPT) 5-84
25 Hz 5-84
300 ... \(500 \mathrm{~Hz} 5-85\)
\(3100 \mathrm{~Hz} 5-84\)
4 ... \(20 \mathrm{~Hz} 5-85\)
4 ... \(300 \mathrm{~Hz} 5-85\)
48 kHz (SWEPT) 5-84
488.2 10-1
\(50 \infty 75\) 5-55
600 ... \(3000 \mathrm{~Hz} 5-85\)
825 Hz 5-86

\section*{A}

AC line operation 3-3
Activating/deactivating the frequency limits 5-118
Activating/deactivating the setting range limits 5-120
Addresses 5-97
ADJUST TOF 5-106
AFC 5-78
ALARM PARAMETERS 5-61, 5-62
AUTO 5-91
AUTO BLANK 5-122
AUTO RANGING 5-66
AUTO SET 5-66
Automatic gain control 5-66
AUTOSTEP 5-45, 5-51
TIME 5-46, 5-47, 5-49
Auxiliary inputs/outputs 5-8
AVRG 5-88, 5-89

\section*{B}

Balanced
Input 5-5
Balanced input I 5-5
Balanced input II 5-5
Balanced output I 5-5
Balanced output II 5-5
Basic unit 10-22
Batteries 5-9
Battery operation 3-3, 3-4

Battery pack 5-9
Bedienung 10-24
BEEP 5-93
BLANK 5-122
BLANK key (PSM) 5-5
Blue key 5-117, 5-118, 5-120, 5-121, 5-122, 5-123
Boolean 10-23
Bus connections 10-3

\section*{C}

CAL 5-95
CAL key 5-4
Calling up fixed frequencies 5-73
CANCEL 5-77, 5-103, 5-111
Cancelling the print job 5-77, 5-111
Changing the fuse 8-2
CHANN SYSTEM 5-82
Cleaning the instrument 8-3
CLR key 5-1
CME 10-12
C-Message weighting filter 5-86
Coaxial
Measurement input 5-5
Coaxial input 5-4
Coaxial output 5-5
Coaxial tracking generator output 5-5
Common Command 10-24
Common commands 10-24
CONDition 10-16
Connector 10-3
Connectors 5-1
CONT 5-46, 5-51, 5-54
CONTENTS 5-16
Controlling the gain 5-65
Copying fixed frequencies to the Memory Card 5-75
Correct usage 2-5
CREATE FILE 5-108
CURRENT MENU HELP 5-16
Cursor (arrow) keys 5-4

\section*{D}

DATE/TIME 3-6
dB/Div 5-87
DDE 10-12
Deactivating the tracking generator 5-117
Default settings 3-18
DEFAULT SETUP 5-97
DELETE 5-70, 5-71
DELETE CHR 5-99, 5-104, 5-108
DELETE SETUP 5-100
Deleting a setup 5-100
Deleting the result file 5-114

DEMODULATION 5-21
Device-specific 10-21
Df 5-75
Display/Blank warning messages 3-9
Displaying setups 5-100
DOCUM TRIGG 5-110, 5-112, 5-113
Documenting the results 5-104

\section*{E}

EDIT 5-68, 5-69, 5-70
EDIT FRQ 5-69
ENTER TITLE 5-99, 5-104
Entering the TX frequency 5-117
Entering the TX level 5-120
ERR 10-10
Error messages 7-1
ESB 10-10
ESCP 5-105
EVENT 5-113, 10-16
EXE 10-12
EXEC 5-110
EXEC key 5-2
EXT LEVLG 5-123
External level control 5-123

\section*{F}

FILTER 5-85
FINE 5-67
FINE key 5-4
Fitting the 19" conversion kit 3-2
Fixed frequencies
deleting 5-70
storing 5-68
FLAT 5-85
FLIMIT SECURE 5-118, 5-119, 5-120
Floating-point number 10-22
FMEM LIMITS 5-72
FMEM START 5-74
FMEM STOP 5-74
Forgotten the numerical code? 5-119
FORMFEED 5-107
FRQ FMEM 5-74
FRQ LIMIT 5-118
FSTART/Hz 5-79
FSTEP 5-67
FSTOP/Hz 5-79
Fuse 8-2

\section*{G}

GAIN 5-65
Getting started 3-1

\section*{H}

Headset connector 5-6
Help function 5-15
HOT 5-53, 5-54, 5-79, 5-90, 5-93

\section*{'}

IEEE bus cables 10-3
IF GAIN 5-66
IMP NOISE 5-37
IMPED 5-55, 5-122
IMPULSIVE NOISE
DMOD 5-39
VOICEBAND 5-38
INDEX 5-15
Inputs 5-55
INSERT CHR 5-99, 5-104, 5-108
INSTRUMENT 5-118, 5-119, 5-120
Instrument address 10-4
Instrument configuration 8-1
Instrument controls 5-1
Instrument identifier 8-1
Interface functions 10-4
INTERR 5-41
INTERRUPTIONS 5-41
DMOD 5-43
VOICEBAND 5-42

\section*{K}

Keyboard click 3-6
Keypad 5-1

\section*{L}

Labelling setups 5-99
Labelling the measurement result record 5-104
LCD contrast setting 3-10
LEVEL 5-17
LEVEL ABSOLUTE 5-56
LEVEL ABS-REF 5-57
LEVEL ALARM 5-112
LEVEL LIMIT 5-121
LEVEL RELATIVE 5-59
Level threshold 5-63
Level units 5-60
LOCAL 10-1
LOCK CODE 5-118
LOWER THRESH 5-61
LSB 5-80, 5-81

\section*{M}

Maintenance 2-6, 8-1
MAN 5-91
Manual control 5-66
MARK 5-90
MARKER 5-89
MAV 10-10
MAX FRQ 5-117, 5-119
MAX LEVEL 5-121
MAXHLD 5-89
Maximum hold 5-89
Measurement 6-1
Measurement notes 6-1
MEMCARD DIR 5-115
MEMCARD PARAM 5-108, 5-109
Message 10-20
Meßtechnische Hinweise 6-1
MIN FRQ 5-117, 5-119
Mode
DEMODULATION 5-21
JITTER 5-33
VOICE 5-25
MRK FRQ - - > LEVEL MEAS 5-90

\section*{N}

NEXT 5-69
NO TITLE 5-98
NOISE POWER RATIO 5-27
NOT AVAIL 5-98
NOT USED 5-98

\section*{0}

OFF 5-110
OK 5-77, 5-102, 5-111
OPC 10-12
Operating position 3-1
Operating principle 5-11
OPR 10-10
OUTPut
:[STATe]? 10-86
Output queue 10-14

\section*{P}

PAGE LENGTH 5-106
PARAMETER 5-81
PCL 5-105
PON 10-12
POWER 3-3, 3-4, 4-1
POWER ON SETUP 3-8
Power supply 3-3

PPC 10-15
PREV 5-3, 5-104, 5-105, 5-106, 5-107, 5-110, 5-112,
\(5-113,5-114,5-116,5-117,5-118,5-119,5-120,5-\)
121
PREVIOUS 5-97
PRINT PARAMETERS 5-109, 5-110
PRINTER 5-105
PRINTING 5-77, 5-102, 5-111
Printing the contents of the result file 5-114
Printing the list of fixed frequencies 5-77
Program data 10-20
Program data separator 10-22
Program header separator 10-20
Program message terminator 10-20
Program message unit 10-20
Program message unit separator 10-20
Programming word 10-20
PSOPH (CMES) 5-86
Psophometer filter 5-86

\section*{Q}

QUE 10-10
QYE 10-12

\section*{R}

RANGING 5-87
RECALL 5-99
Recalling a setup 5-99
Rechargeable battery pack option 8-4
Reference frequency 3-10
reference line 5-94
Remote control connector 5-8
Remote-control interface V. 24 / V. 28
see V.24/V. 28 interface
Repairs 2-6
RESET 5-107
RESET ALARM 5-62
Reset the line counter 5-106
Resetting alarms 5-62
Response data 10-23
RF GAIN 5-66
Rotary control 5-4
RS232
see V.24/V. 28 interface
RTEST \& CONF 5-120
RTN 5-3, 5-105, 5-106, 5-107, 5-110, 5-112, 5-113, \(5-\)
114, 5-116, 5-117, 5-118, 5-119, 5-120, 5-121

\section*{S}

Safety instructions 2-5
SCPI 10-1
SCPI status management 10-19
Seitenbandlage 5-93
Selecting the bandwidth 5-84
Selecting the channel system 5-82
Selecting the notch filter 5-86
Selecting the printer type 5-105
Selecting the scale 5-88
Selecting the scaling 5-87
Selecting the weighting filter 3-9
SEND TO MEMCARD 5-108
SEND TO PRINTER 5-105
SERIAL POLL 10-9
SET ACT CHANN 5-82
SET ACT FILE 5-109, 5-114
SET ACT FMEM 5-72
SET INV 5-112
SET LAST FMEM 5-71
SET STâRT FMEM 5-73
SET STOP FMEM 5-73
Setting the date 3-6
Setting the first address 5-71
Setting the last address 5-71
Setting the numerical code 5-118
Setting the printer as output device 5-105
Setting the range limits 5-119
Setting the scale reference manually 5-87
Setting the start address 5-73
Setting the stop address 5-73
Setting the switch on behavior 3-7
Setting up the instrument 3-1
SETUP 5-3
SHIFT RANGE 5-87
SHOW MARKER 5-89
Sidebands 5-80
SING 5-46, 5-51, 5-54
Spare parts 2-6
specifications 9-1
Standard 10-8
Standard event status register 10-12
START 5-91
Start frequency 5-79
START key 5-4
Start printout 5-110
START THRESH 5-64
Start threshold 5-64
Startfrequenz 5-79
Status byte register 10-9
Status reporting system 10-8
STEP PAR 5-64, 5-65, 5-90, 5-91
STEP THRESH 5-65

Step threshold 5-65
STEP WIDTH 5-90
Storage 3-20, 8-15
STORE 5-98
STORE FMEM FROM MEMCARD 5-75
Suffix 10-22
Switch on test routine 3-5
Switching on 3-1

\section*{T}

TEST \& CONF 5-118, 5-119
THINK JET 5-105
THR/dBm 5-63, 5-94
THRESH 5-63, 5-64
TIME 3-7
TIMER 5-112
TITLE 5-99, 5-104, 5-106
Transport 3-20, 8-15
Tree structure 10-21
TX FRQ LIMIT 5-120
TX OFF 5-116, 5-117, 5-118, 5-120, 5-121, 5-122, 5-123
TX POWER 5-116, 5-117, 5-120
TX x.x dBm 5-117, 5-118, 5-120, 5-121, 5-123
TX x.x. dBm 5-122
TYPE 5-105

\section*{U}

UNITS 5-56
UNLOCK CODE 5-118, 5-119, 5-120
UPPER THRESH 5-61
USB 5-80, 5-81
USER 5-97

\section*{V}
V. 24 serial interface 5-8
V.24/V. 28 interface 10-1

Bus connections 10-5
Connection to a PC 10-6
Interface functions 10-5
Parameter 10-7
VIEW 5-100, 5-114
VIEW CONTENTS 5-100, 5-101
VOICE 5-25
Volume control 5-6

\section*{W}

WARNING MESSAGE 3-9
WEIGHTING 3-9
WIDE 5-84
WRITE MODE 5-109

\section*{Z}

Z/ \(\infty\) 5-55

\section*{Wavetek Wandel Goltermann \\ Environmental Management Program}

Superb performance and high quality have always characterized Wavetek Wandel Goltermann (WWG) datacom and telecom measurement technology products. In this same world-class tradition, WWG has an established, proactive program of environmental management.

Environmental management is an integral part of WWG's business philosophy and strategy requiring the development of long-term, productive solutions to problems in the key areas of economics, technology, and ecology.

A systematic environmental management program at WWG is essential in regard to environmental policy and enhances cooperation between ourselves and our business partners.

\section*{The WWG Environmental Management Program considers:}

\section*{Product design and manufacture}

Environmental restrictions and requirements are taken into account during planning and manufacture of WWG products. This attention ranges form the raw materials and finished components selected for use and the manufacturing processes employed, through to the use of energy in the factory, and right on up to the final stages in the life of a product, including dismantling.

\section*{Hazardous materials}

WWG avoids or uses with care any hazardous or dangerous material in the manufacturing process or the end product. If the use of a dangerous material cannot be avoided, it is identified in product documentation and clearly labeled on the product itself.

\section*{Packaging materials}

Preference is given to reusable or biodegradable singlesubstance packaging materials whenever possible.

\section*{Environmental management partnerships}

WWG encourages our customers and suppliers who take this responsibility seriously to join WWG in establishing their own environmental management programs.

\section*{Recycling used products}

Wavetek Wandel Goltermann has an effective program for the recycling and/or disposal of used equipment. Our customers in Germany can already take advantage of our return service for used instruments. In Europe, all new equipment purchased from WWG can be returned for scrapping at the end of its useful life, free of charge.

If you would like specific information about the Wavetek Wandel Goltermann Environmental Management Program, please contact us at

\section*{Germany}

Environmental Management:
Tel: +49-(0)7121 861470
Fax: +49-(0)7121 861502

\section*{United Kingdom}

Design Office:
Tel: +44-1752 772773
Fax: +44-1752 709897

\section*{United States}

Environmental Management:
Tel: +1-919 9415730
Fax: +1-919 9415751

\section*{France}

Environmental Management:
Tel: +33-(0)2 99847040
Fax: +33-(0)2 99847044

\section*{Wavetek Wandel Goltermann Worldwide (Sales Organizations)}

\section*{Europe}

\section*{Austria}

Eastern Europe, Middle East, Africa
W avetek Wandel Goltermann
Austria GmbH
Postfach 13
Elisabethstrasse 36
2500 Baden, Austria
Tel. +43-22 5285 521-0
Fax +43-22 5280727

\section*{Benelux}

Wavetek Wandel Goltermann
Benelux BV
Postbus 1575
NL-5602 BN Eindhoven, Netherlands
Tel. +31-40-267 9700
Fax +31-40-267 9711

\section*{Finland}

Wavetek Wandel Goltermann
Tekniikantie 12
02150 Espoo
Tel. +358-(0)9-4354 3199
Fax +358-(0) 9-455 1522
sales.finland@wwgsolutions.com

\section*{France}

Wavetek Wandel Goltermann
France S.A.R.L
46 bis, rue Pierre Curie
B.P. 10
Z.I. Les Gâtines

78373 Plaisir Cédex
Tél. +33-(0)1 30815050
Fax +33-(0)1 30558775

\section*{Germany}

Wavetek Wandel Goltermann
\(\mathrm{GmbH} \& \mathrm{Co}\).
Vertriebsgesellschaft
Postfach 1155
72794 Eningen u.A.
Tel. +49-7121 862222
Fax +49-7121 861222
sales.germany@wwgsolutions.com

\section*{Italy}

Wavetek Wandel Goltermann
Italia S.r.I.
Via Pomponazzi 25
20141 Milano
Tel. +39-02 89512381
Fax +39-02 89511780
http://italy.wwgsolutions.com

\section*{Norway}

Wavetek Wandel Goltermann
Nordic AB
Postboks 134, Skøyen
Hovfaret 13
0275 Oslo
Tel. +47-22-504090
Fax +47-22-504025
sales.norway@wwgsolutions.com

\section*{Russia/CIS}

OOO Wavetek Wandel Goltermann
\(1^{\text {st }}\) Neopalimovskiy per. 15/7
119121 Moscow
Tel. +7-095-248 3124
Fax +7-095-248 4189
yelena.yakovleva@wwgsolutions.com

Spain/Portugal
Wavetek Wandel Goltermann
España S.A.
c/ Arturo Soria \(n^{0} 343-3^{\circ}\)
28033 Madrid, Spain
Tel. +34-91-383 9801
Fax +34-91-383 2263

\section*{Sweden}

Wavetek Wandel Goltermann
Nordic AB
Box 6044
Ellen Keys Gata 60
12906 Hägersten
Tel. \(+46-8-4494800\)
Fax +46-8-449 4839 sales.sweden@wwgsolutions.com

\section*{Switzerland}

Wavetek Wandel \& Goltermann
Schweiz AG
Postfach 779
Morgenstrasse 83
3018 Bern 18
Tel. +41-31 9964411
Fax +41-31 9964422
sales.switzerland@wwgsolutions.com

\section*{United Kingdom}

Wavetek Wandel Goltermann UK Ltd.
Portland House, Aldermaston Park
Aldermaston, Berkshire RG7 4HR
Tel. +44-1189 409200
Fax +44-1189 409210
help.uk@wwgsolutions.com
East and South East Europe see Austria

\section*{North America}

\section*{Canada}

Wavetek Wandel Goltermann
Canada Inc.
21 Rolark Drive
Scarborough, Ontario M1R 3B1
Tel. +1-416 2917121
Fax +1-416 2912638

\section*{USA}

Wavetek Wandel Goltermann Inc. P.O.Box 13585

Research Triangle Park,
NC 27709-3585
Tel. +1-919-941-57 30
Fax +1-919-941-57 51

\section*{Mexico}

Central America/Caribbean/
Venezuela/Colombia/Ecuador/Peru
Wavetek Wandel Goltermann
de México, S.A. de C. V.
San Francisco No. 6
Col. Del Valle
03100 México D.F.
México
Tel. +52-5 5436644
Fax +52-5 5438660
info.mex@wwgsolutions.com

\section*{Latin America}

\section*{Argentina}

Bolivia/Chile/Paraguay/Uruguay
Wandel \& Goltermann S.A.
Montañeses 2599
1428 Buenos Aires
Argentina
Tel. +54-11 47844700
Fax +54-11 47867917

Brazil
Wavetek Wandel Goltermann
do Brasil Ltda. \& Cia.
Av. Eng. L. C. Berrini,
936-9. andar
04571-000 Sào Paulo, SP
Brazil
Tel. +55-11 55033800
Fax +55-115505 1598
sales.brasil@wwgsolutions.com

Africa
Wavetek Wandel Goltermann
GmbH \& Co. Vertriebsgesellschaft
Postfach 1155
72794 Eningen u.A., Germany
Tel. +49-7121-86 1183
Fax +49-7121-86 2155
export.germany@wwgsolutions.com
Africa see also Austria

\section*{Asia}

Israel see Africa
Middle East see Austria
South East Asia see Australia
CIS Countries see Russia

\section*{India}

Wavetek Wandel Goltermann
India Pvt. Ltd.
R.K. Khanna Tennis Stadium

Africa Avenue
New Delhi 110029
Tel. +91-11-619 6420
Fax +91-11-619 6190
india.wwgsolutions.com

\section*{China}

Wavetek Wandel Goltermann
China Office
Suite 1608 Corporate Square,
No. 35, Jinrong St, Xicheng District
Beijing 100032
Tel. +86-10 88091288
Fax +86-10 88091298
wgchina@wgchina.com

Hong Kong
Wavetek Wandel Goltermann
Hong Kong Ltd.
Rm 1901-2 Jubilee Centre
18 Fenwick Street
Wanchai, Hong Kong
Tel. +852-25 28-62 83
Fax +852-25 29-55 93
carsonl@hk.super.net

\section*{Japan}

Wavetek Wandel Goltermann K.K.
Kyoritsu Shin-Yokohama Bldg. 6F
2-15-12 Shin-Yokohama,
Kouhoku-ku
Yokohama, 222-0033
Tel. +81-45-473-9501
Fax +81-45-473-9812
ken.sugao@wwgsolutions.com
Republic of Korea
Wavetek Wandel Goltermann
Korea Ltd
\(1^{\text {st }}\) Floor Yehsung Bldg.
150-30 Samsung-dong
Kangnam-ku,
Seoul 135-091,
Tel. +82-2-563 22 36/7
Fax +82-2-563 2239
hyun.young-joo@wwgsolutions.com

\section*{Singapore}

Wandel \& Goltermann Singapore Pte. Ltd.
438B Alexandra Road
Alexandra Technopark Hex 06-07
Singapore 119968
Tel: +65-377-3003
Fax: +65-377-3033
wg.sing@wwgsolutions.com

\section*{Australia and Pacific Region}

\section*{Australia}

Wavetek Wandel Goltermann
Asia Pacific Pty. Ltd.
P.O. Box 419

World Trade Centre
Melbourne, Victoria 3005
Australia
Tel. +61-3-9690 6700
Fax +61-3-9690 6750
wgaus-mel@wwgsolutions.com

\section*{New Zealand}

Wavetek Wandel Goltermann
NZ Office
P.O. Box 34-152

33 Mokoia Road
Birkenhead, Auckland
Tel. +64-(0)9-48000179
Fax +64-(0)9-48000135
wgaus-nz@wwgsolutions.com

For all other countries
(not listed) please contact: Wavetek Wandel Goltermann
Eningen GmbH \& Co.
Marketing International
Postfach 1262
72795 Eningen u.A.
Germany
Tel. +49-7121-86 1616
Fax +49-7121-86 1333
E-mail: Info@wwgsolutions.com
http://www.wwgsolutions.com```

[^0]: 1 Numbered from top to bottom

[^1]: 1 CAR (Carrier) in DEMODULATION mode and for JITTER TONE DEMODULATION, INTERRUPTION DEMODULATION, IMPULSIVE NOISE DEMODULATION measurements.

[^2]: 11950 Hz if the C-Message filter is activated (see TEST \& CONFIG auxiliary function)

[^3]: 1 The SPM/PSM-37/-38/-39 instrument versions must be equipped with Option 2203/00.05 (IEEE 488.2/V. 24 Interface).

[^4]: $1 r_{1}$ and r_{2} are often referred to as coupling resistances in the case of coaxial cables, plugs, etc. and are defined as follows:
 Coupling resistance =
 Voltage drop on the outer surface of the outer conductor
 Current on the inner surface of the outer conductor
 Coupling resistance =
 Voltage drop on the inner surface of the outer conductor
 Current on the outer surface of the outer conductor

[^5]: 1 No AFC at 48 kHz and 240 kHz

[^6]: 1 US version: dBrnC0
 2 US version: pWC0

[^7]: 13 dB bandwidths
 2 US Version

[^8]: 1 For PSM-37/-38/-39/-137/-138/-139 only
 2 The reference or relative level is set in the same way as for the receiver.

[^9]: 1 CE conformance is based on adherence to these standards

[^10]: 1 SPM-137/-138/-139, PSM-137/-138/-139 only

[^11]: 1 Order together with basic instrument. Option can also be retrofitted by a Wandel \& Goltermann service center.

[^12]: 1 Optional for SPM/PSM-37 to 39

