Errata

Title \& Document Type: 4342A Q-meter Operating and Service Manual

Manual Part Number: 04342-90009

Revision Date: March 1983

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that HewlettPackard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test \& Measurement website:
www.tm.agilent.com
Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

METROLOGY.
JAN 211986
OPERATING AND SERVICEMANUAL

COPYRIGHT AND DISCLAIMER NOTICE

Copyright - Agilent Technologies, Inc. Reproduced with the permission of Agilent Technologies Inc. Agilent Technologies, Inc. makes no warranty of any kind with regard to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies, Inc. is not liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material or data.

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period provided they are returned to HewlettPackard. No other warranty is expressed or implied. We are not liable for consequential damages.
Service contracts or customer assistance agreements are available for Hewlett-Packard products that require maintenance and repair on-site.
For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

MODEL 4342A
 Q METER

SERIAL NUMBERES COVERED

This manual applies directly to Model 4342A Q Meter with serial prefixed 1212J. Backdating changes in Section VII cover instruments with serials 1212J-00590 and below. Instruments with higher serial prefix will be covered in an Updating Manual Supplement at the first of the manual.

OPTIONS COVERED

This manual coveres Option 001 instruments as well as the standard instrument.
©COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1970 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

table of CONTENTS

Section Title Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-3. How the 4342A Measures 1-2
1-8. Instruments Covered by Manual 1-2
1-13. Specifications 1-3
1-15. Accessories Supplied 1-3
1-17. Accessories Available 1-3
1-19. Options 1-3
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-4. Mechanical Check 2-1
2-6. Performance Check 2-1
2-8. Damage Claim 2-1
2-11. Storage and Shipment 2-1
2-12. Packaging 2-1
2-13. Environment 2-1
2-14. Power Connection 2-1
2-15. Line Voltage 2-1
2-16. Power Cable 2-1
III OPERATION 3-1
3-1. Introduction 3-1
3-3. Panel Controls, Connectors and Indicators 3-1
3-5. Q Measurement General 3-1
3-8. Go/No-Go Function 3-1
3-10. Measurement Terminals 3-5
3-12. How to Connect Unknown 3-5
3-14. Measurement Parameters and Connection Methods 3-5
3-16. Direct Method Limitations 3-5
3-18. Expansion of Measurement Ranges 3-6
3-20. Capacitance Measurement 3-6
3-22. Resistance Measurement 3-6
3-24. High Q Measurement 3-7
3-26. Supplemental Equipment Used in Parallel and Series Methods 3-7
3-30. Basic Q Meter Measurements 3-11
3-31. Quality Factor and Inductance Measurements (Direct Connection) 3-11
3-33. Q Measurement 3-11
3-35. $\quad \Delta \mathrm{Q}$ Measurement 3-12
3-37. Inductance Measurement 3-12
3-39. Inductance Measurement (at a desired frequency) 3-13
3-41. Measurement Requiring Corrections 3-13
3-42. Effects of Distributed Capacitance 3-13
3-45. Measuring Distributed Capacitance (Preferred Method) 3-14
3-47. Measuring Distributed Capacitance
(Approximate Method, $\mathrm{Cd} \leq 10 \mathrm{pF}$) 3-15
3-49. Correction for Q 3-16
3-55. Parallel and Series Connection Measurement Methods 3-17
3-56. General 3-17
3-60. Additional Error Discussion 3-17
3-64. Parallel Measurements 3-18
3-65. High Inductance Measurement 3-18
3-67. Low Capacitance Measurement ($<450 \mathrm{pF}$) 3-19
3-69. High Resistance Measurement 3-20
3-71. Dielectric Measurement 3-21
Section Title Page
3-73. Series Measurements 3-23
3-74. Low Inductance Measurement 3-23
3-76. High Capacitance Measurement ($\geq 450 \mathrm{pF}$) 3-24
3-78. Self-resonant Frequency Measurement of High Capacitors 3-24
3-80. Low Resistance Measurement 3-26
IV THEORY OF OPERATION 4-1
4-1. Introduction 4-1
4-3. Q Determination and Measurement 4-1
4-6. Simplified Block Diagram 4-1
4-8. Block Diagram Description 4-1
4-10. Oscillator and Impedance Converter (A1A1) 4-1
4-12. RF Power Amplifier (A1A2) 4-1
4-14. ALC Amplifier (P / O A8) 4-2
4-16. $\quad \mathrm{Q} / \Delta \mathrm{Q}$ Range Attenuator (A3) 4-2
4-18. Tuning Capacitor and Injection Transformer (A2) 4-2
4-21. \quad RF Amplifier and Detector (A5) 4-2
4-24. DC Amplifier (A6) 4-2
4-26. Q Limit Selector (A7) 4-2
4-28. Circuit Details 4-2
4-29. LC Oscillator (P/O A1A1) 4-2
4-31. Impedance Converter ($\mathrm{P} / \mathrm{OA} \mathrm{A} 1$) and RF Power Amplifier (A1A2) 4-3
4-33. ACL Amplifier ($\mathrm{P} / \mathrm{O} \mathrm{A} 8$) 4-3
4-35. \quad Q Range Attenuator (A3) 4-3
4-37. Impedance Converter, RF Amplifier and Detector (A5) 4~3
4-39. DC Amplifier (A6) 4-3
4-41. $\quad \mathrm{Q}$ Limit Selector (A7) 4-3
4-43. Power Supply (P/O A8) 4-3
V MAINTENANCE 5-1
5-1. Introduction 5-1
5-3. Test Equipment Required 5-1
5-5. Q Accuracy Considerations 5-1
5-7. Option 5-1
5-9. Performance Checks 5-3
5-11. Frequency Accuracy Check 5-3
5-12. Q Range Check 5-3
5-13. $\quad \Delta \mathrm{Q}$ Range Check 5-4
5-14. Capacitance Accuracy Check 5-4
5-15. Q Limit Operation Check 5-5
5-16. Adjustment and Calibration Procedures 5-8
Puwer Supply Adjustment 5-8
5-18.
Oscillator Level Adjustment 5-8
5-20. Oscillator Frequency Adjustment 5-8
5-21. $\quad Q$ Voltmeter Adjustment 5-9
5-22. Q Analog Output Adjustment 5-10
5-23. Frequency Response Adjustment 5-11
5-24. Q Limit Selector Adjustment 5-11
5-25. Option 001 Maintenance Instructions 5-12
5-27. Option 001 Performance Checks 5-12
5-29. Option 001 Calibration and Adjustment Procedures 5-13
5-31. Dial Re-stringing Instructions 5-14
5-34. Frequency Dial 5-14
5-35. L/C Dial 5-14
5-36. \triangle C Dial 5-14
5-37. Troubleshooting Guides 5-18
5-39. High Frequency Line Noise 5-18
5-40. Operating in a Strong Electromagnetic Field 5-18
5-41. Operating in High Humidity Environment 5-18
Section Title Page
5-42. Elementary Troubleshooting Guide 5-18
5-43. Meter Zeroing Troubles 5-18
5-44. Incorrect Q Meter Indication 5-18
5-45. Low Q Indication in High Frequency Measurements 5-19
5-46. Faulty Q Limit Operation 5-19
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-6. Ordering Information 6-1
VII MANUAL CHANGES AND OPTIONS 7-1
7-1. Options 7-1
7-3. Special Instruments 7-1
7-5. Manual Changes 7-1
7-7. Later Instruments 7-1
7-8. Earlier Instruments 7-1
7-9. Option 001 Instruments 7-1
VIII CIRCUIT DIAGRAMS 8-1
8-1. Introduction 8-1
8-4. General Notes 8-1
APPENDIX OPTION 001 A-1
I Replaceable Parts A-1
II Manual Changes A-1
III Circuit Diagrams A-2
LIST OF TABLES
Number Title Page
1-1. Specifications 1-2
1-2. Accessories - Typical Values 1-3
2-1. AC Line Fuse 2-1
3-1. Methods of Connecting Unknown 3-10
3-2. 16451A (4342A-K01) Typical Characteristics 3-21
3-3. Formulas for Calculating Q and Impedance Parameters
from Parallel and Series Measurements 3-27
3-4. Formulas Relating Series and Parallel Components 3-27
5-1. Recommended Test Equipment 5-0
5-2. Q Correlation Factors 5-1
5-3. Frequency Accuracy Check 5-2
5-4. Q Range Check 5-3
5-5. Capacitance Accuracy Check 5-5
5-6. Adjustable Components 5-7
5-7. Frequency Adjustment 5-9
5-8. Frequency Accuracy Check (Option 001) 5-12
5-9. Frequency Adjustment (Option 001) 5-13
6-1. List of Reference Designators and Abbreviations 6-1
6-2. Reference Designation Index 6-3
7-1. Backdating Changes 7-1
A-1. Reference Designation Index for Option 001 (A1A1 Ass'y). A-3
A-2. Reference Designation Index for Option 001 (A5 Ass'y) A-5

LIST OF ILLUSTRATIONS

Number Title Page
1-1. Model 4342A Q Meter 1-1
3-1. Front Panel Controls 3-2
3-2. Rear Panel Controls and Connectors 3-4
3-3. Measurement Terminal Circuit 3-5
3-4. Inductance Measurement Ranges vs. Frequency
(direct method) 3-6
3-5. Ranges of Measurable Rosistance 3-7
3-6. Zeroing Procedure 3-8
3-7. Distributed Capacitance in Direct Connection 3-11
3-8. Distributed Capacitance Circuit Model 3-13
3-9. Typical Variation of Effective Q and Inductance with Frequency 3-14
3-10. Correction Chart for Distributed Capacitance 3-14
3-11. Residual Parameters 3-17
4-1. Series Resonant Circuit 4-0
4-2. Model 4342A Simplified Block Diagram 4-0
4-3. Constant Voltage Injection System 4-2
5-1. Q Range Check 5-2
5-2. 4 Q Range Check 5-3
5-3. Capacitance Accuracy Check 5-4
5-4. Model 4342A Adjustment Locations 5-6
5-5. Model 4342A Assembly Locations 5-6
5-6. Voltmeter Adjustment 5-10
5-7. Frequency Response Adjustment 5-11
5-8. Frequency Dial Restringing 5-15
5-9. Main C Dial Restringing 5-16
5-10. 4 C Dial Restringing 5-17
5-11. Tuning Capacitor Disassembly (top view) 5-19
5-12. Troubleshooting, Oscillator Section 5-21
5-13. Troubleshooting, Voltmeter Section 5-19
6-1. Exploded View of Oscillator Ass'y 6-22
6-2. Exploded View of Tuning Capacitor Ass'y 6-24
6-3. Exploded View of Q Range Attenuator Ass'y 6-26
6-4. Exploded View of Frequency Multiplier, Over Limit Indicator, and Frequency Scale Indicator 6-27
6-5. Exploded View of Main and Vernier Capacitor
Dial Ass'y 6-28
6-6. Exploded View of Oscillator Lever Ass'y 6-29
6-7. Exploded View of Rear Panel 6-30
6-8. Exploded View of Handle Section 6-32
7-1. A7 04342-7707 7-2
7-2. A11 04342-7711 7-2
7-3. Partial Schematic of Power Supply 7-5
8-1. Schematic Diagram Notes 8-2
8-2. Function Overall Block Diagram 8-3
8-3. Oscillator Ass'y A1, Q Range Attenuator Ass'y A3, Power Supply \& ACL Amplifier Ass'y A8, Frequency Multiplier \& Over Limit Indicator Ass'y A10 8-5
Number Title Page
8-4. Tuning Capacitor Ass'y A2, QRange Attenuator Ass'y A3, Impedance Converter Ass'y A4, Meter Scale Indicator Ass'y A11 . 8-7
8-5. Q Range Attenuator Ass'y A3, Impedance Converter, RFAmplifier \& Detector Ass'y A5, DC Amplifier Ass'y A6,Meter Scale Indicator Ass'y A11 8-9
8-6. Q Limit Selector Ass'y A7 Frequency Multiplier \& Over Limit Indicator Ass'y A 10 . . 8-11
8-7. Power Supply \& ALC Amplifier Ass'y A8 8-13
A-1 Oscillator Ass'y A1 (Option 001) A-7
A-2. Impedance Converter, RF Amplifier \& Detector Ass'y A5 (Option 001) A-9

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. The HP Model 4342A Q Meter is designed to mect the requirements for making casy and accurate quality factor measurements in the laboratory, on the production line, or in QA incoming inspection areas. The direct reading, expanded scale of the 4342 A permits measurement of Q from 5 to 1000 and the reading of very small changes in Q resulting from variation in test parameters. The long frequency dial scale and the pushbutton range selector continuously cover the frequency range of 22 kHz to 70 MHz (in seven - $1 / 3$ decade steps) and permit setting the frequency to an accuracy of 1.5% with 1% resolution.

The calibrated long-scale capacitance dials permit reading the capacitance of the tuning capacitor at an accuracy of 1% and provides the capability for varying the capacitance with 0.1 pF resolution on the vernier scale. Inductance of sample can be read directly from the inductance scale adjacent to the capacitance scale al seven
specific frequencies by setting the frequency dial to the "L" point on each frequency range.

Flat oscillator output, automatically lcvelcontrolled over the entire frequency ranges, is a feature of the 4342A. This advantage obviates the necessity for frequent oscillator level adjustments to maintain the output level constant or the use of a specially matched fragile thermocouple level meter.

The high reliability of the instrument and ease of operation are the direct results of these measurement advancements in the 4342 A .

For determing the resistance, reactance, or quality factor of capacitance and inductance samples in the high frequency region, the 4342 A is a most versatile measuring instrument. The 4342 A can measure the dissipation factor and dielectric constant of insulating materials, coefficient of coupling, mutual inductance, and the frequency characteristics of transformers. Accessories which extend the measurement capabilities, designed for

Figure l-1. Model 4342A Q Meter.
user convenience, have broad applications in testing components and electronic materials, in physical and chemical research, and in related scientific fields.

Pushbutton operation of frequency range and $Q / \Delta Q$ range selection provides for straightforward measurement. Automatic indication of moter scales, frequency dials, and frequency multipliers are used, adding to the simplicity and reading speed.

1-3. How The 4342A Measures.

1-4. The Q Meter is basically composed of a stable, variable oscillator, a tuning circuit for taking resonance with an unknown sample, and a high input impedance $R F$ voltmeter connected across the variable capacitor which is a section of the tuning circuit.

To measure the quality factor of a sample, a stable oscillator signal is injected into the series tuning circuit composed of the variable capacitor and the unknown (inductor). At the tuned frequency, the RF voltmeter (called Q voltmeter) indicates a peak value in the signal level increase (resonance) and is proportional to the quality factor of the sample measured. By injecting an oscillator signal with a low output impedance and by measuring the signal level of the series resonant circuit with a high impedance voltmeter, the quality factor of the unknown sample can be accurately determined at the resonant frequency. Additionally, various parameters of the sample can be measured (directly and indirectly) as factors of the resonant frequency and the tuning capacity which can be read from their respective dial scales.

1-5. For accurate measurements, the 4342A employs a unique constant voltage injection system and a low output impedance injection transformer. The oscillator signal is automatically leveled by an ALC loop to provide the constant injection voltage required by the Q range in use. This obviates the need of an oscillator level control or the fragile thermocouple level meter (as used in traditional Q Meters). The unique injection transformer along with the high quality low loss tuning capacitor contribute minimal additional loss to the measurement circuit (resonant circuit) and greatly improve the Q accuracy in high Q measurements.

1-6. High stability of the Q voltmeter virtually eliminates the need for Q-zero adjustments in routine measurements. Troublesome zero settings prior to each adjustment are thus eliminated, ensuring simple and rapid operation. Accurate determination of Q changes
in delta-Q measurements can be obtained in all Q ranges by using the expanded resolution (X10) capability.

1-7. The unique Q Limit selector is especially useful in Go/No-Go checking on the production line. The high response speed of the Go/No-Go indicator (compared to using a meter pointer deflection method) permits faster Go/No-Go testing. For even easier testing, external indicating devices may be remotely controlled by the Go/No-Go output signal (on the rear panel).

1-8. INSTRUMENTS COVERED BY MANUAL.

1-9. Hewlett-Packard uses a two-section nine character serial number which is marked on the serial number plate (Figure 1-2) attached to the instrument rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies country where instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-10. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted scrial number prefix indicates that the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-11. In addition to change information, the supplement may contain information for correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on title page of this manual, see Section VII Manual Changes.

1-12. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. SPECIFICATIONS.

1-14. Complete specifications of the Model 4342A Q Meter are given in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. The test procedures for testing the instrument to determine if it meets its specifications are covered in Section V Maintcnance Paragraph 5-9 Performance Checks. When the $4342 \mathrm{~A} Q$ Meter is shipped from the factory, it meets the specifications listed in Table 1-1.

1-15. ACCESSORIES SUPPLIED.
1-16. Fuses (HP Part No. 2110-0339 and 21100044), the Operating and Service Manual, and a power cord are furnished with the 4342A. One of four types of power cords (HP Part No. 8120-1703, -0696, -1692 or -1521) is furnished depending on the instrument destination. All accessories supplied are packed in the instrument carton.

1-17. ACCESSORIES AVAIALABLE.

1-18. Accessories are specially designed devices which extend or enhance the measurement capabilities of the 4342A. The following accessories are available for use with the 4342A Q Meter:

16470 Series Supplemental Inductors:
A range of 20 inductors (model numbers 16471 A to 16490 A), which can be supplied separately or as a set, are available for use with the 4342A Q Meter. These inductors are useful as reference devices when measuring the RF characteristics of capacitors, resistors, or insulating materials. For 4342 A option 001 instruments, the Model 16465A Inductor is additionally available. These inductors have three terminals including a guard terminal for stabilization of measurements.

16462A Auxiliary Capacitor:
The 16462A Auxiliary Capacitor is designed to extend the Q and L measurement capabilities of the 4342 A . It is especially useful when measuring small inductors at low frequencies.

16014A Series Loss Test Adapter:
The 16014A Series Loss Test Adapter is a special terminal adapter designed for measuring low impedance components, low-value inductors and resistors, and also high valuc capacitors. The adapter adds convenience in connecting components in series with the test circuit of the 4342 A Q Meter. It consists of a PTFE printed-circuit base on which are mounted binding posts to accept the supplemental inductors, and a pair of low-inductance series terminals for the unknown.

16451A Dielectric Test Adapter (4342A-K01):
The 1645lA Dielectric Test Adapter is a test fixture for measuring the dielectric constant or dielectric loss angle ($\tan \delta$) of insulating materials. The 16451 A has a pair of precision variable electrodes (one side is fixed) which hold the sample and which operate similar to a micrometer to permit direct reading of electrode spacing. This test adapter is directly attached to 4342A measurement terminals.

Typical performance, characteristics, and additional information regarding these accessories are given in Table l-2.

1-19. OPTIONS.
1-20. An option is a standard modification performed in the instrument to meet a special requirement desired by a user. When an instrument model is ordered with an option number, the corresponding optional parts are installed in/or packaged with instrument at the factory. An Option for obtaining a lower measurement frequency range is available for installation in the 4342A.

1-21. Option 001.
1-22. The 4342A Option 001 covers a lower frequency range, 10 kHz to 32 MHz , instead of the standard frequency range of 20 kHz to 70 MHz . All specifications that apply to Option 001 instruments are given in Table 1-1.

Table 1-1. Specifications (Sheet 1 of 2).

FREQUENCY CHARACTERISTICS

Measurement Frequency Range: 22 kHz to 70 MHz in 7 bands (22 to $70 \mathrm{kHz}, 70$ to $220 \mathrm{kHz}, 220$ to 700 kHz , 700 to $2200 \mathrm{kHz}, 2.2$ to $7 \mathrm{MHz}, 7$ to 22 MHz , and 22 to 70 MHz).

Frequency Dial Accuracy:
$\pm 1.5 \%$ at 22 kHz to 22 MHz , $\pm 2 \%$ at 22 MHz to 70 MHz , $\pm 1 \%$ at "L" point on frequency dial.

Frequency Dial Resolution: Approximately $\pm 1 \%$.

Q MEASUREMENT CHARACTERISTICS
Q Range: 5 to 1000 in 4 ranges (5 to 30,20 to 100,50 to 300 , and 200 to 1000).

Q Tolerance: \% of indicated value (at $25^{\circ} \mathrm{C}$)

| Fre- | quency | $22 \mathrm{kHz}-30 \mathrm{MHz}$ |
| ---: | :---: | :---: | $30 \mathrm{MHz}-70 \mathrm{MHz}$

Q Resolution:

Upper scalc: 1 from 20 to 100 , Lower scale: 0.5 from 5 to 30 .
$\triangle Q$ Range:
0 to 100 in 4 ranges, 0 to 3 , 0 to 10 , 0 to 30,0 to 100 .

ΔQ Tolerance:

$\pm 10 \%$ of full scale.
ΔQ Resolution:
Upper scale: 0.1 from 0 to 10 , Lower scale: 0.05 from 0 to 3 .

INDUCTANCE MEASUREMENT CHARACTERISTICS

L Range:

$0.09 \mu \mathrm{H}$ to 1.2 H , direct reading for seven specific frequencies as marked at the frequency dial 'L" scale point and selected by the frequency range switches.

L Accuracy:
$\pm 3 \%$ after compensation for residual inductance (approx. 10nH).

TUNING CAPACITOR CHARACTERISTICS

Capacitance Range:
Main dial capacitor: 25 to 470 pF Vernier dial capacitor: -5 to $+5 p F$

Capacitance Dial Accuracy:
Main dial: $\pm 1 \%$ or 1 pF whichever is greater.
Vernier dial: $\pm 0.1 \mathrm{pF}$.
Capacitance Resolution:
Main dial: 1 pF from 25 to 30 pF , 2 pF from 30 to 200 pF , 5 pF from 200 to 470 pF .
Vernier dial: 0.1pF.

Table 1-1. Specifications (Sheet 2 of 2).

REAR PANEL OUTPUTS

Frequency Monitor:
170 mVrms min. into 50Ω.
Q Analog Output:
$1 \mathrm{~V} \pm 50 \mathrm{mV}$ de at full scale, proportional to meter deflection, output impedance approx. Ik Ω.

Over Limit Signal Output: Single pole relay contact output, one side grounded, relay contact capacity $0.5 \mathrm{~A} / 15 \mathrm{VA}$.

Over Limit Display Time: Switch-selectable, lsec. or continuous.

GENERAL

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

Warm-up Time: 30 minutes.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48-440 \mathrm{~Hz}$, approx. 25 VA .

Weight: Approx. 31 lbs (14 kg).
Accessories Furnished: Power Cord

Accessories Available: 16471 A through 16490 A , and 16465 A

Supplemental Inductors. 16462A Auxiliary Capacitor. 16014A Series Loss Test Adapter. 16451A Dielectric Test Adapter.

Extender Board 15pin
(Part No. 5060-4940). Extender Board 6pin
(Part No. 5060-0651).

OPTION 001:
This option covers a frequency range of 10 kHz to 32 MHz . Specifications arc identical with those of the standard model except as noted below.

Oscillator Frequency Range:
10 kHz to 32 MHz in 7 bands (10 to
$32 \mathrm{kHz}, 32$ to $100 \mathrm{kHz}, 100$ to 320 kHz ,
320 to $1000 \mathrm{kHz}, 1$ to $3.2 \mathrm{MHz}, 3.2$ to 10 MHz , and 10 to 32 MHz).

Frequency Accuracy:
$\pm 1.5 \%$ at 10 kHz to 10 MHz .
$\pm 2 \%$ at 10 MHz to 32 MHz .
$\pm 1 \%$ at "L" point on frequency dial.
Q Tolerance: \% of indicated value (at $25^{\circ} \mathrm{C}$)

Q		
$5-300$	$300-600$	$600-1000$
$\pm 7 \%$	$\pm 10 \%$	$\pm 15 \%$

DIMENSIONS:

Table 1-2. Accessories - Typical Values.

16471A-16490A, 16465A Supplemental Inductors						
Model	Inductance	Approx. resonant frequency for tuning capacitance of			Q Limit	Capacitance (pF)
		400pF	100pF	50pF		
16471 A	130 mH	22	40	62 kHz	below $300(30 \mathrm{kHz})^{*}$	8
16472A	52 mH	35	70	100 kHz	below $300(50 \mathrm{kHz})^{*}$	8
16473A	25 mH	50	100	140 kHz	below $300(70 \mathrm{kHz})^{*}$	8
16474A	10 mH	80	160	220 kHz	below $300(100 \mathrm{kHz})^{*}$	8
16475 A	5.2 mH	110	220	300 kHz	below $300(150 \mathrm{kHz})^{*}$	8
16476A	2.8 mH	150	300	420 kHz	below $300(200 \mathrm{kHz})^{*}$	8
16477 A	1 mH	250	500	700 kHz	below $300(300 \mathrm{kHz})^{*}$	8
16478A	$520 \mu \mathrm{H}$	350	700	1000 kHz	below $300(500 \mathrm{kHz})^{*}$	8
16479A	$250 \mu \mathrm{H}$	500	1000	1400 kHz	below 300(1 MHz$)^{*}$	7
16480A	$100 \mu \mathrm{H}$	800	1600	2200 kHz	below $300(1 \mathrm{MHz})^{*}$	7
16481 A	$56 \mu \mathrm{H}$	** 1	2.2	3.1 MHz	below $300(1 \mathrm{MHz})^{*}$	7
16482A	$28 \mu \mathrm{H}$	1.5	3	4. 2 MHz	below $300(1.5 \mathrm{MHz})^{*}$	7
16483A	$10 \mu \mathrm{H}$	2.5	5	7 MHz	below $300(2.5 \mathrm{MHz})^{*}$	6
16484A	$5.2 \mu \mathrm{H}$	3.5	7	10 MHz	below $300(10 \mathrm{MHz})^{*}$	6
16485A	$2.5 \mu \mathrm{H}$	5	10	14 MHz	below $300(15 \mathrm{MHz})^{*}$	6
16486A	$1 \mu \mathrm{H}$	8	16	22 MHz	below $300(20 \mathrm{MHz})^{*}$	6
				35 pF		
16487A	$0.52 \mu \mathrm{H}$	22M		35 MHz	below $300(35 \mathrm{MHz}$)*	6
16488A	$0.28 \mu \mathrm{H}$	30 M		50 MHz	below $300(50 \mathrm{MHz}$)*	4
16489A	$0.1 \mu \mathrm{H}$	50 M		70 MHz	below $300(70 \mathrm{MHz}$)*	3
16490A	$0.07 \mu \mathrm{H}$	60M		00 MHz	below $300(70 \mathrm{MHz})^{*}$	2
		400pF	100 pF	50pF		
***16465A	630 mH	10	20	28 kHz	below $300(12 \mathrm{kHz})^{*}$	9

* The frequency in parentheses indicates frequency at which maximum Q factor is obtained (for the respective inductor).
** Approx. resonant frequency for tuning capacitance of 450pF.
*** For 4342A Option 001 use only.

16462A Auxilialy Capacitor
Capacitance Range: 300 pF to 2700 pF in steps of 300 pF . 10 ranges including $0 F F$ position.
Capacitance Accuracy: $\pm 1 \%$ on all ranges.
Q: 5000 at 20 kHz on all ranges.
Residual inductance: approx. $0.1 \mu \mathrm{H}$.
Residual capacitance at OFF position:
approx. 23pF.
16014A Series Loss Test Adapter
Useable Frequency Range: 10 kHz to 10 MHz .

Measurable Capacitance Range: 450 pF to $0.225 \mu \mathrm{~F}$.
Measurable Resistance Range: $10 \mathrm{~m} \Omega$ to 80Ω at $10 \mathrm{MHz}, 4 \Omega$ to $8 \mathrm{k} \Omega$ at 10 kHz .

Stray Capacitance Between Unknown Terminals: approx. 3pF.
Insulation Resistance between Unknown Terminals: approx. $10 \mathrm{M} \Omega$ at 1 MHz .
Residual Inductance: approx. 30 nH
16451A Diercetric Test Adapter
(refer to Page 3-21 Table 3-2)。

SECTION II
 INSTALLATION

2-1. INTRODUCTION

2-2. This section contains infor mation for unpacking, inspection, repacking, storage, and installation of the Model 4342A.

2-3. INITIAL INSPECTION

2-4. MECHANICAL CHECK

$2-5$. If damage to the shipping carton is evident, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for mechanical damage. Also check the cushioning material for signs of severe stress.

2-6. PERFORMANCE CHECKS

2-7. The electrical performance of the Model 4342A should be verified upon receipt. Performance checks suitable for incoming inspection are given in Section V, Maintenance.

2-8. DAMAGE CLAIMS

2-9. If the instrument is mechanically damaged in transit, notify the carrier and the nearest HewlettPackard field office immediately. A list of field offices is on the back of this manual. Retain the shipping carton andpadding material for the carrier's inspection. The field office will arrange for replacement or repair of your instrument without waiting for claim settlements against the carrier.

2-10. Before shipment this instrument was inspected and found free of mechanical and electrical defects. If there is any deficiency, or if electrical performance is not within specifications, notify your nearest Hewlett-Packard Sales and Service Office.

2-11. STORAGE AND SHIPMENT

2-12. PACKAGING. To protect valuable electronic equipment during storage or shipment always use the best packaging methods available. Your HewlettPackard field office can provide packing material such as that used for original factory packaging. Contract packaging companies in many cities can provide dependable custom packaging on short notice. Here are a few recommended packaging methods:
a. RUBBERIZED HAIR. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument securely in strong corrugated container ($350 \mathrm{lb} / \mathrm{sq}$ in. bursting test) with 2 inch rubberized hair pads placed along all surfaces of the instrument. Insert fillers between pads and container to ensure a snug fit.
b. EXCELSIOR. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument in strong corrugated container (350 lb /
sq in. bursting test) with a layer of excelsior about 6 inches thick packed firmly against all surfaces of the instrument.

2-13. ENVIRONMENT. Conditions during storage and shipment should normally be limited as follows:
a. Maximum altitude, 20,000 feet
b. Minimum temperature, $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$
c. Maximum temperature, $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$

2-14. POWER CONNECTION

2-15. LINE VOLTAGE. The Model 4342A uperates from either 115 or 230 volt ($\pm 10 \%$) ac line voltage and I, ine frequency from 50 to 400 Hz . A slide switch on the rear panel permits quick conversion for operating from either voltage. Insert a narrow-blade screwdriver in the switch slot and slide the switch to the right for 115 -volt operation (" 115 " marking exposed) or to the left for 230 -voltoperation ("230" marking exposed). The Model 4342A is supplied with 115volt fuse; for 230 -volt operation, be sure to replace this fuse with that listed in Table 2-1.

Table 2-1. AC Line Fuse

Conversion	115 -volt	230 -volt
Slide Switch	Right $(" 115 ")$	Left $(" 230 ")$
AC Line Fuse	0.6 amperes Slow-Blow $2110-0339$	0.3 amperes Slow-Blow $2110-0044$

CAUTION

To avoid damage to the instrument, before connecting the power cable, set the $115 /$ 230 -volt switch for the line voltage to be used.

2-16. POWER CABLE. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) recommends that instrument panels and rabinets be grounded. Accordingly, the Model 4342A is equipped with a detachable three-conductor power cable which, when plugged into an appropriate receptacle, grounds panel and cabinet. The offset pin of the three-prong connector is the ground pin. Proceed as follows for power cable installation.
a. Connect flat plug (3-terminal connector) to LINE jack at rear of instrument.
b. Connect plug (2-blade with round grounding pin) to 3 -wire (grounded) power outlet. Exposed
portions of instrument are grounded through the round pin on the plug for safety; when only 2blade outlet is available, use connector adapter (HP Part No. 1251-0048). Then connect short wire from slide of adapter to ground to preserve the protection feature.

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. The 4342A Q Meter can measure the quality factor of inductors from 5 to 1000 and, in addition, capacitance, inductance and resistance, and the dielectric constant of insulating materials over the frequency range of 22 kHz to 70 MHz . This section provides the instructions and information necessary for operating the 4342A Q Meter.

Fundamental operating procedures and general techniques for measuring various parameter values of the unknown directly and indirectly by using accessories appropriate to the characteristics of the unknown are also outlined in this section.

3-3. PANEL CONTROLS, CONNECTORS AND INDICATORS.

3-4. Control pane1, top terminal deck, and rear panel features of the 4342 A are described in Figures $3-1$ and $3-2$. The numbers in the illustrations are keyed to the descriptive items for each figure. Other detailed information about the functions of the panel controls and connectors is provided in paragraphs 3-8 through 3-11.

3-5. Q MEASUREMENT-GENERAL.

3-6. To complete the measuring circuit, the Model 4342A requires the connection of an inductor to the measurement COIL terminals. This circuit is then used to establish a resonance, either by setting the frequency controls to a predetermined frequency and varying the tuning capacitor, or by presetting the tuning capacitor to a desired value and adjusting the frequency controls. Resonance is indicated by maximum deflection of the panel Q meter. The Q value of the sample is proportional to Q meter deflection at the resonant frequency.

3-7. The "indicated Q " which is the Q meter reading at resonance is called the "circuit Q" because it includes all the additive losses inherent in the instrument including
those in the tuning capacitor, the Q voltmeter input resistance, output resistance of the oscillator signal injection circuit, and contact resistances of the measurement terminals. To avoid ambiguity, the Q meter reading or "circuit Q" is called "indicated Q" throughout the balance of this manual. The "effective Q", which is dependent only on the inherent loss of the sample and can be measured only by an ideal measuring circuit, is somewhat greater than the "indicated Q ". However, the "indicated Q " can approximate the "effective Q", by reducing instrument losses as much as is possible. So, in most instances, these Q values can be deemed to be the same. The 4342 A employs a Constant Voltage Injection System obviating the use of a thermocouple level metcr (the resistance of thermocouple device would contribute additional losses to the measuring circuit) and the coupling resistor used in traditional Q meters. The low output impedance of the injection transformer, the improved operating performance of the Q voltmeter, and the precision tuning capacitor which has extremely low loss over a wide frequency range minimize the difference between the "indicated Q " and "effective Q"。

3-8. GO/NO-GO FUNCTION.

3-9. The 4342A Go/No-Gu function provides an annunciation when the measured Q value exceeds a reference value. Two annunciation outputs, the OVER LIMIT lamp display and a relay contact output (rear panel) are available. The OVER LIMIT indicator lamp lights and the relay is energized when the measured Q value is over the reference value set by the front panel Q LIMIT control. Annunciation time can be selected to occur at either l second intervals or to be continuous by the rear panel OVER LIMIT DISPLAY TIME switch. When the switch is set to its 1 sec position and the Q meter indication goes over the preset Q limit control value, the OVER LIMIT lamp lights once for 1 second. In the continous mode, the lamp stays continuously lit during the entire time that the Q value meter deflection exceeds the preset value. Relay contact output follows in the same manner.

1. LINE PUSH ON/OFF Switch: Instrument power on/off switch.
2. FREQUENCY RANGE Selector: These pushbuttons select the desired measurement frequency range from among the seven ranges covering 22 kHz to 70 MHz (10 kHz to 32 MHz for 0 ption 001). The inductance range which may be measured directly at the "L" scale frequency point on the selected frequency range is labeled on the panel adjacent to the pushbuttons.
3. FREQUENCY Dial Control:

This dial wheel varies the measurement frequency as well as the FREQUENCY dial scale (b) The frequency is read from FREQUFNCY scale (6) and the multiplier indicator (5)
4. Q LIMIT Control: This dial control sets the low limit of the Q value for Go/No-Go checks. The Q LIMIT sctting dial scale numbers are related to meter deflection (\% of full scale).
5. Frequency Multiplier Indicator: The Frequency multiplier indicators, adjacent to the frequency dial scale, light and correspond with the settings of the frequency range selector (2) pushbuttons.
6. FREQUENCY Scaie: The Frequency scale comprises two scales with ranges of 2.2 to 7.0 and 7 to 22 (1.0 to 3.2 and 3.2 to 10 for Option 001). One or the other of the scales is automatically illuminated depending on the FREQUENCY RANGE selector (2) setting.
7. OVER LIMIT Display: The letters "OVER LIMIT" arc displayed when the measured Q value exceeds the limit value set by the Q LIMIT control (4).
8. Measurement Terminals: These binding post terminals facilitate connection of the unknown and the various measurement aid accessories. A simplified terminal circuit schematic is provided by the top panel label.
9. Q Meter: At maximum meter pointer deflection, this meter indicates the Q value of the sample or of the measuring circuit as well as the optimun tuning point. The outer two scales (0 to 100 and 0 to 30) are the Q readings. The inner two reverse scales (10 to 0 and 3 to 0) provide ΔQ readings when making ΔQ measurements. Meter scale indicators at the left end of scale automatically light to indicate the appropriate scale (to read) on the selected $Q / \Delta Q$ range.
10. Meter Pointer Adjustment Screw: This adjustment screw zero-sets the meter pointer so it is exactly over the zero calibration mark when the instrument is off.
11. $\triangle Q$ ZERO Controls: These coarse and fine controls adjust the meter indication for zero (reference) scale in $\triangle Q$ measurements. This function applies only to ΔQ measurements.
12. L Scale: This dial scale allows direct reading of inductance sample values at the "L" frequency. An "L" scale frequency point, common to and useable on all frequency ranges, is labeled with a blue letter on the FREQUENCY scale (6. The L scale indicates the inductance value of the unknown when resonated with the tuning capacitance at the "L" frequency.
13. Δ C Scale: This dial scale permits the reading of the capacitance of a vernier tuning capacitor from $-5 p F$ to +5 pF in 0.1 pF steps. The actual tuning capacitance is sum of the C Scale (14) and the ΔC Scale readings. A small change in the tuning capacitance adjustment point resulting from a variation in test parameters can be accurately read from the spread $\triangle C$ scale.
14. C Scale: This dial scale is for reading the capacitance of the main tuning capacitor which may be varied from 25 pF to 470 pF . A C scale reading is exact (calibrated) when the $\triangle C$ scale (13) is set to 0 pF .
15. $\triangle \mathrm{C}$ Dial Control:

This dial wheel varies the vernier tuning capacitor and moves the $\triangle C$ Scale (13. The control employs a string drive mechanism which facilitates easy adjustment of vernier capacitor.
16. L/C Dial Control: This dial wheel varies the main tuning capacitor as well as moving the C scale (4) and L scale (12).
17. $Q / \triangle Q$ RANGE Selector: These pushbuttons select the desired Q range (either $30,100,300$ or 1000 full scale). ΔQ button enables ΔQ measurement and expands Q resolution by ten times ($3,10,30$ or 100 full scale).

1. METER ZERO ADJ: This trimmer adjustment electrically zero-sets the meter pointer so that it is exactly over the zero calibration mark when the instrument is on.
2. FUSE: Instrument power fuse is installed in this fuse holder. Appropriate current rating for the fuse required is labeled on the rear panel.
3. VOLTAGE SELECTOR: This slide switch selects the appropriate ac operating power voltage (115 V or $230 \mathrm{~V} \pm 10 \%$). Selection of the ac voltage must be made before the instrument is connected to power line.
4. LINE Receptacle: Male ac power line receptacle with center ground pin for powering the instrument from a 115 V or $230 \mathrm{~V}, 48-440 \mathrm{~Hz}$ line. Before connecting power cord (furnished), VOLTAGE SELECTOR (3) should be properly set.
5. OVER LIMIT DISPLAY TIME Switch: This slide switch sets "OVER LIMIT" annunciation time for Go/No-Go checks to cither 1 second (1 sec) or to continous (∞).
6. OVFR ITMIT STG. OITTPIT Connector: Relay contact output for Go/No-Go checks. Center and outer conductors of this BNC connector are internally short-circuited when measured Q value exceeds the limit value set by the Q LIMIT control.
7. Q ANALOG OUTPUT Connector: 0 to $1 V$ analog output proportional to meter deflection. Output impedance is approximately $1 \mathrm{k} \Omega$.
8. FREQUENCY MONITOR Connector: This BNC connector provides a portion of internal oscillator output for monitoring oscillator frequency with external equipment (such as a frequency counter). Output level is 170 mVrms min . and output impedance is 508.
9. Measurement Terminals: These six binding post terminals, including the two shield terminals, provide the connection capabilities for attaching the unknown sample as well as supplemental inductors, auxiliary capacitors, and other devices and accessories used in making measurements.

3-10. MEASUREMENT TERMINALS.

3-11. Six binding post terminals, including two shield terminals, mounted on the instrument top deck, facilitate connection of unknown samples and accessories to the measuring circuit. Figure 3-3 illustrates the measurement terminals circuit configuration. Shield terminals 3 and 6 , and binding post 4 are directly connected to instrument chassis (grounded). Binding posts 1 and 2 are the LO and HI COIL terminals, respectively, to which an inductor is connected to compose the circuit to be resonated. Inductors can be measured by connecting them to the COIL terminals (1 and 2) and by taking resonance with the tuning capacitor. The oscillator signal is injected into the measuring circuit between LO COIL terminal 1 and GND terminal 4. Binding posts 4 and 5 are CAPACITOR terminals which are used for doing parallel connection measurements (outlined in paragraph 3-19). Shield terminals 3 and 6 are used for connection to the shield terminal of an inductor or to the guard terminal of the device connected between HI COIL terminal 5 and GND terminal 4.

3-12. HOW TO CONNECT UNKNOWN.

3-13. There are three basic methods of connecting unknown sample to the measuring circuit of the Q Meter. The characteristics of the unknown, the parameter value to be measured, and the measurement frequency are the factors which guide the selection of an appropriate connection method. The fundamental operating procedures for each individual connection method are outlined in Table 3-1.

Figure 3-3. Measurement Terminal Circuit.

3-14. MEASUREMENT PARAMETERS AND CONNECTION METHODS.

3-15. The connection to the measuring circuit of the 4342A, when measuring quality factor, inductance, capacitance, resistance or dielectric constant, may be either a direct, parallel, or a series connection and depends upon the sample. As the sample values and measurement parameters are the guidelines for selecting an appropriate connection method, a discussion of the measurement capabilities unique to each connection method will help you to make straight-forward measurements. The measurement range limits of the individual connection methods and associated reasoning are outlined in the paragraphs which follow.

3-16. Direct Method Limitations.

3-17. When using the direct connection method in taking Q meter measurement parameters, only the quality factor, inductance, equivalent series resistance, and distributed capacitance of the inductor can be read from Q meter indications. In addition, the quality factor and the inductance measurement ranges covered by the direct connection method are dependent on sample inductance and measurement frequency. This is because the sample value and measuring frequency must satisfy the following mathematical relationship so as to resonate with the measuring circuit:

$$
\begin{aligned}
& \text { Where, } f: \text { Measurement frequency } \\
& \text { L: Inductance of sample } \\
& \text { C: Tuning capacitance (read from } \\
&\text { C dial scale; } 25 \mathrm{pF} \text { to } 470 \mathrm{pF})
\end{aligned}
$$

For example, if the measurement frequency is 1 MHz , the inductance range of a sample which can be measured directly by the 4342 A is approximately $54 \mu \mathrm{H}$ to 1.2 mH . And, for a given inductance, the measurement frequency range is indicated. For example, a $10 \mu \mathrm{H}$ inductor can be measured over a frequency range of approximately 2.3 MHz to 11 MHz . Additionally, the quality factor of sample must be below 1000 (upper range limit). Figure $3-4$ shows the relationships between the measurement frequency and the inductance limits measurable with the 4342 A alone (without using any supplemental equipment). In Figure 3-4, the shaded area denotes the applicable inductances and useable frequencies. The seven bold lines in the shaded area indicate the "L" frequencies and the ranges of inductance which can be read from the L / C dial L scale
at these particular L frequencies. The inductance at a measurement frequency other than the "L" frequency can be determined by substituting frequency and L / C dial (C scale) readings in equation 3-1.

3-18. Expansion of measurement ranges.

3-19. For higher or lower value inductances (above or below the shaded area in Figure 3-4), a parallel or series connection of the unknown to the measuring circuit enables the measurement to be made. To obtain the value of the desired parameter, these methods employ a comparison of the Q meter indications. The Q meter measuring circuit is first resonated with a reference inductor. Then the sample is connected in parallel or in series with the measuring circuit and the circuit again resonated. The sample value is calculated from the difference in Q meter indication measurements made before and after connecting the sample. In the equation from which the sample values are obtained, the values inherent in the reference inductor are subtracted from the measurement quantities. Consequently, the characteristics of the reference inductor do not (theoretically) affect measurement results.

In addition to their expanded measurement ranges, the parallel and series methods have some measurement capability advantages which do not appear when using direct methods.

A detailed description of these advantages is given in the discussion in paragraph 3-58.

3-20. Capacitance Measurement.

3-21. For capacitor samples, either a paralle1 or series connection method may be used when measuring either the capacitance or the Q value. The criteria for selecting the appropriate connection method concerns only the sample value and is irrespective of the measurement frequency. Capacitances higher than approximately 450 pF (up to approximately $0.2 \mu \mathrm{~F}$) are normally measured by the series method and lower capacitances are easily measured by the parallel method. Gencrally, capacitors can be measured at the desired frequency by using an appropriate inductor as a measurement aid.

3-22. Resistance Measurement.

3-23. Resistance values are fundamentally calculated from measured Q values. Thus, the connection method selected depends upon the sample value and the measurement frequency. Figure 3-5 shows approximate limits for both parallel and series measurements. The upper shaded area indicates the combinations of frequency and measurable resistance values for parallel measurements. Similarly, the lower shaded area indicates the values for series measurements. For sample values between the upper and lower shaded areas, it is difficult

Figure 3-4. Inductance Measurement Ranges vs. Frequency (direct method).
to measure with either connection method. These limits are based on the use of a reference inductor having a Q value of 280 . Parallel measurement low limits can be extended by using an external capacitor connected to the measurement CAPACITOR (HT and GND) terminals.

3-24. High Q Measurement.

3-25. Measurement of high quality factors up to 10000 can also be made by the parallel or series connection methods. These methods enable the measurement of low loss samples and are especially useful in the measurement of high Q capacitors. As inherent losses in the instrument will cause larger incremental measurement errors in higher Q measurements, these residual loss factors should be taken into consideration in the accuracies of measured values. In high Q measurements, the measured Q should be deemed to be only a rough approximation of the sample Q value. A detailed discussion on parallel and series connection measurement errors is provided in paragraph 3-60 and those which follow.

Figure 3-5. Ranges of Measurable Resistance.

3-26. Supplemental Equipment Used in Parallel and Series Methods.

3-27. For use with the 4342A as reference inductors, the Model 16470A series supplemental inductors are available. The 16470A series inductors have various inductances (from $0.07 \mu \mathrm{H}$ to 630 mH) and totally cover the frequency range of 10 kHz to 70 MHz when used with the 4342 A as measurement aids. The reference inductor must be resonated alone (before connecting unknown) at the desired measurement frequency to take its inherent values for reference. And, of course, the useable frequency range of each individual supplemental inductor depends upon the inductance of the individual coil. This frequency range is indicated on a label attached to the case of each inductor. Detailed data and information on the supplemental inductors is tabulated in Table 1-2.

3-28. Inductor samples whose inductance is somewhat lower than the low limits of the measurement range of the 4342A may be measured by using an external high Q capacitor to extend the available tuning capacitance range. The external capacitor is connected between HI and GND measurement terminals; its capacitance, thereby, adds to the tuning capacitance. For this special purpose, the HP 16462A Auxiliary Capacitor is available. This capacitor module combines nine capacitors from 300 pF to 2700 pF (in 300 pF steps) and, when used with the 4342A, allows measurement of low inductances to approximately $1 / 6.7$ of the measurement low limit of the instrument.

3-29. Dielectric constant of an insulating material is calculated from the capacitance value of the sample held between a pair of electrodes whose dimensions are accurately known. Model 16451A Dielectric Test Adapter is the test fixture which is specially designed for measuring dielectric constant (ε) and dielectric loss angle (tan δ) and is directly attached to the 4342 A measurement terminals. The 1G451A has a pair of variable precision electrodes which can hold materials measuring up to a maximum of 10 mm in thickness. The electrodes operate similar to a micrometer permitting direct reading of electrode spacing (0 to 10 mm) with 0.02 mm resolution. The diameter of the electrodes has been designed so as to simplify the associated calculations. Measurement time is thus greatly shortened.

Figure 3-6. Zeroing Procedure (sheet 1 of 2).

Mechanical zero adjustment

The meter is properly zero-set when the pointer sets exactly over the zero calibration scale mark and the instrument is in its normal operating environment. To check the meter mechanical zero, turn the instrument off and allow 30 seconds to completely deenergize the instrument. To obtain maximum accuracy and mechanical stability, if the meter is not over zero, zero-set the meter as follows:
a. Rotate meter pointer adjustment screw (1) clockwise until meter is moving toward zero in an upscale direction.
b. Continue rotating screw clockwise and stop when pointer is exactly at zero. If the pointer overshoots, continue rotating the adjustment screw clockwise to do steps a and b once again.
c. When the pointer is exactly over zero, rotate adjustment screw slightly counterclockwise to relieve tension on pointer suspension. If pointer moves off zero, repeat steps a, b and c, but rotate less counterclockwise.

Elcetrical zcro adjustment
The meter pointer should set exactly over the zero scale mark when instrument is turned on and nothing is connected to measurement terminals. Turn the instrument on and allow at least 15 minuts warm-up time to let the instrument reach a stable operating condition. If meter pointer is not over zero, zero-set the meter as follows:
a. Set FREQUENCY RANGE selector (3) to $22 \mathrm{k}-70 \mathrm{k}$ ($10 \mathrm{k}-32 \mathrm{k}$ for Option 001) and Q RANGE (4) to 1000.
b. Adjust rear panel METER ZERO ADJ control (5) so that the meter pointer is exactly over zero.

Table 3-1. Methods of Connecting Unknown.

Direct Connection. (A)	Inductors can usually be measured by connecting them directly to the COIL terminals as shown in Figure A. The measuring circuit is resonated by adjusting either the L/C dial or the FREQUENCY dial controls. The quality factor (indicated Q) of the sample is read at maximum deflection of the Q Meter. Setting the FREQUENCY dial to the "L" scale point and taking resonance with the L/C dial control permits reading the inductance of the sample directly from the inductance scale (adjacent to the tuning capacitor scale). Otherwise the inductance can be calculated from the frequency and capacitance dial readings at the desired resonant frequency.
Parallel Connection. (B)	The parallel connection is suitable for high impedance measurements. High inductances, high resistances, and small capacitances can be measured by connecting the samples to the CAPACITOR terminals as shown in Figure B. Before connecting a sample, the measuring circuit is resonated with a stable inductor (such as a 16470 series supplemental inductor) connected to the HI and LO COIL terminals to obtain a reference Q reading and a capacitance dial reading. The measuring circuit is again resonated with the sample connected to the CAPACITOR terminals by re-adjusting the L / C dial for maximum Q meter deflection. The parameter values of the sample are derived from the Q meter readings and the L / C dial readings obtained before and after connecting the unknown sample. The derivation of parameter values related to the unknown are detailed in paragraphs 3-64 through 3-72.
Series Connection. (C)	The Series connection is suitable for low impedance measurements. Low inductances, low resistances and high capacitances can be measured by connecting the sample in series with a stable inductor as shown in Figure C. The 16014A Test Adapter is useful for making the series connection to the unknown sample. First, a shorting strap is attached to the unknown connection terminals in parallel with the sample and the measuring circuit resonated with the L/C control. For reference, the Q meter and capacitance dial readings are noted. The shorting strap is then disconnected (or removed) and resonance of the measuring cicuit is again taken by adjusting the L/C dial. The parameter values of the unknown can be derived from the Q meter and capacitance dial readings obtained before and after disconnecting the shorting strap. The derivation of the parameter values related to the unknown are described in paragraphs 3-73 through 3-81.

3-30. BASIC Q METER MEASUREMENTS.
 3-31. QUALITY FACTOR AND IndUCTANCE MEASUREMENTS (DIRECT CONNECTION).

3-32. This paragraph and those which follow describe the fundamental operating procedures for quality factor and inductance measurements which are typical applications of the Q Meter. An inductor usually has some distributed capacitance (Cd). The selfresonant frequency (fo) of the inductor is determined by its self-inductance and the Cd. The 4342 A measuring circuit consideration of distributed capacitance is shown in Figure 3-7. If the Q meter indication is $Q t$ when $C d$ is zero, then the presence of Cd will influence the voltage across the resonating inductor such that the Q meter will actually indicate a Q value lower than $Q t$. The indicated Q value (Qi) and the $Q t$ can be correlated by a corrcction factor (which is a function of Cd and the tuning capacitance) each with the other. A similar correction factor also applies to difference of inductance readings resulting from the presence of Cd. A detailed discussion of correction factors is given in paragraph 3-50. When the Cd is less than $1 / 20$ of the tuning capacitance, the difference between Qi and Qt (Li and Lt are similar in meaning) is within 5%.

Figure 3-7. Distributed Capacitance in Direct Connection.

3-33. Q Measurement.
3-34. To read the quality factor of an inductance sample directly from the Q meter indication, proceed as follows:
a. Connect unknown to measurement COIL (HI and LO) terminals.
b. Depress an appropriate FREQUENCY RANGE button and set FREQUENCY dial control to the desired frequency.
c. Adjust L / C dial control for maximum panel Q meter deflection on the instrument.

Note

Alternatively, the resonance may be taken by setting the L / C dial to a desired position and adjusting the FREQUENCY dial for maximum Q meter deflection.
d. Depress Q RANGE button as appropriate for obtaining a Q meter deflection more than one-third of full scale and less than full scale.
e. Re-adjust L/C dial (or FREQUENCY dial) control for maximum deflection. panel meter deflection exceeds full scale, up-range the Q RANGE and continue the adjustment. For easily obtaining a precise resonance, use the $\Delta \mathrm{C}$ dial control.

Note

The $\triangle C$ dial control facilitates accurate adjustment for establishing resonance especially in high Q measurements.
f. Read panel Q meter indication on the meter scale designated by the appropriate scale lamp indicator lit.

Note
The measured Q value corresponds to the "indicated Q " of the sample.
g. To derive series equivalent resistance of the sample, substitute the Q meter FREQUENCY, C dial, $\triangle C$ dial, and Q readings in the following equation:
$R s=1 / \omega C Q \approx 0.159 / f C Q \ldots .(\mathrm{eq} .3-2)$
Where, Rs: equivalent series resistance in ohms.
f: frequency dial reading in hertz.
ω : $\quad 2 \pi$ times the frequncy ($2 \pi f$).
C : sum of C and ΔC dial readings in farads.
Q: panel Q meter reading.

3-35. ΔQ Measurement.
3-36. When two Q values are nearly identical, the difference is difficult to read accurately on the normal Q scale. The ΔQ feature of the 4342 A provides accurate readings for changes in Q on all Q ranges by providing ten times resolution, namely: 0 to 3 , 0 to 10,0 to 30 , and 0 to 100 . To make a $\triangle Q$ measurement, proceed as follows:
a. Connect the sample inductor to the measurement COIL (HI and LO) terminals.
b. Resonate the inductor using the same procedure as described in Q Measurement (para。3-34) steps b, c, d and e.
c. Note panel Q meter reading.
d. Depress $\triangle Q$ button and set $\triangle Q$ COARSE and FINE controls so that meter pointer indicates zero (full scale) on ΔQ scale.
e. Check for correct resonance by slightly rotating $\Delta \mathrm{C}$ dial control. If Q meter deflection is not at peak, readjust ΔC dial and ΔQ controls.
f. Make the desired change in the sample or in the measuring circuit.
g. Adjust L / C dial control for maximum Q meter deflection. Use $\Delta \mathrm{C}$ dial control for easily taking a precise resonance. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement and skip steps h and i.
h. Read panel Q meter indication on ΔQ scale. The ΔQ reading is the difference in Q resulting from the change made in step f.
i. The differential Q value (after change) is given by the following equation:
$Q_{2}=Q_{1}-\Delta Q \ldots \ldots \ldots \ldots$ (eq. 3-3)
where, Q_{1} : Q meter reading in step c (before change).
Q_{2} : present Q value (after change).
$\Delta Q: \quad Q$ meter reading from ΔQ scale in step h.
j. When the change in Q exceeds $\triangle Q$ full scale, the difference is given by the following cquation:
$\Delta Q=Q_{1}-Q_{2} \ldots \ldots \ldots \ldots \ldots$ (eq. 3-4)

3-37. Inductance Measurement.

3-38. The inductance of a coil can be measured directly from the Q meter inductance scale at specific "L" frequencies. The inductance range which may be measured directly at the "L" scale frequency point on the selected frequency range is labeled on the panel adjacent to the FREQUENCY RANGE pushbuttons. To measure inductance at the "L" frequency, proceed as follows:
a. Connect unknown to measurement COIL (HI and LO) terminals.
b. If the approximate value of inductance is known, select an appropriate measuring frequency range. Refer to the chart in Figure 3-4 or the inductance multiplier label adjacent to the FREQUENCY RANGE pushbuttons. For the samples whose values are quite unknown, select a trial frequency range. Depress the selected frequency range pushbutton.
c. Set FREQUENCY dial control for the "L" scale frequency designated by the mark "-L-" (shown in blue) on the FREQUENCY scale.
d. Set Q RANGE to 100. Rutate L/C dial control and verify that panel Q meter indicates peak deflection. If a peak meter deflection can not be recognized, change to another trial FREQUENCY RANGE setting and repeat the procedure until a peak is verified.
e. Set ΔC dial to zero scale (0 pF).
f. Adjust L / C dial control for maximum Q meter deflection (change Q RANGE setting as necessary).
g. Read L/C dial L scale indicated by the fixed scale pointer. To calculate the inductance value, multiply the I scale reading by the factor for the selected inductance range.

Note

The measured value corresponds to the "indicated L " including measuring circuit residual factors (similar to "indicated Q " value).

3-39. Inductance Measurement (at a desired frequency).

3-40. Occasionally it may be necessary to measure inductance at frequencies other than the specific "L" frequencies. The frequency characteristic measurements of an inductor or of an inductor core are representative examples. In such instances, the inductance may be measured as follows:
a. Connect unknown inductor and resonate it using the procedure same as described in Q Measurement (para. 3-34) steps a through e.
b. Note FREQUENCY dial, L/C dial C scale and ΔC dial readings. Substitute these values in the following equation:
$\mathrm{L}=1 / \omega^{2} \mathrm{C} \approx 0.0253 / \mathrm{f}^{2} \mathrm{C} \ldots .$. (eq. 3-5)
Where, L : inductance value (indicated L) of sample in henries.
f : measurement frequency in hertz.
ω : 2π times the measurement frequency.
C : sum of C and $\triangle C$ dial readings in farads.

Figure 3-8. Distributed Capacitance Circuit Model.

3-41. MEASUREMENTS REQUIRING CORRECTIONS.

3-42. Effects of Distributed Capacitance.

3-43. The presence of distributed capacitances in a sample influences Q meter indications with a factor that is related to both its capacity and the measurement frequency. Considerations for the distributed capacitances in an inductor may be equivalently expressed as shown in Figure 3-8. In the low frequency region, the impedance of the distributed capacitance Cd is extremely high and has negligible effect on the resonating circuit. Thus, the sample measured has an inductance of Lo, an equivalent series resistance of Ro, and a Q value of $\omega \mathrm{Lo} / \mathrm{Ro}$ (where, ω is 2π times the measurement frequency). In the high frequency region, the inductor develops a parallel resonance with the distributed capacitance and the impedance of the sample increases at frequencies near the resonant frequency. Therefore, readings for measured inductances will be higher as the measurement frequency gets closer to the self-resonant frequency. Additionally, at parallel resonance, the equivalent series resistance is substantially increased (this is because, at resonance, the impedance of the sample changes from reactive to resistive because of the phase shift in the measurement current) and the measured Q value reading is lower than that determined by wLo/Ro. Typical variations of Q and inductance values under these conditions are given in Figure 3-9.

3-44. Ratio of the measurement frequency and the self-resonant frequency can be converted to a distributed capacitance and tuning capacitance relationship with the following equation:

$$
\begin{aligned}
& \mathrm{f}_{1} / \mathrm{fo}= \sqrt{\mathrm{Cd} /(\mathrm{C}+\mathrm{Cd})} \ldots \ldots .(\mathrm{eq} \cdot 3-6) \\
& \text { Where, } \mathrm{f}_{1}: \text { measurement frequency. } \\
& \mathrm{fo}: \begin{array}{l}
\text { self-resonant frequency of } \\
\text { sample. }
\end{array} \\
& \mathrm{Cd}: \begin{array}{l}
\text { distributed capacitance of } \\
\\
\\
\\
\mathrm{C}: \quad \begin{array}{l}
\text { sumple. } \\
\text { tuning capacitance of } Q \\
\text { meter. }
\end{array}
\end{array}
\end{aligned}
$$

Figure 3-10 graphically shows the variation of measured Q and inductance as capacitance is taken for the parameter. The ideal inductance and Q values in the presence of no distributed capacitance (or when it is negligible) are correlated with the actually measured values by correction factors which correspond to readings along the vertical axis scales in Figures 3-9 and 3-10.

3-45. Measuring Distributed Capacitance

 (Preferred Method).3-46. The impedance of a coil at its sclfresonant frequency is resistive and usually high. This characteristic may be utilized for measuring distributed capacitance. Proceed as follows:

Figure 3-9. Typical Variation of Effective Q and Inductance with Frequency.

Figure 3-10. Correction Chart for Distributed Capacitance.
a. Connect inductor sample to be tested to the 4342A measurement COIL (HI and LO) terminals.
b. Set L/C dial control to approximately 400 pF and $\triangle C$ dial control to 0 pF . Note C dial reading as C_{1}.
c. Depress a trial FREQUENCY RANGE button and rotate FREQUENCY dial to search for the frequency at which panel Q meter shows a maximum deflection. no peak deflection can be observed, change FREQUENCY RANGE setting and repeat the procedure.
d. Adjust FREQUENCY dial control for maximum Q meter deflection. Note the dial frequency reading as f_{1}.
e. Set measurement frequency to approximately ten times the frequency f_{1} noted in step d.
f. Replace the inductor sample with a stable coil (16470 series supplemental inductor) capable of resonating in the measuring circuit at this higher frequency.
g. Adjust the L / C dial control for maximum Q meter deflection.
h. Connect the test inductor to the measurement CAPACITOR (HI and GND) terminals.
i. Adjust the L / C dial control for again obtaining maximum Q meter deflection. If the L / C dial control has to be rotated in the direction of higher capacitance, increase the measurement frequency. If it has to be rotated towards a lower capacitance, decrease the frequency.
j. Alternately connect and disconnect the test inductor to/from the CAPACITOR terminals and adjust the FREQUENCY dial control (if necessary, change FREQUENCY RANGF setting) until the influence of the test inductor to tuning conditions is non-existent (indicated Q value may change). Note dial frequency reading as fo. This frequency is identical with the sclf resonant frequency of the inductor.
k. Distributed capacitance of the inductor sample is given by the following equation. Substitute measured values of C_{1}, fo, and f_{1} in the equation:

```
    Cd}=\frac{\mp@subsup{C}{1}{}}{(\frac{\mp@subsup{f}{0}{}}{\mp@subsup{f}{1}{}}\mp@subsup{)}{}{2}-1}\ldots\ldots\ldots....(eq. 3-7
    Where, Cd: distributed capacitance in
        farads.
        C C : C dial reading (farads)
        noted in step b.
        fo: measurement frequency
        (hertz) noted in step j.
        fl: measurement frequency
        (hertz) noted in step d.
        Note
    If fo>> fl, the eq. 3-7 is simplified
as follows:
Cd}=(\frac{\mp@subsup{f}{l}{}}{\mp@subsup{f}{0}{}}\mp@subsup{)}{}{2}\mp@subsup{C}{1}{
```


3-47. Measuring Distributed Capacitance (Approximate Method, Cd $\geq 10 \mathrm{pF}$).

3-48. A distributed capacitance more than approximately 10 pF may be measured with the simplified procedure described below (this procedure is useful for obtaining approximate values of distributed capacitance with an accuracy which serves practical purposes):
a. Connect inductor sample to the measurement COIL (HI and LO) termina1s.
h. Set L/C dial control to approximately 50 pF and $\triangle \mathrm{C}$ dial control to 0 pF . Note the C dial reading as C_{1}.
c. Depress a trial FREQUENCY RANGE button and rotate FREQUENCY dial control to search for the frequency at which panel Q meter shows a maximum deflection. If no peak deflection can be observed, change FREQUENCY RANGE setting and repeat the procedure.
d. Adjust FREQUENCY dial control for maximum panel Q meter deflection. Note this frequency as f_{1}.
e. Change FREQUENCY dial setting to f_{2} equal to f_{1} / n (n should be a selected integer, e.g. 2 or 3).
f. Adjust L / C dial and ΔC dial controls for again obtaining maximum meter deflection. Note the sum of C dial and ΔC dial readings as C_{2}.
g. Distributed capacitance is given by the following equation. Substitute measured values of C_{1}, C_{2}, f_{1} and f_{2} in the equation:
$C d=\frac{\left(C_{2}-n^{2} C_{1}\right)}{n^{2}-1} \ldots \ldots$ (eq. $\left.3-9\right)$
$\mathrm{n}=\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}$
Where, Cd: distributed capacitance in farads.
C_{1} : C dial reading (farads) noted in step b.
C_{2} : C dial reading (farads) noted in step f.
f_{1} : measurement frequency (hertz) noted in step d.
f_{2} : measurement frequency
(hertz) given in step e.

Note

If f_{2} is exactly one half of f_{1}, then
$C d=\frac{C_{2}-4 C_{1}}{3} \ldots \ldots \ldots($ eq. $3-10$)
An average of several measurements using different values of C_{1} will improve the results of this measurement. The best accuracy to be expected with this method, however, is in the range of $\pm 2 \mathrm{pF}$.

3-49. CORRECTION FOR Q.

3-50. To use the indicated Q for the purpose of calculating L and Rs (in determining the actual equivalent circuit), it must be corrected for the effects of the distributed capacitance. The corrected Q and the Q valuc measured by the Q meter can be obtained from the following equation:

$$
Q t=Q i \frac{C+C d}{C} \ldots \ldots \ldots .(\text { eq. } 3-11)
$$

Then,

$$
\begin{aligned}
\text { Correction factor } & =\frac{C+C d}{C}=1+\frac{C d}{C} \\
& \ldots \cdots \cdots(\text { eq. } 3-12)
\end{aligned}
$$

Where, Qt: corrected Q value.
Qi: indicated Q value.
C : sum of C and $\triangle C$ dial readings.
Cd: distributed capacitance of sample.

Figure $3-10$ is a graphical solution to equation 3-11. The corrected Q value Qt may be deemed the quality factor calculated as WLo/Ro from inductance Lo, equivalent series resistance Ro, and the measurement frequency (refer to paragraph 3-43). However, Qt is not identical to "effective Q". The correctod Q is also a "circuit Q " which includes the additional losses of the measuring circuit.

3-51. By substituting equation 3-6 in equation 3-11, the correction factor in equation 3-11 can be converted into a relationship of measurement frequency and self resonant frequency of samplc. And the corrected quality factor may be expressed as follows:

$$
Q t=Q i \frac{1}{1-\left(\frac{f_{1}}{f_{0}}\right)_{2}} \ldots \ldots \ldots \text { (eq. 3-13) }
$$

Where, f_{1} : measurement frequency. f_{0} : self resonant frequency of sample.

A graphic expression of the above equation is shown in Figure 3-9. When f_{1} is greater than f_{0}, equation $3-13$ produces a negative Qt. However, this negative Q has no meaning and should not be used. A negative Q is obtained when the reactance of the sample becomes capacitive (effect of distributed capacitance) instead of inductive at frequencies above f_{0}.

3-52. CORRECTION FOR INDUCTANCE.
3-53. The residual inductance of the measuring circuit is included in the measured inductance of sample. When the sample value is in the vicinity of $0.5 \mathrm{\mu H}$ or less, the measured inductance should be compensated for such residual inductance. This compensation can be made simply by subtraction as follows:

```
Lm = Li - Lres ............. (eq. 3-14)
```

Where, Lm: measured value excluding residual inductance. Li: measured inductance. Lres: residual inductance of measuring circuit.

The Lres in the 4342 A is approximately $0.01 \mu \mathrm{H}$.

3-54. Correction of the measured inductance to arrive at a true model of the equivalent circuit of the sample also requires a correction for the distributed capacitance (similar to the correction in para. 3-50 for indicated Q). The corrected inductance value is given by the following equation:

$$
L t=L i \frac{C}{C+C d}
$$

Where, Lt: corrected inductance value. Li: indicated inductance value. C : sum of C and $\triangle C$ dial readings. Cd : distributed capacitance of sample.

Equation 3-15 may be converted into a frequency form as follows:

$$
\operatorname{Lt}=\operatorname{Li}\left\{1-\left(\frac{f_{1}}{f_{0}}\right)^{2}\right\} \ldots \ldots(\text { eq. } 3-16)
$$

Where, f_{1} : measurement frequency
f_{0} : self resonant frequency of sample.

Graphic solutions of equations 3-15 and $3-16$ are shown in Figures $3-10$ and 3-9, respectively.

3-55. PARALLEL AND SERIES CONNECTION MEASUREMENT METHODS.

3-56. GENERAL.

3-57. In practical applications of the Q meter, the expanded measurement capabilities of parallel and series connection measurements yield various advantages. For example, the parallel method permits measuring inductor samples at frequencies about its selfresonant frequency (f_{0}). In addition, inductance just below resonance, impedance at resonance, and apparent capacitance above fo can be measured. This is especially useful for measurement of inductors which are designed to resonate with tuning capacitors less than 20 pF at their respective nominal working frequencies. A great number of coils known as "peaking coils" fall into this category. If there is no requirement for particular measurement conditions, the coil can be measured using the direct connection method. Here, the measurement parameter values may be read directly from Q meter indications. However, if the sample requires measurement with a tuning capacitance of less than 20 pF , a direct measurement is impossible (due to the minimum capacitance of the tuning capacitor). A parallel measurement will provide the desired data eliminating the limitations of the direct connection method.

3-58. Sometimes parallel or series connection measurements offer improved measurement accuracies. At first glance, these measurement configurations appear to be incompatible with the stray capacitance, residual inductance and other unwanted additional factors incident in the use of supplemental equipment
such as reference inductors and the test torminal adaptcr. Actually, these residual factors do not contribute additional errors in the measurement results. In quality factor measurements, the "indicated Q" values obtained by parallel or series methods are usually a better approximation of "effective Q" than those obtained by direct methods. As the differences between the measured values and the effective values decrease further to small orders of magnitude, parallel and series methods are sometimes also used for samples which can be measured by direct methods.

3-59. Measured values in parallel and series methods are theoretically given only by the variable quantities which yield to differences in tuning conditions before and after connecting the sample. The constant quantities in the measuring circuit, which do not vary for the duration of measurement, are not factors in the results of the calculations for the individual measurement parameters. Since residual impedances in measuring circuit as well as inherent values of reference inductors are almost constant, these values are mathematically eliminated and also do not influence the measurement results. So, what additional measurement errors are contributed by the parallel and series methods? Let's discuss them in detail.

3-60. Additional Error Discussion.

3-61. Certain residual impedance elements change with the method of conncction of the sample; in addition, the residual impedance also depends upon the mutual distances between the sample and the individual components of the measurement apparatus. Typical circuit models showing such residual factors are illustrated in Figure $3-11 . \quad C_{4}$ and C_{5} in

Stray Capacitances about Measurement Terminals
(A)

Distributed Inductances In Tuning Capacitor
(B)

Figure 3-11. Residual Parameters.

Figure 3-11 (A) exhibit the stray capacities added by connecting a sample with a shielded case. This capacitance increase adds to the stray capacitances ($\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}) around the measurement terminals. In a series measurement, the shorting strap, for initially short-circuiting the unknown connection terminals, has its own residual impedancc. Addrtionally, its contact resistances differ from those of samples. Small changes in the loss and the distributed inductance of the tuning capacitor affect measurement accuracies. Figure 3-11(B) graphically shows an electrical model of a variable capacitor. The distributed inductance and the loss varies depending on the position of the capacitor rotor. In the 4342 A , these residual factors are minimum because specially designed, high quality variable capacitors are employed in the tuning circuit.

Actually, the residual impedances present in the measuring circuit do not cause significant errors except when measurements of extremely high or extremely low impedance samples are taken at high frequency. A full consideration of the factors of additional errors is not practical except in cases where the experiment requires improved accuracies. However, it is difficult to make an accurate Q measurcment above 1000 (cffective Q) at a frequency higher than about 1 MHz .

3-62. In parallel and series measurements, Q meter indications are read twice as often as those in direct method measurements; thus, the accumulation of reading errors and instrumental errors should be taken into consideration. In addition, a more accurate tuning operation is required to minimize these additional errors. To improve frequency accuracy, the oscillator frequency may be monitored with a frequency counter (using FREQUENCY MONITOR output at rear pane1).

3-63. When a low Q sample is measured, the Q meter deflection increases and decreases broadly during the tuning operation. Because of this low resonance sharpness, it is usually difficult to do exact tuning (to get a resonant peak) and to obtain correct indications. This limits the resistance value measurable with parallel and series methods, respectively, as shown in Figure 3-5. As high series resistance and low parallel resistance make for very low Q resonance circuits (below 10), the measurement accuracies for such samples are thus much lower.

3-64. PARALLEL MEASUREMENTS.

Note

In the following parallel connection measurement procedures, set 4342A Q RANGE as appropriate unless specially instructed otherwise.

3-65. High Inductance Measurement.

3-66. When the measuring circuit is resonated using a reference inductor and then the sample (unknown) inductor placed in parallel with the tuning capacitor, the tuning frequency will increase. To restore resonance at the measurement frequency, the tuning capacitance must be increased. The inductance of the unknown inductor can be determined from relationship of the tuning capacitances at the same measurement frequency. After the sample is connected, quality factor and equivalent parallel resistance can also be calculated from a reduction of the panel Q meter indication.

To measure an inductance sample by the parallel method, proceed as follows:
a. Depress appropriate FREQUENCY RANGE pushbutton and sct FREQUENCY dial control for desired measurement frequency.
b. Select a reference inductor which allows the measuring circuit to resonate with a tuning capacitance of 30 pr to 70 pr at this frequency. Connect it to measurement COIL (HI and L0) terminals.
c. Adjust L / C dial and $\triangle C$ dial controls for a maximum Q meter deflection. Note sum of the C dial and $\triangle C$ dial readings as C_{1} and panel meter reading as Q_{1}.
d. Depress $\triangle Q$ button and adjust ΔQ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on ΔQ scale.

Note

Press $\triangle Q$ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for $\triangle Q$ zero indication.
e. Connect unknown inductor to measure-
ment CAPACITOR (HI and GND) terminals.
f. Restore resonance by adjusting the L/C and $\triangle C$ dial controls. Note sum of the C dial and ΔC dial readings as C_{2} and panel meter ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function for normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.
g. Inductance of the unknown inductor is:
$L=\frac{1}{\omega^{2}\left(C_{2}-C_{1}\right)}$
(H) $\ldots \ldots$ (eq. 3-17)

Where, $\omega=2 \pi$ times the measurement
frequency.
Q value of the unknown is:
$Q=\frac{Q_{1} Q_{2}\left(C_{2}-C_{1}\right)}{\Delta Q C_{1}} \cdots \cdots$ (eq. 3-18)
Where, $\Delta Q=Q_{1}-Q_{2}$
Equivalent parallel resistance is:
$\mathrm{Rp}=\frac{\mathrm{Q}_{1} Q_{2}}{\omega \mathrm{C}_{1} \Delta Q}(\Omega) \ldots \ldots \ldots$ (eq. 3-19)
h. The capacitance required to tune the coil at the measuring frequency is simply,
$C=C_{2}-C_{1} \ldots \ldots \ldots \ldots \ldots$ (eq. $3-20$)

Note

If the measurement frequency is higher than the self-resonant frequency of the unknown inductor, the unknown will not appear inductive but capacitive, and C_{2} will be less than C_{1}. Apparent capacitance of the unknown in such frequency region is:
$\mathrm{Ca}=\mathrm{C}_{1}-\mathrm{C}_{2} \ldots \ldots \ldots \ldots$ (eq. 3-21)
and equivalent parallel conductance is
$G a=\frac{\omega C_{1} \Delta Q}{Q_{1} Q_{2}} \ldots \ldots \ldots \ldots$ (eq. 3-22)

3-67. Low Capacitance Measurement (<450pF)
3-68. When the measuring circuit is resonated using a reference inductor, a capacitor placed in parallel with the tuning capacitor will lower the tuning frequency. To restore resonance at the measurement frequency, the tuning capacitance must be reduced as much as the capacitance of the sample. Hence, the sample value can be determined by noting the difference between the tuning capacitor dial readings. After the sample is connected, quality factor and equivalent parallel resistance can be calculated from a reduction of panel Q meter indication.

To measure a capacitance sample, proceed as follows:
a. Select a reference inductor which can resonate at the desired measurement frequency and connect it to measurement COIL (HI and LO) terminals.
b. Set L / C dial control to desired tuning capacitance and $\triangle C$ dial to zero. Note the tuning capacitance C_{1}.

Note

If the approximate value of the capacitor sample is known, select a value for C_{1} such that the difference between C_{1} and the sample value is 30 to 100 pF .
c. Depress appropriate FREQUENCY RANGE button and adjust FREQUENCY dia1 control for a maximum Q meter deflection. Note frequency f_{1} and panel Q meter reading Q_{1}.
d. Depress ΔQ button and adjust ΔQ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on ΔQ scale.

Note

Press $\triangle Q$ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
e. Connect the unknown capacitor to measurement CAPACITOR (HI and GND) terminals.
f. Restore resonance by adjusting the L / C and $\triangle C$ dial controls. Note sum of the L / C dial and $\triangle \mathrm{C}$ dial readings as C_{2} and panel meter ΔQ reading. If meter

Note

The reference inductor should be selected so that high resistances are measured with a low tuning capacitance and relatively low resistances are measured with a high tuning capacitance.
d. Depress ΔQ button and adjust ΔQ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on ΔQ scale.

Note

Press ΔQ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
e. Connect the unknown resistor to measurement CAPACITOR (HI and GND) terminals.
f. Restore resonance by adjusting the I / C. and $\triangle C$ dial controls. Note sum of the C dial and ΔC dial readings as C_{2} and panel meter ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.
g. The resistance of the unknown resistor is:
$R p=\frac{Q_{1} Q_{2}}{\omega C_{1} \Delta Q}(\Omega) \ldots \ldots \ldots$ (eq. 3-26)
Where, $\omega=2 \pi$ times the measurement frequency.

If the sample is also reactive, its reactance is:
$X p=\frac{1}{\omega\left(C_{2}-C_{1}\right)}$
(Ω) \ldots (eq. 3-27)
(usually capacitive)
and its capacitance is:
$C p=C_{1}-C_{2} \ldots \ldots \ldots \ldots$ (eq. 3-28)
If the sample appears inductive, C_{2} is larger than C_{1}.

Parallel Connection Measurements

3-71. Dielectric Measurement.
3-72. The dielcctric constant and diclectric loss of insulating materials can be measured by a method similar to and is basically a capacitance measurement. When a pair of parallel electrodes (air capacitor) connected to 4342 A (in air) and an insulating material placed between the electrodes, the electrode capacitance increases in proportional to the specific inductive capacity (ε_{S}) of the sample material. The dielectric constant of the sample material is calculated as the product of ε_{S} and the vacuum dielectric constant ε_{0}. Accordingly, the dielectric constant can be determined from the capacitance measurements made before and after placing the sample between the elecrodes. Additionally, after the sample is mounted in the holder, the conductance of the sample can also be calculated from a reduction of the Q meter indication. To make easy and accurate dielectric measurements, it is recommended that the 16451 A Dielectric Test Adapter be used with the 4342A. Typical characteristics of the 16451A are described in Table 3-2.

Materials to be measured with the 16451A should be less than 10 mm in thickness and from 38 to 55 mm in diameter. When measuring materials with a high dielectric constant or a large loss, it is usually best to prepare material in thicknesses greater than 3 mm . On the other hand, when low loss material is to be measured, the material thickness should be less than 3 mm . Materials measuring less than 0.5 mm in thickness are usually difficult to measure.

To make dielectric measurements using the 16451A, proceed as follows:
a. Depress the appropriate FREQUENCY RANGE button and set FREQUENCY dial control for the desired measurement frequency.
b. Select a reference inductor which can resonate at the measurement frequency. Connect it to 4342 A measurement COIL (HI and LO) terminals.
c. Adjust L / C dial and ΔC dial controls for a maximum Q meter deflection. Note sum of the C dial and $\triangle \mathrm{C}$ dial readings as C_{1} and panel meter reading as Q_{1}.
d. Let the reference inductor remain in place (as is) and attach the 16451A to 4342A measurement CAPACITOR (HI and GND) terminals.
e. Set 16451 A electrode spacing as desired. However, if possible, it is best to set the electrode spacing dimension to about the same as the thickness of the material to be measured.
f. Again resonate the measurement circuit by adjusting the L / C and ΔC dial controls. Note C dial and ΔC dial readings as C_{2} and panel meter reading Q_{2}.

Table 3-2. 16451A (4342A-K01) Typical Characteristics.

g. Depress $\triangle Q$ button and adjust $\triangle Q$ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on $\triangle Q$ scale.

Note
Press ΔQ button to release ΔQ function and recheck for current resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
h. Place the sample material between 16451A electrodes. The sample material should be in close contact with electrodes. Note 16451 A micrometer reading Tx (as thickness of the sample).
i. Again adjust the L / C and ΔC dial controls for resonance. Note sum of the C dial and ΔC dial readings as C_{3} and panel meter ΔQ reading. If meter pointer scales out at the left end of the scale ($\triangle Q$ full scale), reset the function for normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{2}-Q_{3}$.
j. Remove the sample material from between the 16451A clectrodes.
k. Let the L / C and ΔC dial settings remain as is, and reduce space between the 16451A electrodes until resonance again occurs. Note the micrometer reading as To .

Note
If this procedure is a little difficult, let the distance between the 16451A electrodes remain the same as the thickness of the sample being measured and take resonance again by adjusting the L / C and ΔC dial controls. Note sum of the C and ΔC dial readings as C_{4}.

1. Calculation formulas of the dielectric constant, dielectric loss, and associated measurement parameter values are summarized below:
Specific inductive capacity of the sample material is:
$\varepsilon_{S}=\frac{T x}{T o}$
(eq. 3-29)

Dielectric constant of the sample material is:

$$
\begin{aligned}
E= & \varepsilon_{0} \cdot \varepsilon_{S} \\
= & \frac{T x}{T u} \times 8.85 \times 10^{-12}(\mathrm{~F} / \mathrm{m}) \\
& \ldots \ldots \ldots \ldots \ldots(\mathrm{eq} \cdot 3-30)
\end{aligned}
$$

Electrode capacitance with the sample material is:

$$
\begin{aligned}
C x & =\frac{1}{T o} \quad(p F) \\
& =C_{4}-C_{3}+\frac{1}{T x}(p F) \ldots(\text { eq. } 3-31)
\end{aligned}
$$

Where, the unit for $T x$ and $T o$ is cm .
Equivalent parallel conductance of the sample material is:

$$
\begin{aligned}
G X & =2 \pi f C_{1} \frac{\Delta Q}{Q_{2}\left(Q_{2}-\Delta Q\right)} \\
& =2 \pi f C_{1}\left(\frac{Q_{2}-Q_{3}}{Q_{2} Q_{3}}\right)(\mathrm{pS}) \ldots(\text { eq. } 3-32)
\end{aligned}
$$

Dielectric loss angle (dissipation
factor) of the sample matcrial is:

$$
\begin{align*}
\tan \delta & =C_{1} \cdot \text { To } \frac{\Delta Q}{Q_{2}\left(Q_{2}-\Delta Q\right)} \\
& =\frac{C_{1}}{C x} \cdot \frac{\Delta Q}{Q_{2}\left(Q_{2}-\Delta Q\right)} \\
& =G x / 2 \pi f C x \ldots \ldots \ldots \ldots
\end{align*}
$$

Where, f is measurement frequency.
Note
$\frac{Q_{2}-Q_{3}}{Q_{2} Q_{3}}$ may be used instead of
$\frac{\Delta Q}{Q_{2}\left(Q_{2}-\Delta Q\right)}$ in equation 3-33.
Q value of the sample material is:

$$
Q x=1 / \tan \delta \ldots \ldots \ldots \ldots \ldots(\mathrm{eq} \cdot 3-34)
$$

Note
The theoretical formula for 16451A electrode capacitance is:
$C=\frac{S \times 10^{-2}}{36 \pi \times 10^{9} \times \mathrm{To}}(\mathrm{F})=\frac{\mathrm{S}}{3.6 \pi \mathrm{To}}(\mathrm{pF})$
where S is area of electrode $\left(\mathrm{cm}^{2}\right)$.
Since the size of the electrode is 3.8 cm in diameter, C above can be shown to be $1 /$ To (pF).

Series Connection Measurements

3-73. SERIES MEASUREMENTS.

Note

In the following series connection measurement procedures, set 4342A Q RANGE as appropriate unless specifically instructed otherwise.

3-74. Low Inductance Measurement.

3-75. Measurement of small inductors at relatively low frequencies can not be made directly at the measurement COIL terminals. However, by using an external high Q capacitor (such as the 16462A Alxiliary Capacitor) connected in parallel with the tuning capacitor, resonance can be obtained at the desired frequency. A second method, which is explained here, is the series method. This method is recommended for measuring low value inductors without using an external capacitor (but with an external inductor).

When the measuring circuit is resonated using a reference inductor, the test inductor placed in series with the reference inductor will lower the tuning frequency. To restore resonance at the measurement frequency, the tuning capacitance must be reduced. The inductance of the unknown inductor can be determined from the relationship between the tuning capacitances at the same frequency. After the sample is connected, quality factor and equivalent series resistance can also be calculated from a reduction of panel Q meter indication. Proceed as follows:
a. Depress the appropriate FREQUENCY RANGE button and set FREQUENCY dial control for the desired measurement frequency.
b. Select a reference inductor which allows the measuring circuit to resonate with a tuning capacitance of approximately 400 pF . Connect unknown inductor in series with the reference inductor (between measurement LO terminal and low potential end of the reference inductor) and to measurement COIL (HI and LO) terminals.

Note

If 16014 A Series Loss Test Adapter is available, attach it to measurement COIL terminals. Connect the reference inductor to appropriate terminals of the 16014 A and unknown inductor to 16014 A series connection terminals.
c. Short-circuit the unknown (series connection terminals) with a heavy (low impedance) shorting strap.
d. Adjust L / C dial and ΔC dial controls for a maximum Q meter deflection. Note sum of the C dial and $\triangle C$ dial readings as C_{1} and panel meter reading as Q_{1}.
e. Depress $\triangle Q$ button and adjust $\triangle Q$ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on $\triangle Q$ scale.

Note

Press $\triangle Q$ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
f. Disconnect the shorting strap. Again resonate the measuring circuit by adjusting L / C dial and $\triangle C$ dial controls. Note sum of the C dial and ΔC dial readings as C_{2} and panel Q meter ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.

Note
This procedure (steps c, d and f) permits the unknown component to be physically connected even through it is electrically out of the circuit, and eliminates possible errors by maintaining the relative positions of the reference inductor and unknown component.
g. Inductance of the unknown inductor is: $\mathrm{Ls}=\frac{\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\omega^{2} \mathrm{C}_{1} \mathrm{C}_{2}} \quad$ (H) \ldots (eq. 3-35)

Where, $\omega=2 \pi$ times the measurement frequency.
Q value of the unknown is:
$Q=\frac{Q_{1} Q_{2}\left(C_{1}-C_{2}\right)}{C_{1} Q_{1}-C_{2} Q_{2}} \ldots \ldots$ (eq. $3-36$)
Where, $Q_{2}=Q_{1}-\Delta Q$
Equivalent series resistance is:
$R s=\frac{\left(\frac{C_{1}}{C_{2}}\right) Q_{1}-Q_{2}}{\omega C_{1} Q_{1} Q_{2}}(\Omega) \ldots .($ eq. 3-37)

3-76. High Capacitance Measurement ($\geq 450 \mathrm{pF}$).
3-77. When the measuring circuit is resoated using a reference inductor, a test capacitor placed in series with the reference inductor will raise the tuning frequency. To restore resonance at the measurement frequency, the tuning capacitance must be increased. The capacitance of the unknown can be determined from the relationship between the tuning capacitances at the same frequency. After the sample is connected, quality factor and equivalent series resistance can be calculated from a reduction of panel Q meter indication.

To measure a capacitance sample, proceed as follows:
a. Depress the appropriate FREQUENCY RANGE button and set FREQUENCY dial control for desired measurement frequency.
b. Select a reference inductor which allows the measuring circuit to resonate with a tuning capacitance of approximately 200 pF .

Note

If the sample value is higher than about 3600 pF , it is recommended that the initial tuning capacitance setting be in the vicinity of 400 pF to obtain better measurement accuracy.

Connect unknown capacitor in series with the reference inductor (between measurement Lo terminal and low potential end of the reference inductor) and to measurement COIL (HI and LO) terminals.

Note

If 16014A Series Loss Test Adapter is available, attach it to measurement COIL terminals. Connect the reference inductor to appropriate terminals of the 16014A and unknown capacitor to 16014A series connection terminals.
c. Short-circuit the unknown (series connection terminals) with a heavy (low impedance) shorting strap.
d. Adjust L / C dial and $\triangle C$ dial controls for a maximum Q meter deflection. Note sum of the C dial and $\triangle C$ dial readings as C_{1} and panel meter reading as Q_{1}.
e. Depress ΔQ button and adjust ΔQ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on ΔQ scale.

Note
Press ΔQ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
f. Disconnct the shorting strap. Again resonate the measuring circuit by adjusting L / C dial and $\triangle C$ dial controls. Note sum of the C dial and ΔC dial readings as C_{2} and panel meter indication as ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.

Note

This procedure (steps c, d and f) permits the unknown component to be physically connected even through it is electrically out of the circuit, and eliminates possible errors by maintaining the relative positions of the reference inductor and unknown component.
g. The capacitance of the unknown capacitor is:
$\mathrm{Cs}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)} \ldots \ldots \ldots$ (eq. $\left.3-38\right)$
Q value of the unknown is:
$Q=\frac{Q_{1} Q_{2}\left(C_{1}-C_{2}\right)}{C_{1} Q_{1}-C_{2} Q_{2}} \ldots \ldots$ (eq. 3-39)
Where, $Q_{2}=Q_{1}-\Delta Q$
Equivalent series resistance is:
$R s=\frac{Q_{2}-\left(\frac{C_{1}}{C_{2}}\right) Q_{1}}{\omega C_{1} Q_{1} Q_{2}}(\Omega) \ldots$ (eq. 3-40)
Where, $\omega=2 \pi$ times the measurement frequency.

3-78. Self-resonant Frequency Measurement

 of High Capacitors.3-79. Capacitors have a residual inductance which is dependent on the capacitor lead
length and electrode structure. This inductance resonates with the capacitance of the capacitor at a high frequency. At this self-resonant frequency, the impedance of the capacitor is minimum owing to the series resonance which occurs in the capacitor itself. Hence, its self-resonant frequency determines the upper limit of the useable frequency for the capacitor. Usually the self-resonant frequency of electrolytic, tantalum, film, mylar capacitors and others which are within a capacitance range of about $5 n \mathrm{~F}$ to $1 \mu \mathrm{~F}$ can be measured with a Q meter.

When the capacitor self-resonates, the impedance is minimum and purely resistive. This characteristic is utilized to determine the self-resonant frequency and the equivalent series resistance at this frequency. The measurement procedure to determine the selfresonant frequency of a capacitor is similar to that for an inductor (described in paragraph 3-46). Proceed as follows:
a. Depress a trial FREQUENCY RANGE button.

Note

For high capacitance samples, select either the $22 \mathrm{k}-70 \mathrm{k}$ or the 70k - 220k range and, for a relatively low capacitance samples, select the $220 \mathrm{k}-700 \mathrm{k}$ or the $0.7 \mathrm{M}-2.2 \mathrm{M}$ range, respectively.
b. Select a reference inductor which allows the measuring circuit to resonate with a tuning capacitance of approximately 400 pF . Connect unknown capacitor in series with the reference inductor (between measurement LO terminal and low potential end of the reference inductor) and to measurement COIL (HI and LO) terminals.

Note

If 16014A Series Loss Test Adapter is available, attach it to measurement COIL terminals. Connect the reference inductor to appropriate terminals of the 16014 A and unknown capacitor to 16014 A series connection terminals.
c. Short-circuit the unknown (series connection terminals) with a heavy (low impedance) shorting strap.
d. Adjust FREQUENCY dial control for a maximum panel Q meter deflection.
e. Disconnect the shorting strap. Again resonate the measuring circuit by adjusting the L / C dial control. If L / C dial control has to be rotated in the direction of higher capacitance, increase the measurement frequency. If it has to be rotated towards a lower capacitance, decrease the frequency.
f. Repeat steps c, d, and e until the influence of the test capacitor to tuning condition is non-existent (indicated Q value may change).

Notc

If such condition can not be obtained on the selected frequency range even though the L / C dial control is set to maximum, change FREQUENCY RANGE setting to upper range. If the L / C dial control must be reduced to less than 200 pF , change FREQUENCY RANGE setting to a lower range. Replace reference inductor with another trial inductor and repeat steps a through f until the adjustment in step f succeeds.
g. Note sum of C dial and $\triangle C$ dial readings as C_{1} and dial frequency reading as f_{0}. This frequency is identical with the self-resonant frequency of the unknown capacitor.
h. Connect the shorting strap (if not already connected). Depress $\triangle Q$ button and adjust $\triangle Q$ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on ΔQ scale.

Note

Press ΔQ button to release ΔQ function and recheck for correct resonance. Again depress the ΔQ button and recheck for ΔQ zero indication.
i. Disconnect the shorting strap. Note panel Q meter ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.
j. Equivalent resistance of the capacitor at the resonant frequency is:

[^0]
3-80. Low Resistance Measurement.

3-81. When measuring circuit is resonated using a reference inductor, a resistor placed in series with the reference inductor will lower the indicated Q in proportion to the resistance value of the sample. This reduction of Q is utilized to measure the resistance. To avoid a significant increment of measurement error, the measurement should be made for resistors within a reasonable range. For low resistance, the change in the indicated Q should be greater than the Q meter resolution, that is, 0.1 on $\Delta Q=3$ range, 0.3 on 10 range, 1 on 30 range and 3 on 100 range, respectively. For high resistance, the indicated Q should be higher than 10 when the sample is connected. See Figure 3-5 for the suitable sample value range.

To measure low resistances, proceed as follows:
a. Depress the appropriate FREQUENCY RANGE button and set FREQUENCY dia1 control for the desired measurement frequency.
b. Select a suitable reference inductor so that relatively high resistances are measured with a low tuning capacitance and low resistances are measured with a high tuning capacitance. Connect unknown resistor in series with the reference inductor (between measurement LO terminal and low potential end of the reference inductor) and to measurement COIL (HI and LO) terminals.

Note

If 16014 A Series Loss Test Adapter is available, attach it to measurement COIL terminals. Connect the reference inductor to appropriate terminals of the 16014A and unknown resistor to 16014 A series connection terminals.
c. Short-circuit the unknown (series connection termina1s) with a heavy (low impedance) shorting strap.
d. Adjust L / C dial and ΔC dial controls for a maximum Q meter deflection. Note sum of the C dial and $\triangle C$ dial readings as C_{1} and panel meter reading as Q_{1}.
e. Depress $\triangle Q$ button and adjust $\triangle Q$ ZERO (COARSE and FINE) controls so that meter pointer indicates zero (full scale) on $\triangle Q$ scale.

Note
Press \mathbb{Q} button to release $\triangle Q$ function and recheck for correct resonance. Again depress the ΔQ button and recheck for $\triangle Q$ zero indication.
f. Disconnect the shorting strap. Again resonate the measuring circuit by adjusting L/C dial and $\triangle C$ dial controls. Note sum of the C dial and $\triangle C$ dial readings as C_{2} and panel meter as ΔQ reading. If meter pointer scales out at the left end of the scale (ΔQ full scale), reset the function to normal Q measurement. The difference in Q is calculated from the two Q values as $\Delta Q=Q_{1}-Q_{2}$.

Note

This procedure (steps c, d and f) permits the unknown component to be physically connected even though it is electrically out of the circuit, and eliminates possible errors by maintaining the relative positions of the reference inductor and unknown component.
g. The resistance of unknown resistor is:

$$
\operatorname{Rs}=\frac{\left(\frac{C_{1}}{C_{2}}\right) Q_{1}-Q_{2}}{\omega C_{1} Q_{1} Q_{2}} \quad(\Omega) \ldots(\text { eq. 3-42) }
$$

Where, $\omega=2 \pi$ times the measurcment frequency.
$Q_{2}=Q_{1}-\Delta Q$
If the unknown is purely resistive ($C_{2}=C_{1}$), the equation for resistance reduces to:
$\mathrm{Rs}=\frac{\Lambda Q}{\omega C_{1} Q_{1} Q_{2}}(\Omega) \ldots \ldots \ldots$ (eq. 3-43)
If the unknown is also reactive, the reactance is:
$x_{s}=\frac{\left(C_{1}-C_{2}\right)}{\omega C_{1} C_{2}} \quad(\Omega) \ldots($ eq. 3-44)

Table 3-3. Formulas for Calculating Q and Impedance Parameters from Parallel and Series Measurements.

Parallel Measurements	Series Measurements
Effective Q of Unknown	Effective Q of Unknown
$Q=\frac{Q_{1} Q_{2}\left(C_{2}-C_{1}\right)}{\Delta Q C_{1}}$	$Q=\frac{Q_{1} Q_{2}\left(C_{1}-C_{2}\right)}{C_{1} Q_{1}-C_{2} Q_{2}}$

Effective Parallel Resistance of Unknown

$$
\mathrm{R}_{\mathrm{p}}=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\omega \mathrm{C}_{1} \Delta Q}
$$

Effective Parallel Reactance of Unknown

$$
\mathrm{X}_{\mathrm{p}}=\frac{1}{\omega\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)}
$$

E'ffective Parallel Inductance of Unknown

$$
\mathrm{L}_{\mathrm{p}}=\frac{1}{\omega^{2}\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)}
$$

Effective Parallel Capacitance of Unknown

$$
C_{p}=C_{1}-C_{2}
$$

Note

In the equation for Xp , the polarity (sign) of the quantity (C2-C1) indicates the effective reactance, a positive quantity indicates an inductive reactance and a negative quantity indicate a capacitive result.

Disregard the sign of the quantity (C2-C1) in the equation above for Q.

Series Measurements
Effective Q of Unknown

$$
Q=\frac{Q_{1} Q_{2}\left(C_{1}-C_{2}\right)}{C_{1} Q_{1}-C_{2} Q_{2}}
$$

Effective Series Resistance of Unknown

$$
R_{S}=\frac{\left(\frac{C_{1}}{C_{2}}\right) Q_{1}-Q_{2}}{\omega C_{1} Q_{1} Q_{2}}
$$

Effective Series Reactance of Unknown

$$
X_{S}=\frac{C_{1}-C_{2}}{\omega C_{1} C_{2}}
$$

Effective Series Inductance of Unknown

$$
\mathrm{L}_{\mathrm{S}}=\frac{\mathrm{C}_{1}-\mathrm{C}_{2}}{\omega^{2} \mathrm{C}_{1} \mathrm{C}_{2}}
$$

Effective Series Capacitance of Unknown

$$
\mathrm{C}_{\mathrm{S}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{2}-\mathrm{C}_{1}}
$$

Note
In the equation for Xs , the polarity (sign) of the quantity (C1-C2) indicates the effective reactance, a positive quantity indicates an inductive reactance and a negative quantity indicate a capacitive result.

Disregard the sign of the quantity (C1-C2) in the equation above for Q.

Table 3-4. Formulas Refating Series and Parallel Components.

	$\mathrm{Q}=\frac{\mathrm{X}_{S}}{\overline{\mathrm{R}}_{S}}$	$\frac{L_{S}}{i_{s}}=\frac{1}{\omega C_{S} R_{S}}$	$\frac{\rho}{\sigma}=\frac{R p}{\omega L p}=R_{p} \omega C_{p}=\frac{\sqrt{\frac{L}{C}}}{R_{s}}=\frac{R p}{\sqrt{\frac{L}{C}}}$		
PARALLEL TO SERIES CONVERSION	Formulas for Q greater than 10	Formulas for Q less than 0.1	SERIES TO PARALLEL CONVERSION	Formulas for Q greater than 10	$\begin{gathered} \text { Formulas for } \\ \text { Q less } \\ \text { than } 0.1 \end{gathered}$
$\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{Rp}}{1+\mathrm{Q}^{2}}$	$\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{Rp}}{\mathrm{Q}^{2}}$	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{p}}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{R}_{\mathrm{S}}\left(1+\mathrm{Q}^{2}\right)$	$\mathrm{R}_{\mathrm{p}}=\mathrm{R}_{\mathrm{S}} \mathrm{Q}^{2}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{R}_{\mathrm{s}}$
$x_{S}=x_{p} \frac{Q^{2}}{1+Q^{2}}$	$\mathrm{X}_{\mathrm{S}}=\mathrm{X}_{\mathrm{p}}$	$\mathrm{X}_{\mathrm{S}}=\mathrm{X}_{\mathrm{p}} \mathrm{Q}^{2}$	$\mathrm{x}_{\mathrm{p}}=\mathrm{x}_{\mathrm{s}} \frac{1+\mathrm{Q}^{2}}{\mathrm{Q}^{2}}$	$\mathrm{X}_{\mathrm{p}}=\mathrm{X}_{\mathrm{S}}$	$\mathrm{X}_{\mathrm{p}}=\frac{\mathrm{X}_{\mathrm{S}}}{\mathrm{Q}^{2}}$
$\mathrm{L}_{\mathrm{S}}=\mathrm{L}_{\mathrm{p}} \frac{\mathrm{Q}^{2}}{1+\mathrm{Q}^{2}}$	$L_{\text {S }}=L_{p}$	$L_{s}=L_{p} Q^{2}$	$\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{s}} \frac{1+\mathrm{Q}^{2}}{\mathrm{Q}^{2}}$	$L_{p}=L_{s}$	$\mathrm{L}_{\mathrm{p}}=\frac{\mathrm{L}_{\mathrm{S}}}{\mathrm{Q}^{2}}$
$\mathrm{C}_{\mathrm{s}}=\mathrm{Cp}_{\mathrm{p}} \frac{1+\mathrm{Q}^{2}}{\mathrm{Q}^{2}}$	$\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{\mathrm{p}}$	$\mathrm{C}_{\mathrm{S}}=\frac{\mathrm{Cp}}{\mathrm{Q}^{2}}$	$C_{p}=C_{S} \frac{Q^{2}}{1+Q^{2}}$	$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\text {S }}$	$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{S}} \mathrm{Q}^{2}$

Figure 4-1. Series Resonant Circuit

Figure 4-2. Model 4342A Simplified Block Diagram

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION

4-2. This discussion of the HP Model 4342A Q Meter internal operation is divided into two parts: Block diagram description and circuit description. The block diagram section discusses the functions of the major circuits within the instrument, using the overall block diagram. The circuit description provides a detailed description of all the major circuits within the instrument. It is suggested that the block diagram and schematics which have been included in this manual be referred to while reading the circuit description. A Functional Overall Block Diagram of the instrument, showing all the major circuits and associated relevant information is provided in Section VIII at the back of the manual. Also in Section VIII, there are complete schematics of all the circuitry within the Model 4342A which include components, reference designators, and values.

4-3. Q DETERMINATION AND MEASUREMENT.

4-4. The ratio of a component's reactance to its resistance is measured by the Q meter. The magnitude of Q is usually considered a figure of merit expressing the ability of component to store energy compared to the energy it dissipates. A measure of Q is important to determine the RF resistance of components, the loss angle of capacitors, dielectric constants, transmission line parameters and antenna characteristics, etc. Q is a dimensionless number. In a circuit at resonance, Q can be defined as the ratio of total energy stored to the average power dissipated per cycle. For a single reactance component:

$$
\mathrm{Q}=\mathrm{Xs} / \mathrm{Rs}=\mathrm{Rp} / \mathrm{Xp}
$$

Where $X s$ and $X p$ are series and parallel reactance and Rs and Rp are series and parallel resistance. The most common form of Q meter uses a series resonant circuit to measure Q, as shown in Figure 4-1.

4-5. When the variable air capacitor C is adjusted so that $\mathrm{Xc}=\mathrm{X}_{\mathrm{L}}$, the only remaining impedance in the loop is Rs. The current that flows then is;

$$
i=\frac{\mathrm{e}}{\mathrm{Rs}}
$$

and the voltage E across capacitor C is;

$$
E=\frac{e}{R s} \cdot X c \text { and } \frac{E}{e}=\frac{X c}{R s}=\frac{X_{L}}{R s}=Q
$$

This equation is correct for values of $Q \geqq 10$, for it can be shown that the true Q value being measured by the Q meter is equal to $\sqrt{1+\mathrm{Q}^{2}}$. Therefore, if e is held at a constant and known level, a voltmeter with high input impedance can be connected across the capacitor and calibrated directly in terms of Q. The e values in the above equations are functions of selected Q ranges. Rs is a function of the unknown inductor or Q reference coils. A detailed explanation
for the measurement of unknowns is provided in SECTION III.

4-6. SIMPLIFIED BLOCK DIAGRAM

4-7. The measurement principle used in the Model 4342A is the series resonant circuit. A simplified block diagram of the Q Meter is shown in Figure 4-2. The oscillator which covers 22 kHz to $70 \mathrm{MHz}(10 \mathrm{kHz}$ to 32 MHz in Option 001), is automatically leveled by a loop consisting of the detector and the ALC amplifier. The oscillator output is controlled automatically by comparing it to a fixed dc level. Thus, constant voltage is supplied to the Q-range attenuator. The attenuator adjusts the signal level according to the \mathbf{Q} range settings. This signal is fed into the resonant circuit by a transformer (sometimes called an injection transformer). Resonance is acheived by adjusting the variable capacitor, and this level is read by the high-impedance voltmeter. Thus the Q value of the resonant circuit is indicated on the meter.

4-8. BLOCK DIAGRAM DESCRIPTION

4-9. The Model 4342A Q Meter performs Q measurement in the range of 5 to 1000 on coils in seven bands covering a frequency range from 22 kHz to 70 MHz (10 kHz to 32 MHz in Option 001). The following paragraphs contain a brief outline of function of the major circuit groups in the Q Meter. Reference is made to the Functional Overall Block Diagram in SECTION VIII.

4-10. OSCILLATOR AND IMPEDANCE CONVERTER(A1A1)

4-11. The Oscillator circuit Q1-Q2 is a seven-band variable frequency oscillator covering a frequency range from 22 kHz to $70 \mathrm{MHz}(10 \mathrm{kHz}$ to 32 MHz in Option 001). The instrument utilizes a Hartley type circuit which operates from 22 kHz to $22 \mathrm{MHz}(10 \mathrm{kHz}$ to 10 MHz in Option 001) and a Colpitts type circuit from 22 MHz to $70 \mathrm{MHz}(10 \mathrm{MHz}$ to 32 MHz in Option 001$)$. The FREQUENCY RANGE switch provides for the selection of the desired band of operation. The output amplitude of the oscillator is automatically controlled by an ALC loop Q9-Q13(P/OA8) to provide the injection voltages required by the Q ranges used. The oscillator output is further coupled to a high impedance circuit Q3-Q6 which provides a buffer stage between the oscillator and the RF power amplifier assembly.

4-12. RF POWER AMPLIFIER(A1A2)

4-13. The RF Power Amplifier assembly consists of a cascode amplifier circuit Q1-Q2 with a gain of about 18 dB and an impedance converter Q3-Q4. Commonly called a cascode, the circuit uses an emitter grounded amplifier followed by a grounded base stage. The circuit has excellent noise figure, broad band characteristics, and is very stable. The impedance con-
verter Q3-Q4 consists of a pair of emitter followers connected in series which provides a higher input impedance and lower output impedance.

4-14. ALC AMPLIFIER(P/O A8)

4-15. The ALC Amplifier circuit Q9-Q13 provides the appropriate correction signal to the Oscillator assembly(A1A1) in order to control the oscillator output in accordance with the fixed reference dc level set by the OSC LEVEL control.

4-16. $\mathrm{Q} / \triangle \mathrm{Q}$ RANGE ATTENUATOR(A3)

4-17. The Q RANGE Attenuator consists of four switches which provide a lotal altenuation of 30.4 dB . An additional switch is used for the ΔQ measurement. The Meter Scale Indicator (A11) ganged with Q RANGE switches, utilizes four lamps, two of these lamps are used for the Q scale display and the other two for the ΔQ scale. The attenuator output is fed to an Impedance Converter(A4) which consists of transistors Q1 and Q2 and which is similar in operation to the one described in paragraph 4-13.

4-18. TUNING CAPACITOR AND INJECTION TRANSFORMER(A2)

4-19. The Tuning Capacitor sometimes referred to as the Q Capacitor is an important part of the QMeter. It is the reactance standard in the Q measurement. Because the Q Capacitor can be calibrated precisely, the Q Meter provides direct reading of inductance in addition to Q . To achieve this high accuracy, the capacitor is designed with low loss and low residual inductance. Minimum capacitance is low to maintain accuracy at high frequencies. The Q Capacitor covers a range of 20 pF to 475 pF . Residual inductance is less than 10 nH .

4-20. The Model 4342A uses a new method of injecting a constant voltage through a transformer as shown in Figure 4-3, which has very low output impcdancc. The transformer has a toroidal core and nearly flat frequency reaponse from 10 kHz to 70 MHz . The LO terminal consists of a one-turn secondary winding which has an output impedance of approximately 1 milliohm. High measurement accuracy is thus achieved.

Figure 4-3. Constant Voltage Injection System

4-21. RF AMPLIFIER AND DETECTOR(A5)

4-22. The RF Amplifier and Detector assembly includes the Impedance Converter, the RF Amplifier, and the Detector circuits. The impedance converter Q1-Q4 is a "unity"gain buffer stage amplifier between the Tuning Capacitor assembly A2 and the RF Amplifier Q5-Q9. It provides a high input impedance and a low output impedance similar to what has been described in paragraph 4-13.

4-23. The RF Amplifier circuit Q5-Q9 is a high gain and broad band amplifier. The frequency response of the amplifier is flat and covers the entire spectrum range given in the specifications, while broad band RF transistors supply power gain. The approximate gain is about 34 dB . The amplified signal is detected by diodes CR2-CR5 and coupled to the DC Amplifier assembly A6.

4-24. DC AMPLIFIER(A6)

4-25. The DC Amplifier Q1-Q5 provides a gain from 0 to 20 dB . It is used to drive linearly the meter. Various gain adjustment, balance control, $\triangle \overline{\mathrm{Q}} \overline{\mathrm{CO} A R S E}$ AND FINE adjustments, METER ZERO ADJUST, and ΔQ function are provided for in this assembly. A Q ANALOG OUTPUT is also supplied which can be interfaced with other instruments. Frequency signals down to and including dc can be handled by the amplifier. By combining direct coupling with a resistive feedback circuit, good stability is obtained.

4-26. Q LIMIT SELECTOR(A7)

4-27. The Q Limit Selector assembly includes a comparator circuit Q1-Q3, a Schmitt trigger Q4-Q5, a monostable multivibrator Q6-Q7 and a driver Q8-Q9. The comparator compares the output of the detected RF signal with the Q LIMIT setting. The comparator output is then coupled via an emitter follower to the Schmitt trigger which generates a fast rise pulse output. This signal is coupled to the monostable multivibrator which has a fixed time constant of 1 second, and also supplies the necessary drive signal to the driver stage. An OVER LIMIT SIGNAL OUTPUT and DISPLAY TIME (1 sec or ∞) are provided.

4-28. CIRCUIT DETAILS

4-29. LC OSCILLATOR(P/OA1A1)

4-30. FREQUENCY RANGE switches select the appropriate LC circuit, setting the operating frequencies of the oscillator Q1-Q2. In the Hartley configuration, when an RF current flows in the tuned circuit, there is a voltage drop across L. The tap on the L coil will be at an intermediate potential with respect to the two ends of the coil. The amplified current in the Q2 collector circuit, which flows through the bottom section of L, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feedback. The Colpitts arrangement uses the voltage drops across the two capacitors C18 and C19 in series in the tuned circuit to supply the feedback, Other than this, the Colpitts operation is the same as just described for the Hartley configuration.

4-31. IMPEDANCE CONVERTER(P/O A1A1) AND RF POWER AMPLIFIER(A1A2)

4-32. FET Q3 provides a high input impedance for the impedance Converter circuit. Transistor Q5 is used as a current source and Q4 provides positive feedback to make Q3 gain equal to unity. Emitter follower Q6 provides low impedance output signals to the RF Amplifier stage. Inductor L 8 acts as a parasitic oscillation suppressor and C30 is a dc blocking capacitor. The signal from the Impedance Converter is ac coupled to RF Power Amplifier Q2 via C2. Transistors Q1 and Q2 form a cascode stage as previously described in paragraph 4-12. Resistor R11 and C6 form a frequency compensation network and C5 is a bypass capacitor. Transistors Q3 and Q4 form an Impedance Converter as described in paragraph 412. Inductor L1 and L4 are parasitic oscillation suppressors.

4-33. ALC AMPLIFIER(P/O A8)

4-34. Transistor Q9 thru Q13 form the ALC Amplifier assembly. FET Q9A and Q9B form a differential amplifier with Q11 as its current source. A portion of the rectified RF Amplifier signal is taken across diode A3CR1 and coupled to FET Q9B. Transistors Q10 and Q12 form another differential amplifier with Q13 as its current source. The drain output signal of FET Q9B turns on transistor Q12. The current flowing through the collectors of transistors A1A1Q1 and A 1 A 1 Q 2 is caused to vary by the setting of the OSC LEVEL control R26. This variation in A1A1Q1 collector current causes a change in the tuned circuit current and the gain of the Oscillator is thereby controlled. C10 provides ac feedback and circuit stabilization.

4-35. Q RANGE ATTENUATOR(A3)

4-36. The Q Range Attenuator with a total attenuation of 30.4 dB covers the entire frequency range. The following steps of $10.4 \mathrm{~dB}, 9.6 \mathrm{~dB}$, and 10.4 dB are provided to correlate the meter reading with the Q Ranges used in the proper ratio (ie. $30 / 3,100 / 10$, etc.). The maximum insertion loss is 0.1 dB and the impedance is 50Ω nominal. The Q Attenuator output is coupled to Impedance Converter A4 which is arranged in a Darlington pair configuration.

4-37. IMPEDANCE CONVERTER, RF AMPLIFIER AND DETECTOR(A5)

4-38. The Impedance Converter $\mathrm{Q} 1-\mathrm{Q} 4$ is identical in operation to the description given in paragraph $4-32$. Diode CR1 protects Q4 from initial current surge. Transistors Q5-Q9 provide RF amplification for the broad band RF fraquencies with a total gain of approximate 34 dB . Variable resistor R 32 and variable capacitor C16 provide for the adjustment of medium and high frquency response of the amplifier respectively. A flat response is obtained through out the entire frequency band. The signal is ac coupled to detector diode CR2 via C19. Capacitor C20 provides filtering action. Diodes CR3 thru CR5 in conjunction with R42 and R43 cancel the non-linearities of diode CR2. A linear reading is provided to the meter circuit.

4-39. DC AMFLIFIER(A6)

4-40. FET Q1 supplies Q ANALOG OUTPUT proportional to the meter deflection to J 1 connector. Variable resistors R4 and R6 are used for the settings of the Q ANALOG OUTPUT-BALANCE and GAIN respectively. FET Q2A and Q2B form a differential amplifier with transistor Q4 as a current source. Diode CR1 compensates for temperature changes. Q3 and Q5 supply current drive to the meter. Resistors R2 and R21 provide for X1 GAIN and X10 GAIN adjustments respectively. Zenor diode CR2 and CR3 are used to regulate for the +25 V and -25 V supplies, inductors L1, L2 and capacitors C2, C3 are used to obtain additional filtering of meter circuit supply voltages. Resistor R2 (mounted on chassis) provides for METER ZERO adjustment. Resistors R3 and R4 (mounted on chassis) are used for the $\triangle Q$ ZERO FINE and COARSE adjustments respectively.

4-41. Q LIMIT SELECTOR(A7)

4-42. High impedance FETs Q1 and Q2 form a comparator circuit. Emitter follower Q3 dc couples the comparator output to the Schmitt trigger Q4 and Q5. Capacitor C2 is used as a negative feedback path to reduce the ripple voltage at Q3 emitter. Transistors Q4 and Q5 provide Schmitt trigger action. When Q4 base voltage reaches 9 V , the transistor will turn on and Q5 which is normally on will turn off. A positive going pulse will be generated and coupled via capacitor C3 and diode CR3 to the one-shot multivibrator Q6 and Q7. Normally, transistor Q7 is on and Q6 is cut off by the voltage drop across the common bias resistor R19. The pulse from Q5 turns on Q6 which in turn switches off Q7 for one second. Capacitor C6, resistors R20, R21, and R22 determine the constant of the circuit. Transistor Q8 turned on by the rise in Q7 collector voltage operates K1 the OVER LIMIT DISPLAY relay. Transistor Q9(normally on) is used for ∞ OVER LIMIT DISPLAY TIME. Diodes CR5 and CR6 protect Q8 and Q9 against initial line transient when the instrument is turned on.

4-43. POWER SUPPLY($\mathrm{P} / \mathrm{O} \mathrm{A} 8$)

4-44. Description of the Power Supply operation will pertain to the +25 volt supply. For the negative supply, operation will be identical but with reversed polarities. Rectificrs CR1 thru CR4 form a fullwave bridge rectifier for the +25 volt supply. In this arrangement two rectifiers operate in series on each half of the cycle, one rectifier being in the lead to the load; the other being in the return lead.
4-45. Pulsating(rectified) dc at the output of the fourdiode rectifier bridge is applied to the collector of the series regulator Q1. Closely matched transistors Q2, Q5 and Q3, Q4 form differential amplifier with high common mode signal rejection. The output voltage is applied across R11, R12, and R13 a voltage divider, such that some fraction of this voltage will be applied to the base of Q5. Should the voltage at the base of Q5 increase, its collector will gomore negative. This negative going signal will be applied through emitter follower Q4 and cause Q3 collector to go negative. The negative going signal from Q3 is coupled through emitter follower Q1 and series regulator Q1 (mounted on chassis). Subsequently the signal
at the base of Q 1 will increase the effective resistance of series regulator.

4-46. The rectifier output is continually changing, as it is a pulsating current. Thus the amplifier chain feeding the series regulator is continually compensating for this pulsation, effectively smoothing the rectifiers output. Capacitor C2 (mounted on chassis) sets ac output impedance. Zenor diode CR5 provides constant base voltage to Q2. Diode CR6 protectstransistor Q3 against transients. Diodes CR7, CR8, and CR9 provide current limiting in the event of a grounded output. As stated earlier the operation for the negative supply is identical to the positive supply, except that only one differential amplifier is used in the circuit.

Table 5-1. Recommended Test Equipment.

Instrument Type	Required Performance	Recommended Model
AC Voltmeter	Frequency Range: 10 kHz to 1 MHz Voltage Range: 1 mV to 1 V Accuracy: 1% at 200 kHz.	HP 400E
RF Voltmeter	Frequency Range: 500 kHz to 100 MHz Voltage Range: 10 mV to 1 V Frequency Flatness: $\pm 1 \%$	HP 3406A (with known frequency flatness)
Digital Voltmeter	Voltage Range: 0.1 V to 100 V dc DC Voltage Accuracy: 0.1% of reading AC Frequency Range: $\leq 100 \mathrm{kHz}$ AC Voltage Accuracy: 1% of reading	HP 3456A
Frequency Counter	Frequency Range: 10 kHz to 80 MHz Sensitivity: 50 mV	HP 5381A
Test Oscillator	Frequency Range: 10 kHz to 100 kHz Output Voltage: 1.0 V max. Distortion: less than 1%.	HP 651B
RF Oscillator	Frequency Range: 100 kHz to 70 MHz Output: l.0V max.	HP 8601A
Oscilloscope	Bandwidth: 50 MHz Sensitivity: $5 \mathrm{mV} / \mathrm{cm}$ Input Impedance: $1 \mathrm{M} \Omega$	HP 180C with 1801 A and 1821A Plug-ins
Impedance Meter	Frequency: 100 kHz Full Scale Range: 500 pF Accuracy: 0.3%	HP 4192A
Reference Inductor	Frequency Range: 110 kHz to 300 kHz Q: higher than 100	HP 16475A
50Ω Resistor	Metal Film 0.5\% 1/4W	HP P/N 0698-5965

SECTION V
 MAINTENANCE

5-1. INTRODUCTION.

5-2. This section provides the instructions and information required to maintain the HP Model 4342A Q Meter. Included are Performance Checks, Adjustment and Calibration Procedures, Servicing and Troubleshooting guides.

5-3. TEST EQUIPMENT REQUIRED.

5-4. The equipment required to maintain the Model 4342A are listed in Table 5-1. The table lists the type of equipment to be used, the performance requirements and recommended model. If the recommended model is not available, equipment which meets or exceeds the critical performance may be substituted.

5-5. Q ACCURACY CONSIDERATIONS.

5-6. A Q Meter theoretically measures the comprehensive Q of a circuit. In practice, residual circuit paramcters, which do not exist in ideal circuits, contribute to measured Q values. Insertion resistance, residual inductance in series with the COIL terminals,

Table 5-2. Q Correlation Factors.

Q Standard	Frequency	Correlation Factor*
518-A5	50 kHz	1.04
	100 kHz	1.07
	150 kHz	1.13
518-A4	150 kHz	1.05
	300 kHz	1.08
	450 kHz	1.12
513-A	500 kHz	1.01
	1 MHz	1.04
	1.5 MHz	1.12
518-A3	1.5 MHz	1.05
	3 MHz	1.03
	4.5 MHz	1.05
518-A2	5 MHz	1.07
	10 MHz	1.09
	15 MHz	1.23
518-A1	15 MHz	1.27
	30 MHz	1.17
	45 MHz	1.37

[^1]Q voltmeter input conductance, and tuning capacitor loss are some of the factors that contribute to measurement errors in the practical measurement of Q in a typical circuit.

These errors can be minimized by the use of a low output impedance injection transformer system, a low loss tuning capacitor, and a Q voltmeter which has a low input conductance, as in the Model 4342A. Consequently, the 4342A will indicate higher Q values than other currently available Q meters.

By assuming that no internal circuit loss exists in the Q Meter, the specified Q accuracy can be guaranteed by performing the adjustment and calibration procedures in this section. If a Q calibration, which takes the actual internal loss of the instrument into account is required, a Q value reading check with Q standards (inductors) should be done in addition to the adjustment and calibration procedures described in paragraphs 5-9 and those which follow.

At the present time, no Q standards are available for users, thus a Q accuracy check with Q standards can not be performed at the facility where the instrument is used. Since, Howlett-Packard, however, maintains Q standards traceable to NBS (National Bureau of Standards) in its major service offices, a calibration service with authorized Q standards for the 4342A is always available. If a Q accuracy check is needed, contact your nearest HewlettPackard office. If HP Models 513A/518A Q standards are owned and maintained, a Q accuracy check for the 4342 A can be done at the user's location. Refer to Table 5-2 for Q Correction Factors.

5-7. OPTION.
5-8. The calibration and adjustment procedures for Option 001 instruments (that differ from the standard Model 4342A) are provided in paragraphs $5-25$ and below.

Table 5-3 and Figure 5-1
Table 5-3. Frequency Accuracy Check.

Frequency Range	Frequency Dial Setting	Measured Accuracy	Counter Reading
22k - 70k	$\begin{gathered} 2.2 \\ \mathrm{~L} \\ 5.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & \pm 1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 21.670-22.330 \mathrm{kHz} \\ & 24.922-25.424 \mathrm{kHz} \\ & 49.250-50.750 \mathrm{kHz} \\ & 68.950-71.050 \mathrm{kHz} \end{aligned}$
70k - 220 k	$\begin{gathered} 7.0 \\ \mathrm{~L} \\ 15 \\ 22 \end{gathered}$	$\begin{aligned} & \pm 1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 68.950-71.050 \mathrm{kHz} \\ & 78.822-80.413 \mathrm{kHz} \\ & 147.75-152.25 \mathrm{kHz} \\ & 216.70-223.30 \mathrm{kHz} \end{aligned}$
220k - 700k	$\begin{gathered} 2.2 \\ \mathrm{~L} \\ 5.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & +1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 216.70-223.30 \mathrm{kHz} \\ & 249.22-254.24 \mathrm{kHz} \\ & 492.50-507.50 \mathrm{kHz} \\ & 689.50-710.50 \mathrm{kHz} \end{aligned}$
700k-2.2M	$\begin{gathered} 7.0 \\ \mathrm{~L} \\ 15 \\ 22 \end{gathered}$	$\begin{aligned} & \pm 1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 689.50-710.50 \mathrm{kHz} \\ & 788.22-804.13 \mathrm{kHz} \\ & 1477.5-1522.5 \mathrm{kHz} \\ & 2167.0-2233.0 \mathrm{kHz} \end{aligned}$
2. $2 \mathrm{M}-7 \mathrm{M}$	$\begin{gathered} 2.2 \\ \mathrm{~L} \\ 5.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & \pm 1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 2167.0-2233.0 \mathrm{kHz} \\ & 2492.2-2542.4 \mathrm{kHz} \\ & 4925.0-5075.0 \mathrm{kHz} \\ & 6895.0-7105.0 \mathrm{kHz} \end{aligned}$
7M-22M	$\begin{gathered} 7.0 \\ \mathrm{~L} \\ 15 \\ 22 \end{gathered}$	$\begin{aligned} & \pm 1.5 \% \\ & \pm 1.0 \% \\ & \pm 1.5 \% \\ & \pm 1.5 \% \end{aligned}$	$\begin{aligned} & 6895.0-7105.0 \mathrm{kHz} \\ & 7882.2-8041.3 \mathrm{kHz} \\ & 14.775-15.225 \mathrm{MHz} \\ & 21.670-22.330 \mathrm{MHz} \end{aligned}$
22M-70M	$\begin{gathered} 2.2 \\ L \\ 5.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & \pm 2.0 \% \\ & \pm 1.0 \% \\ & \pm 2.0 \% \\ & \pm 2.0 \% \end{aligned}$	$\begin{aligned} & 21.560-22.440 \mathrm{MHz} \\ & 24.922-25.424 \mathrm{MHz} \\ & 49.000-51.000 \mathrm{MHz} \\ & 68.600-71.400 \mathrm{MHz} \end{aligned}$

Figure 5-1. Q Range Check.

5-9. PERFORMANCE CHECKS.

5-10. The Performance Checks compare the 4342A instrument with its specifications. These checks are used in incoming inspection, periodic maintenance, and after a repair. Before beginning the Performance Checks, do mechanical and electrical meter zero adjustments using the procedure in Figure 3-6.

5-11. FREQUENCY ACCURACY CHECK.

An electronic frequency counter is required for this check.
a. Connect frequency counter to 4342 A rear panel FREQUENCY MONITOR connector.
b. Set 4342A controls as follows:

FREQUENCY RANGE 22k to 70k FREQUENCY dial 2.2 Other controls any settings
c. Frequency counter reading should be within $21,678 \mathrm{kHz}$ to $22,320 \mathrm{kHz}$.
d. Check frequency at each frequency setting in accord with Table 5-3. Counter readings should be within the tolcrance limits given in Table 5-3.
5-12. Q RANGE CHECK.
An AC Voltmeter and a Digital Voltmetcr are required for this check.
a. Connect an AC Voltmeter to 4342A LO and GND terminals as shown in Figure 5-1. Connect Digital Voltmeter to AC Voltmeter dc output terminals.
b. Set 4342A controls as follows:

```
FREQUENCY RANGE ....... 70k - 220k
```

FREQUENCY dial 20
Q RANGE 30
Q LIMIT CW
L/C dial $25(\mathrm{pF})$
ΔC dial 0
c. Set $A C$ Voltmeter range to 30 mV and Digital Voltmeter to 1 V . Digital Voltmeter reading should be between 920.6 and 977.4 mV .
d. Set Q RANGE and $A C$ Voltmeter range in accord with Table 5-4. Digital Voltmeter reading should be within the tolerance limits given in Table 5-4.

Table 5-4. Q Range Check.

Q Range	AC Voltmeter Range	Digital Voltmeter Reading
30	30 mV	$920.6-977.4 \mathrm{mV}$
100	10 mV	$873.0-927.0 \mathrm{mV}$
300	3 mV	$920.6-977.4 \mathrm{mV}$
1000	1 mV	$873.0-927.0 \mathrm{mV}$

Figure 5-2. $\triangle Q$ Range Check.

5-13. $\triangle Q$ RANGE CHECK.

An AC Voltmeter, a Digital Voltmeter, and a Reference Inductor are required for this check.
a. Connect the AC Voltmeter to 4342A HI and GND terminals and place the Reference Inductor in the HI and LO terminals as shown in Figure 5-2. Monitor DC voltage at AC Voltmeter dc output terminals with Digital Voltmeter.
b. Set 4342A controls as follows:

FREQUENCY RANGE 70k - 220k
FREQUENCY dial 20
Q RANGE . 100
Q LIMIT CW
L/C dial $25(\mathrm{pF})$
ΔC dial 0
c. Set $A C$ Voltmeter range to $1 V$.
d. Adjust L / C dial so that 4342 A meter pointer indicates 100 (need not indicate a peak value). Adjust to exactly 100 with the $\triangle C$ dial.
e. Digital Voltmeter reading should be within 873 mV to 927 mV .
f. Adjust L / C dial for 900.0 mV on Digital Voltmeter display. Use ΔC dial for accurate adjustment.
g. Set $Q / \triangle Q$ RNNGE to $\triangle Q 10$ and adjust $\triangle Q$ ZERO control (coarse and fine) so that Q meter indicates 0 (full scale) on ΔQ scale.
h. Adjust $\triangle C$ dial so that Q meter indicates 10 on ΔQ scale and note Digital Voltmeter reading. It should be within 801.9 mV to 818.1 mV .

5-14. CAPACITANCE ACCURACY CHECK.

An Impedance Meter is required for this check.
a. Connect Impedance Meter to 4342A HI and GND terminals as shown in Figure 5-3.

Note

When the Model 4192 A is used for this check, set panel controls as follows:

```
DISPLAY A ............................C
ZY RANGE ......................... AUTO
CIRCUIT MODE ................... AUTO
FREQUENCY ................... 100kHz
OSC LEVEL . . . . . . . . . . . . . . . . . . . . 1V
CABLE LENGTH . . . . . . . . . . . . . . . . 1m
```


Top View

Bottom View

Figure 5-4. Model 4342A Adjustment Locations.
b. Set 4342 A controls as follows:

L/C dial 25 (pF)
$\Delta \mathrm{C}$ dial 0 Other controls any settings
c. Capacitance Bridge reading should be between 23.9 and 26.1 pF .
d. Check capacitance on each L/C dial and ΔC dial setting in accord with Table 5-5. Capacitance Bridge readings should be within the specified tolerance limits given in Table 5-5.

Table 5-5. Capacitance Accuracy Check.

C Dial	$\Delta \mathrm{C}$ Dial	C-Bridge Reading
25	0	$23.9-26.1$
25	-5	$(0 \text { Reading })^{*}-5 \pm 0.1$
25	+5	$(0 \text { Reading })^{*}+5 \pm 0.1$
100	0	$98.9-101.1$
200	0	$197.9-202.1$
300	0	$296.9-303.1$
400	0	$395.9-404.1$
470	0	$465.2-474.8$
470	+5	$(0 \text { Reading })^{*}+5 \pm 0.1$

* Note: 0 Reading is the readout on the Capacitance Bridge when $\triangle C$ Dial is set to 0 .

5-15. Q LIMIT OPERATION CHECK.

A Reference Inductor is required for this check.
a. Connect a Reference Tnductor to 4342 A HI and LO terminals.
b. Set 4342A controls as follows:

FREQUENCY RANGE 70k - 220k
FREQUENCY dial 20
Q RANGE 100 Q LIMIT CW L/C dial $25(p F)$ $\Delta \mathrm{C}$ dial 0
c. Set OVER LIMIT DISPLAY TIME switch on 4342 A rear panel to $\boldsymbol{\infty}$ position.
d. Rotate L / C dial until Q meter pointer deflection exceeds full scale and scales out.
e. Set Q LIMIT control dial to 60. OVER LIMIT lamp should light.
f. Adjust L / C dial so that Q meter pointer indicates approximately 50. OVER LIMIT lamp should be extinguished.
g. Rotate L / C dial so that Q meter indication increases slowly as it approaches 60. The OVER LTMIT lamp should light at or near a Q meter indication of 60 .

Top View

Bottom View

Table 5-6. Adjustable Components.

Reference Designator	Name of Control	Purpose
$\begin{aligned} & \mathrm{AlAlC1},-\mathrm{C} 3 \\ &-\mathrm{C} 5,-\mathrm{C} 7, \\ &-\mathrm{C} 9,-\mathrm{C} 11, \\ &-\mathrm{C} 13 \end{aligned}$	FREQ. ADJ C	To adjust oscillator frequency of upper range limits of individual frequency ranges to maximize frequency accuracies.
A1A1L1 thru A1A1L7	FREQ. ADJ L	To adjust oscillator frequency of lower range limits of individual frequency ranges to maximize frequency accuracies.
A5C16	HIGH FREQ. ADJ	To adjust Q meter sensitivity in high frequency (70 MHz) region to obtain optimum frequency flatness.
A5R32	MED FREQ. ADJ	To adjust Q meter sensitivity in high frequency (20 MHz) region to obtain optimum frequency flatness.
A5R43	LINEARITY ADJ	To adjust Q meter linearity to maximize measurement accuracy.
A6R2	X1 GAIN	To set Q meter full scale sensitivity to maximize measurement accuracy.
A6R4	REC BAL	To set Q ANALOG OUTPUT de voltage at rear panel to zero volts at Q meter zero scale deflection.
A6R6	REC GAIN	To set Q ANALOG OUTPUT de voltage at rear panel (to 1 volt) at Q meter full scale deflection.
A6R21	X10 GAIN	To adjust $\triangle Q$ measurement full scale sensitivity to maximize ΔQ measurement accuracy.
A7R3	Q-PRESET	To properly set Q limit selector sensitivity at Q I.TMIT dial full scale setting to maximize the dial scale accuracy.
A7R7	Q-PRESET VERNIER	To properly set Q limit selector sensitivity at Q LIMIT dial center scale setting to maximize the dial scale accuracy.
$\begin{array}{r} \text { A8R12 } \\ \text {-R21 } \end{array}$	$\begin{aligned} & +25 \mathrm{~V} \text { ADJ } \\ & -25 \mathrm{~V} \text { ADJ } \end{aligned}$	To set +25 V and -25 V output voltages of de power supply.
A8R26	OSC LEVEL	To adjust oscillator output voltage to maximize measurement accuracy.

5-16. ADJUSTMENT AND CALIBRATION PROCEDURES.

5-17. These paragraphs describe complete adjustment and calibration procedures for the Model 4342A. The procedures should be performed when any performance test fails or when it is known that the instrument does not meet the specifications or may be necessary after certain repairs. Table 5-6 is a summary of the purpose of each adjustment and its effect on instrument performance. Adjustment and assembly locations are shown in Figure 5-4 and 5-5, respectively.

WARNING

ADJUSTMENTS DESCRIBED IN THIS SEC-
TION ARE ALLOWED FOR QUALIFIED TECHNICAL PERSONNEL ONLY.

WARNING
ADJUSTMENTS DESCRIBED HEREIN ARE PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT AFTER PROTECTIVE COVERS HAVE BEEN REMOVED. FNERGY EXISTING AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.

Preparatory to beginning adjustments, remove top cover by removing the four retaining screws near side frames (both sides). Remove bottom cover with similar procedure.

5-18. POWER SUPPLY ADJUSTMENT.

A DC Voltmeter (or a DMM) is required for this adjustment.
a. Turn 4342A power off. Take out A8 Power Supply Assembly. Reinstall it with an extender board.
b. Turn instrument on. Connect DC Voltmeter plus input lead to plus terminal of capacitor A 8 C 3 and minus input lead of voltmeter to chassis.
c. Adjust A8R12 (+25V ADJ) for a reading of $+25 \pm 0.025 \mathrm{~V}$ on DC Voltmeter.
d. Connect DC Voltmeter minus input lead to minus terminal of capacitor A8C6 and plus input lead of voltmeter to chassis.
e. Adjust A8R21 (-25V ADJ) for a reading of $-25 \mathrm{~V} \pm 0.025 \mathrm{~V}$ on DC Voltmeter.

Note

Voltage ripple should be less than 0.35 mVrms for both +25 V and -25 V power supplies.

5-19. OSCILLATOR LEVEL ADJUSTMENT.

An AC Voltmeter and a Digital Voltmeter are required for this adjustment.
a. Connect AC Voltmeter to 4342A LO and GND terminals as shown in Figure 5-1. Monitor de voltage at $A C$ Voltmater dc output terminals with Digital Voltmeter.
b. Set 4342A controls as follows:
FREQUENCY RANGE 22k - 70k FREQUENCY dial 5.0 Q RANGE 30 Q LIMIT CW L/C dial $25(\mathrm{pF})$ $\Delta \mathrm{C}$ dial 0
c. Set $A C$ Voltmeter range to 30 mV and Digital Voltmeter range to 1 V .
d. Adjust A8R26 (OSC LEVEL adj.) for $949.0 \mathrm{mV} \pm 5 \mathrm{mV}$ on Digital Voltmeter display.

5-20. OSCILLATOR FREQUENCY ADJUSTMENT.

A Frequency Counter is required for this adjustment.
a. Connect a frequency counter to 4342A rear panel FREQUENCY MONITOR connector.
b. Set 4342A controls as follows:

FREQUENCY RANGE 22k - 70k
FREQUENCY dial 2.2
Other controls any settings
c. Remove instrument bottom cover and oscillator shicld cover labeled with names of FREQ AD. J potentiometers and trimmer capacitors.
d. Loosen all oscillator coil locking nuts. Replace oscillator shield cover.
e. Adjust A1A1L1 (see Figure 5-5, instrument bottom view) for 22.000 kHz $\pm 0.330 \mathrm{kHz}$ on frequency counter display.
f. Set FREQUENCY dial to 7.0 .
g. Adjust A 1 AlCl for $70.000 \mathrm{kHz} \pm 1.050 \mathrm{kHz}$ on frequency counter display.
h. Set FREQUENCY dia1 to "L" point.
i. Frequency counter reading should be within 24.922 kHz to 25.420 kHz . If not, repeat steps b through g.
j. Check dial tracking throughout the $22-70 \mathrm{kHz}$ frequency range. A compromise adjustment may improve tracking. Compare with Table 5-3.
k. Set FREQUENCY RANGE and FREQUENCY dial in accord with Table 5-7 and adjust each individual adjustment control (A1A1L2 through L7, C3, C5, C7, C9, C11 and C13) for correct frequency
with procedures similar to steps b through j.

1. Remove oscillator shield cover and carefully tighten all oscillator coil locking nuts. Take care that potentiometer does not rotate with nut. Replace oscillator cover.
m. Recheck instrument against Table 5-7.

5-21. Q VOLTMETER ADJUSTMENT.

A Test Oscillator and a Digital Volemeter are required for this adjustment.

Note

Before proceeding with this adjustment, check meter mechanical and electrical zero using the procedure given in Figure 3-6.

1) Xl Gain and meter linearity adjustments.
a. Connect the Test Oscillator and the Digital Volemeter to 4342A as shown in Figure 5-6.

Table 5-7. Frequency Adjustment.

Frequency Range	Frequency Dial Setting	Measured Frequency	Adjustment
$22 \mathrm{k}-70 \mathrm{k}$	2.2	$22.000 \pm 0.330 \mathrm{kHz}$	A1A1L1
	7.0	$70.000 \pm 1.050 \mathrm{kHz}$	A1A1C1

b. Set 4342A controls as follows:

FREQUENCY RANGE 22k - 70k FREQUENCY dial 2.2 L/C dial 25 (pF) ΔC dial -5
c. Set the Test Oscillator frequency to 100 kHz and adjust the signal level until the Digital Voltmeter reads 900.0 mV .
d. Adjust A6R2 (Xl GAIN adj.) for full scale Q meter reading.
e. Adjust the Test Oscillator's signal level until the DVM reads 450.0 mV .
f. Q meter should indicate exactly $1 / 2$ full scale. If Q meter deflection is insufficient, rotate A5R43 (LINEARITY ADJ) CCW until meter reads correctly. If deflection is excessive, rotate A5R43 slightly CW.
g. Repeat steps c through f until meter indicates $1 / 2$ full scale within $\pm 0.5 / 100$ full scale ($1 / 2$ minor division) in step f.
h. Adjust the Test Oscillator's signal level until the DVM reads 300.0 mV .
i. Q meter should indicate within $1 / 3$ full scale $\pm 1 / 100$ of full scale (1 minor division). If not, repeat steps c through f.
2) X10 GAIN adjustment.
j. Adjust the Test Oscillator's signal level until the DVM reads 810.0 mV .
k. Depress 4342A ΔQ button and set ΔQ RANGE to 10 .

1. Adjust $\triangle Q$ ZERO control for 10 (zero scale deflection) on $\triangle Q$ scale.
m. Adjust the Test Oscillator's signal level until the DVM reads 900.0 mV .
n. Q meter should indicate 0 (full scale) on ΔQ scale. If Q meter reading is not zero, adjust A6R21 (X10 GAIN adj.) for correct reading. Repeat steps j through n because both adjustments interact.

5-22. Q ANALOG OUTPUT ADJUSTMENT.

A Test Oscillator and a Digital Voltmeter are required for this adjustment.
a. Set 4342 A controls as folluws:

```
Q RANGE
. . . . . . . . . . . . . . . . . . . . . . 30
``` other controls ....... any settings
b. Connect Digital Voltmeter to 4342A rear pane 1 Q ANALOG OUTPUT connector.
c. Adjust A6R4 (REC BAL adj.) for OV \(\pm 0.01 \mathrm{~V}\) on Digital Voltmeter display.

TEST OSCILLATOR

d. Connect the Test Oscillator to the 4342A as shown in Figure 5-6.
e. Set the Test Oscillator frequency to 100 kHz and output for full scale reading (approx. 900 mVrms) on 4342 A Q meter.
f. Adjust A6R6 (REC GAIN adj.) for IV \(\pm 0.01 \mathrm{~V}\) on Digital Voltmeter display.
g. Repeat steps \(c\) through \(f\) becausc both adjustments interact.

\section*{5-23. FREQUENCY RESPONSE ADJUSTMENT.}

An RF Oscillator and an RF Voltmeter (with known frequency flatness) are required for this adjustment.
a. Connect RF Oscillator and RF Voltmeter as shown in Figure 5-7.
b. Set \(4342 \mathrm{~A} C\) and \(\Delta \mathrm{C}\) dials to minimum.
c. Set RF Oscillator frequency to 10 MHz and its output for full scale meter deflection (approx. 900 mVrms) on 4342 A Q meter.
d. Note RF Voltmeter reading.
e. Set RF Oscillator frequency to 20 MHz and its output for the same RF Voltmeter reading as that noted in step \(d\).
f. Adjust A5R32 (MED. FREQ. ADJ) for full scale reading on 4342A Q meter.
g. Set RF Oscillator frequency to 70 MHz and its output for the same RF Voltmeter reading as that noted in step \(d\).
h. Adjust A5Cl6 (HIGH FREQ. ADJ) for full scale reading on 4342A Q meter.
i. Repeat steps \(c\) through \(h\) until both difference (from full scale) \(Q\) meter readings obtained in steps \(f\) and \(h\) are within \(\pm 2 \%\) of full scale.

5-24. Q LIMIT SELECTOR ADJUSTMENT.
An RF Oscillator is required for this adjustment.
a. Set 4342A rear panel OVER LIMIT DISPLAY TIME switch to \(\infty\) position.
b. Connect RF Oscillator between HI and GND terminals.
c. Set 4342 A Q LIMIT control to 100 .
d. Set RF Oscillator to desired frequency (100 kHz to 1 MHz) and adjust its output for full scale reading on \(4342 \mathrm{~A} Q\) meter.
e. Rotate A7R3 (Q-PRESET adj.) CCW until front panel OVER LIMIT indicator lights.

f. Rotate A7R3 very slowly CW until OVER LIMIT indicator is extinguished.
g. Set Q LIMIT control to 50. OVER LIMIT indicator should light.
h. Decrease RF Oscillator output level and note 4342 A Q meter reading at which OVER LIMIT indicator just extinguishes. \(Q\) Meter reading should be approx. \(1 / 2\) full scale (\(50 \pm 5\) divisions on meter top scale).
i. If \(Q\) Meter reading is low, rotate A7R7 (Q-PRESET VERNIER) slightly CW and repeat steps \(c\) through \(h\).
j. If Q Meter reading is high, rotate A7R7 slightly CCW and repeat steps \(c\) through h.

5-25. OPTION 001 MAINTENANCE INSTRUCTIONS.
5-26. This paragraph and those below describe the changes necessary for applying the Performance Checks and Adjustment and Calibration Procedures in this section (V) to Option 001 instruments.

5-27. OPTION 001 PERFORMANCE CHECKS.
5-28. To apply the Performance Check procedure in paragraphs 5-9 and below to option 001 instruments, make the following changes in standard procedures:
a. Para. 5-11 b. Change the FREQUENCY RANGE and FREQUENCY dial settings to \(10 \mathrm{k}-32 \mathrm{k}\) and 1.0 , respectively.

Para. 5-11 c. Change the upper and

Tablc 5-8. Frequency Accuracy Check (Option 001).
\begin{tabular}{|c|c|c|c|}
\hline Frequency Range & Frequency Dial Setting & Specified Accuracy & Counter Reading \\
\hline 10k-32k & \[
\begin{gathered}
1.0 \\
1.5 \\
\mathrm{~L} \\
3.2
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \%
\end{aligned}
\] & \[
\begin{aligned}
& 9.8500-10.150 \mathrm{kHz} \\
& 14.775-15.225 \mathrm{kHz} \\
& 24.922-25.424 \mathrm{kHz} \\
& 31.520-32.480 \mathrm{kHz}
\end{aligned}
\] \\
\hline 32k-100k & \[
\begin{gathered}
3.2 \\
5.0 \\
\mathrm{~L} \\
10
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \%
\end{aligned}
\] & \[
\begin{aligned}
& 31.520-32.480 \mathrm{kHz} \\
& 49.250-50.750 \mathrm{kHz} \\
& 78.822-80.413 \mathrm{kHz} \\
& 98.500-101.50 \mathrm{kHz}
\end{aligned}
\] \\
\hline 100k-320k & \[
\begin{gathered}
1.0 \\
1.5 \\
\mathrm{~L} \\
3.2 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \%
\end{aligned}
\] & \[
\begin{aligned}
& 98.500-101.50 \mathrm{kHz} \\
& 147.75-152.25 \mathrm{kHz} \\
& 249.22-254.24 \mathrm{kHz} \\
& 315.20-324.80 \mathrm{kHz} \\
& \hline
\end{aligned}
\] \\
\hline 320k-1M & \[
\begin{gathered}
3.2 \\
5.0 \\
\text { L } \\
10
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \%
\end{aligned}
\] & \[
\begin{aligned}
& 315.20-324.80 \mathrm{kHz} \\
& 492.50-507.50 \mathrm{kHz} \\
& 788.22-804.13 \mathrm{kHz} \\
& 985.00-1015.0 \mathrm{kHz} \\
& \hline
\end{aligned}
\] \\
\hline 1M-3.2M & \[
\begin{gathered}
1.0 \\
1.5 \\
\mathrm{~L} \\
3.2 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \% \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 985.00-1015.0 \mathrm{kHz} \\
& 1477.5-1522.5 \mathrm{kHz} \\
& 2492.2-2542.4 \mathrm{kHz} \\
& 3152.0-3248.0 \mathrm{kHz}
\end{aligned}
\] \\
\hline 3. \(2 \mathrm{M}-10 \mathrm{M}\) & \[
\begin{gathered}
3.2 \\
5.0 \\
\mathrm{~L} \\
10
\end{gathered}
\] & \[
\begin{aligned}
& \pm 1.5 \% \\
& \pm 1.5 \% \\
& \pm 1.0 \% \\
& \pm 1.5 \% \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3152.0-3248.0 \mathrm{kHz} \\
& 4925.0-5075.0 \mathrm{kHz} \\
& 7882.2-8041.3 \mathrm{kHz} \\
& 9.8500-10.150 \mathrm{MHz}
\end{aligned}
\] \\
\hline 10M - 32M & \[
\begin{gathered}
1.0 \\
1.5 \\
\mathrm{~L} \\
3.2
\end{gathered}
\] & \[
\begin{aligned}
& \pm 2.0 \% \\
& \pm 2.0 \% \\
& \pm 1.0 \% \\
& \pm 2.0 \%
\end{aligned}
\] & \begin{tabular}{l}
\(9.8000-10.200 \mathrm{MHz}\) \\
14. \(700-15.300 \mathrm{MHz}\) \\
24. 922 - 25.424 MHz \\
\(31.360-32.640 \mathrm{MHz}\)
\end{tabular} \\
\hline
\end{tabular}
lower frequency limits to 9.850 kHz and 10.150 kHz , respectively.

Para. 5-11 d. Use Table 5-8 for option 001 instead of Table 5-3.
b. Para. 5-12 b, 5-13 b, and 5-15 b. Change FREQUENCY RANGE and FREQUENCY dial settings to \(100 \mathrm{k}-320 \mathrm{k}\) and 2.0 , respectively.

\section*{5-29. OPTION 001 CALIBRATION AND ADJUSTMENT PROCEDURES.}

5-30. To apply the Calibration and Adjustment Procedures in paragraphs 5-16 and those below to option 001 instruments, partially make the following changes in standard procedures:
a. Para. 5-19 b. Change the FREQUENCY RANGE and FREQUENCY dial settings to \(10 \mathrm{k}-32 \mathrm{k}\) and 2.0 , respectively.
b. Para. 5-20 b. Change the FREQUENCY RANGE and FREQUENCY dial settings to \(10 \mathrm{k}-32 \mathrm{k}\) and 1.0 , respectively.

Para. 5-20 e. Change frequency tolerance 1 imits to \(10.000 \mathrm{kHz} \pm 0.150 \mathrm{kHz}\).

Para. 5-20 f. Change FREQUENCY dial setting to 3.2 .

Para. 5-20 g. Change frequency tolerance limits to \(32.000 \mathrm{kHz} \pm 0.480 \mathrm{kHz}\).

Para. 5-20 j. Change frequency range to \(10-32 \mathrm{kHz}\) (from \(22-70 \mathrm{kHz}\)).

Para. 5-20k. Use Table 5-9 instead of Table 5-7.
c. Para. 5-21 b. Change FREQUENCY RANGE and FREQUENCY dial settings to 10 k 32 k and 1.0 , respectively.
d. Para. 5-23 g. Change RF Oscillator frequency setting to 32 MHz .

Table 5-9. Frequency Adjustment (Option 001).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Frequency \\
Range
\end{tabular} & \begin{tabular}{c}
Frequency \\
Dial Setting
\end{tabular} & \begin{tabular}{c}
Measured \\
Frequency
\end{tabular} & Adjustment \\
\hline \(10 \mathrm{k}-32 \mathrm{k}\) & 1.0 & \(10.000 \pm 0.150 \mathrm{kHz}\) & A1A1L1 \\
& 3.2 & \(32.000 \pm 0.480 \mathrm{kHz}\) & A1A1C1 \\
NONE
\end{tabular}

\section*{5-31. DIAL RE-STRINGING INSTRUCTIONS.}

5-32. This paragraph explains how to restring and set the dial drive strings which move FREQUENCY, L/C, and \(C\) dials which rotate the internal variable capacitors. To maintain dial scale accuracy and smooth dial operation, the dial string must be correctly wound on and attached to the drum scale pulley and dial or capacitor pulley and its tension set properly. If a dial string is off or loose, repair the string in accord with the following instructions which outline the procedures for correctly interlocking dial and capacitor.

5-33. For access to internal dial interlocking mechanism, remove control panel, top, bottom, and side covers, and side frames as follows:
a. Turn instrument off and remove power cord.
b. Unscrew the four retaining screws and remove top cover. Remove bottom cover with like procedure.
c. Remove the four retaining screws 10 cated at the left and right (top and bottom) sides of the control panel.
d. Lift control panel front edge up and remove the panel.
e. Remove both side panels by removing the four screws on each side.
f. Remove both side-casting-frames by removing the eight screws on each side.

\section*{5-34. FREQUENCY DIAL.}

The parts required for stringing frequecy dial are:
1) String I: HP Part No. 04342-8541
2) String II: IlP Part No. 04342-8542
3) Belt: HP Part No. 04342-1051
4) Screws (2): HP Part No. 0520-0127

Frequency dial re-stringing procedure is illustrated in Figure 5-8.

5-35. L/C DIAL.
To re-string tuning capacitor dial, the following parts are required:
1) String I: HP Part No. 04342-8541
2) String II: HP Part No. 04342-8544
3) Belt: HP Part No. 04342-1052
4) Screws (2): HP Part No. 0520-0127

I/C dial re-stringing procedure is illustratd in Figure 5-9.

5-36. \(\triangle C\) DIAL.
To re-string \(\triangle C\) dial, the following parts are required:
1) String I: HP Part No. 04342-8541
2) String II: HP Part No. 04342-8543
3) Belt: HP Part No. 04342-1053
4) Screws (2): HP Part No. 0520-0127
\(\Delta C\) dial re-stringing procedure is illustrated in Figure 5-10.

(1) Hook one end of the string (04342-8541, 620 mm length) to the free end of the spring on the Drum Scale Pulley.

(2) Make one looparound the Drum Scale Pulley with variable capacitor fully open (Frequency max readine).

(3) Pull the string to the Driving Knob Pulley and make one and a half loop around the Driving Knob Pulley.

(4) Pull the string to the Drum Seale Pulley proceed ing trom the bottom side and hook the string to the studon the Drum Scale Pulley using a solder ting ald.

(b) Make a half loop around the pulley, pull and hold the ather end of the belt onthe DrumScale Pulley, by a screw which should not be tightened.

Figure 5-9. Main C Dial Restringing.

 (\(04342-8543,200 \mathrm{~mm}\) length) to the free end of
the suring on the \(A\) C Capacitor Pulley andpull the spring on the \(A C\) Capacitor Pulley, andpull
the string around the \(A C\) pulley to the Drum the string a
Scale Pulley

(7) Make one and a half loop around the Drom Scale Pulley and hook the other end of the string to the screw usine a wire and solfering aid.

Figure 5-10. \(\Delta \mathrm{C}\) Dial Restringing.

\section*{5-37. TROUBLESHOOTING GUIDES.}

5-38. This paragraph and those below provide information helpful to isolating a faulty circuit in a defective unit and the appropriate remedy for the trouble. Component level troubleshooting procedures are provided in Figures 5-13 and 5-14 in the form of flow diagrams [however, for simple circuits composed of only a few (active) components, these figures treat the breakdown only to circuit block level and component level troubleshooting procedure is omitted]. Before proceeding with troubleshooting, verify whether any external factor relating to the instrument operating environment is contributing to the trouble symptoms. The following paragraphs outline some considerations for such external troubles:

\section*{5-39. High Frequency Line Noise.}

High frequency noise superposed on the AC power line may possibily cause an abnormal deflection of the \(Q\) meter regardless of the sample measured. If meter pointer shows almost the same deflection on any FREQUENCY and Q RANGE setting, check quality of operating power line. To isolate trouble, proceed as follows:
1) Operate the instrument from another ac power line and attempt measurement.
2) Securely ground the instrument chassis to earth.

If the symntom disappears or is different, use the same procedures on actual measurements or use a line filter in the power line.

\section*{5-40. Operating in a Strong Electromagnetic Field.}

When the instrument is operated in a strong RF electromagnetic field, two (or more) resonant frequency points are sometimes observed on the \(Q\) meter indication. This symptom arises from the fact that the Q measuring circuit resonates with the oscillator signal injected into the circuit and additinnally with the RF signal induced by the electromagnetic field as well. In practice, this trouble sometimes occurs when the instrument is located near a high power transmitting station (such as a broadcasting station). The metcr "truc" tuning deflection can be easily distinguished from the "false" behavior because the amplitude of any meter
deflection caused by such external electromagnetic field is irrespective of the \(Q\) range. One solution to this trouble is to enclose the instrument in a grounded wire net shield. Securely ground the instrument.

\section*{5-41. Operation in High Humidity Environment.}

The \(Q\) factor of a high \(Q\) inductor is generally sensitive to atmospheric humidity. Usually, ordinary high \(Q\) inductors tend to show a pronounced decrease in \(Q\) factor when they are located in a high humidity environment (more than \(80 \%\). If \(Q\) meter indicates a lower \(Q\) value (different from a nominal value of the sample), compare instrument reading by using a Q reference coil or a stable inductor (hermetically sealed).

\section*{5-42. ELEMENTARY TROUBLESHOOTING GUIDE.}

\section*{5-43. Meter Zeroing Troubles.}

If Q meter does not indicate zero after the instrument is turned on and if meter zero adjustment (Figure 3-6) is not successful, A6 DC Amplifier Assembly is probably faulty. Check differential meter amplifier (A6Q2, Q3, Q4 and Q5) and dc power supply voltages on the circuit board.

\section*{5-44. Incorrect Q Meter Indication.}

If indicated \(Q\) values of \(Q\) measurements are incorrect (compared with a known sample), the trouble is probably located in either the oscillator section or the \(Q\) voltmeter section. (If no deflection at all can be obtained, first check power supply voltages). To isolate the trouble, proceed as follows:
a. Connect a RF Voltmeter to 4342 A LO and GND terminals.
b. Set 4342 A Q RANGE to 30 .
c. Rotate FREQUENCY dial from lowest to highest frequency on each FREQUENCY RANGE setting and check RF voltmeter reading.
d. RF Voltmeter reading should be within \(30 \mathrm{mV} \pm 0.9 \mathrm{mVrms}\) at any frequency setting. If this check fails, troubleshoot oscillator section and follow Figure 5-12 Troubleshooting Tree. If OK, troubleshoot voltmeter section and follow Figure 5-13 Troubleshooting Tree.

\section*{5-45. Low Q indication in high frequency measurements.}

If the Q meter shows lower Q indication at higher frequencies (above approx. 10MIIz), it is conceivable that the symptom is being caused by a drop in \(Q\) of the tuning capacitor. The tuning capacitor has a spring contact brush for grounding the capacitor rotor plates with minimal residual impedance to maintain the inherent loss of the capacitor at minimum in the high frequency region. A contact brush in service for a long period may possibly cause an increase in contact resistance and resultant increase in capacitor loss. The remedy for this trouble is to clean the contact brush. Clean with a cloth moistened with alcohol. To take out the contact brush, proceed as follows:
a. Remove top cover.
b. Remove white plastic top plate on measurement terminal deck.
c. Unsolder center conductor (1) of coaxial module connected to A4 Impedance Converter (see Figure 5-11).
d. Remove nut (2) retaining the coaxial assembly module.
e. Remove the six terminal deck retaining screws (3).
f. Lift terminal deck up and out. The contact brush is located on bottom side of terminal deck.

\section*{5-46. Faulty Q Limit Operation.}

If 4342A operates normally in Q measurements but Q OVER LIMIT indication malfunctions, A7 Q Limit Selector assembly is probably faulty. If OVER LIMIT lamp does not light, first check lamp A10DS5.

Figure 5-11. Tuning Capacitor Disassembly (top view).

1V/div.
\(0.5 \mu \mathrm{~s} / \mathrm{div}\).

Figure A

\(0.5 \mathrm{~V} / \mathrm{div}\).

Is there no output or is there erratic output at LO and GND terminals
\(0.5 \mu \mathrm{~s} / \mathrm{div}\). on all FREQUENCY ranges and Q Ranges?

Figure B

\(0.5 \mathrm{~V} / \mathrm{div}\).
\(0.5 \mu \mathrm{~s} / \mathrm{div}\).

Figure C

Table 5-12.
TROUBLESHOOTING, OSCILLATOR SECTION
Monitor A4 output using VTVM.
Is reading should be within
\(1.60 \mathrm{Vrms} \pm 10 \%\) ?
- Check: A3 Q Range Attenuator.

Remove connection lead between XA8 PIN 15 and ground. Keep

Unsolder the wire from XA8 PIN S and connect a -23 V to -24 V dc variable power supply to the wire (Q1 Base) and GND. Observe A1 output waveform with oscilloscope. After adjustment of the variable power supply, can a distortionfree sine wave be seen on the oscilloscope?

A1 output at \(4 \mathrm{Vp}-\mathrm{p}\) and monitor DC voltage at XA8 PIN 15. Is voltmeter reading within \(-1.5 \mathrm{Vdc} \pm 10 \%\) ?

Monitor waveform at A1A1 Q3 Gate using oscilloscope. Is display as shown in Figure B?
Monitor DC voltage at XA8 PIN S. Is voltmeter reading \(-24 \mathrm{Vdc} \pm 5 \%\) ?

Check: A1A1 (S1 and, L and C) identified with the FREQUENCY RANGE.

Connect A8 PIN 15 to ground. Observe A1 output using oscilloscope. Is display as shown in Figure A at any FREQUENCY dial setting?

Check: A3 (C1 R1 and CR1 Frequer Response)

Does Q-meter indicate full scale (\(\pm 3 \%\)) over the frequency range (from 22 kHz to 70 MHz)?

Connect an oscillator or to HI and GROUND termi with a \(50 \Omega\) resistor) and 0.9 V rms (monitor with Set C and \(\Delta \mathrm{C}\) dials to mi

Observe waveform at A5Q9

Does Q-meter indicate full

a signal generator nals (terminated set its output to an RF Voltmeter). nimum.

YES Check; A5 Detector
NO Check: A5, RF Amplifier

Hewlett-Packard Model 4342A Q Meter Serial No. \(\qquad\)
Test Performed by \(\qquad\)
Date \(\qquad\)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{1'. FREQUENCY ACCURACY: OPTION 001 (Cont'd)} & Counter Reading \\
\hline \multirow{4}{*}{\[
\begin{gathered}
320 \mathrm{kIIz}-1.0 \mathrm{MHz} \\
\text { Range }
\end{gathered}
\]} & 320 kHz & \(315.20 \mathrm{kHz}<\longrightarrow\) < \(<324.80 \mathrm{kHz}\) \\
\hline & 500 kHz & \(492.50 \mathrm{kHz}<\square 507.50 \mathrm{kHz}\) \\
\hline & L & \(788.22 \mathrm{kHz}<\square<804.13 \mathrm{kHz}\) \\
\hline & 1. 0 MHz & \(985.00 \mathrm{kHz} \lll 1015.0 \mathrm{kHz}\) \\
\hline \multirow{4}{*}{\(1.0 \mathrm{MHz}-3.2 \mathrm{MHz}\) Range} & 1.0 MHz & \(985.00 \mathrm{kHz} \lll<1015.0 \mathrm{kHz}\) \\
\hline & 1.5 MHz & \(1477.5 \mathrm{kHz}<\square<1522.5 \mathrm{kHz}\) \\
\hline & L & \(2492.2 \mathrm{kHz}<\square<2542.4 \mathrm{kHz}\) \\
\hline & 3. 2 MHz & \(3152.0 \mathrm{kHz}<\longrightarrow<3248.0 \mathrm{kHz}\) \\
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
3.2 \mathrm{MHz}-10 \mathrm{MHz} \\
\text { Range }
\end{gathered}
\]} & 3. 2 MHz & \(3152.0 \mathrm{kHz}<\longrightarrow<3248.0 \mathrm{kHz}\) \\
\hline & 5.0 MHz & \(4925.0 \mathrm{kHz}<\square<5075.0 \mathrm{kHz}\) \\
\hline & \[
\begin{gathered}
\mathrm{L} \\
10 \mathrm{MHz}
\end{gathered}
\] & \\
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
10 \mathrm{MHz}-32 \mathrm{MHz} \\
\text { Range }
\end{gathered}
\]} & 10 MHz & \(9.8000 \mathrm{MHz}<\longrightarrow<10.200 \mathrm{MHz}\) \\
\hline & 15 MHz & 14.700 MHz \(<\) - < 15.300 MHz \\
\hline & & \(24.922 \mathrm{MHz}<\square<25.424 \mathrm{MHz}\) \\
\hline \multicolumn{2}{|l|}{2. Q Range} & Digital Voltmeter Reading \\
\hline \multirow{3}{*}{Q Range} & 30 & \multirow[t]{3}{*}{} \\
\hline & 100
300 & \\
\hline & 1000 & \\
\hline \multicolumn{2}{|l|}{3. \(\triangle Q\) RANGE} & Digital Voltmeter Reading \\
\hline Q Range \(\Delta\) Q Range & \[
\begin{array}{r}
100 \\
10
\end{array}
\] & \[
\begin{aligned}
& 873.0 \mathrm{mV}< \\
& 801.9 \mathrm{mV}
\end{aligned} \ll 927.0 \mathrm{mV}
\] \\
\hline \multicolumn{3}{|l|}{4. CAPACITANCE ACCURACY} \\
\hline C Dial & \(\Delta \mathrm{C}\) Dial & Capacitance Bridge Reading \\
\hline 25 pF & 0 & \multirow[t]{2}{*}{} \\
\hline 25 pF & \(-5 \mathrm{pF}\) & \\
\hline 25 pF & \({ }^{+5}{ }_{0} \mathrm{pF}\) & \\
\hline & 0 & \\
\hline 200 pF
300 pF & 0 & \[
\begin{aligned}
& 197.9 \mathrm{pF}< \\
& 296.9 \mathrm{pF}
\end{aligned} \ll \begin{aligned}
& 202.1 \mathrm{pF} \\
& 303.1 \mathrm{pF}
\end{aligned}
\] \\
\hline 400 pF & 0 & \[
395.9 \mathrm{pF}<\square<404.1 \mathrm{pF}
\] \\
\hline 470 pF & 0 & \multirow[b]{2}{*}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{470 pF}} & \\
\hline & & \begin{tabular}{l}
* Note: 0 Reading is the readout of the \\
Capacitance Bridge when C Dial is set to 0 .
\end{tabular} \\
\hline \multicolumn{2}{|l|}{5. Q OVER LIMIT OPERATION} & Over Limit Lamp \\
\hline Q Limit Setting Meter Indication & \[
\begin{array}{r}
60 \\
\quad 50 \\
>\quad 60
\end{array}
\] & \[
\begin{array}{ll}
\text { On } & \square \\
\text { Off } & \square \\
\text { On }
\end{array}
\] \\
\hline
\end{tabular}

\title{
SECTION VI \\ REPLACEABLE PARTS
}

\section*{6-1. INTRODUCTION}

6-2. This section contains information for ordering replacement parts. Table 6-2 lists parts in alphanumerical order of their reference designators and indicates the description (see Table 6-1 for abbreviations used) and HP part number of each part, together with any applicable notes.

6-3. Miscellaneous parts associated with each assembly are listed at the end of each assemblylisting. Others are listed at the end of Table 6-2.

6-4. Exploded views of major parts of the instrument are given in Figure 6-1 through 6-8 to aid in identifying mechanical parts. The parts in these figures are keyed to the mechanical parts index which are also included in each figure.

6-5. Replaceable PartLists for Option 001 are given in Appendix. Changes were made in Assembly A1A1 and Assembly A5 only.

\section*{6-6. ORDERING INFORMATION}

6-7. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett-Packard part numbers.

6-8. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number
c. Description of the part.
d. Function and location of the part.

Table 6-1. List of Reference Designators and Abbreviations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & REFERENCE DES & GNATORS & & & \\
\hline A = assembly & E & \(=\) misc electronic part & & & & \\
\hline \(\mathrm{B} \quad=\) motor & F & \[
=\text { fuse }
\] & \[
Q
\] & \(=\) transistor & & bulb, photocell, etc. \\
\hline BT \(=\) battery & FL & = filter & R & \(=\) resistor & VR & \(=\) voltage regulator \\
\hline C \(=\) capacitor & J & = jack & RT & \(=\) thermistor & W & \(=\) cable \\
\hline CP \(=\) coupler & K & = relay & S & \(=\) switch & \(X\) & \(=\) socket \\
\hline CR = diode & L & \(=\) inductor & T & \(=\) transformer & \(\mathbf{Y}\) & = crystal \\
\hline \(\mathrm{DL}=\) delay line & M & \(=\) meter & TB & \(=\) terminal board & & \\
\hline DS \(\quad=\) device signaling (lamp) & MP & = mechanical part & TP & \(=\) test point & & \\
\hline \multicolumn{7}{|c|}{ABBREVIATIONS} \\
\hline A \(\quad=\) amperes & H & \(=\) henries & NPN & \(=\) negative-positive- & RMS & \\
\hline A.F.C. \(=\) automatic frequency control & HEX & = hexagonal & & negative & RWV & \(=\) reverse working \\
\hline AMPL \(=\) amplifier & \[
\mathrm{HG}
\] & \(=\) mercury & NRFR & \(=\) not recommended for & & voltage \\
\hline B. F.O. \(=\) beat frequency oscillator & HR & \(=\) hour(s) & NSR & field replacement = not separately & S-B & = slow-blow \\
\hline BE CU
BH
B & & \(=\) intermediate freq
\(=\) impregnated & NSR & - \({ }^{\text {replaceable }}\) & SCR & = screw \\
\hline \(\begin{array}{ll}\mathrm{BH} & =\text { binder head } \\ \mathrm{BP} & =\text { bandpass }\end{array}\) & IMPG & \(=\) impregnated
\(=\) incandescent & & & SE & \(=\) selenium \\
\hline BRS = brass & INCL & \(=\) include(s) & OBD & \(=\) order by description & SEMICON & \(=\) =section(s) \\
\hline BWO = backward wave oscillator & INS & \(=\) insulation(ed) & OH & \(=\) oval head & SI & \(=\) silicon \\
\hline & INT & \(=\) internal & OX & \(=\) oxide & SIL & = silver \\
\hline CCW = counter-clackwise & K & \(=\) kilo \(=1000\) & & & SL & \(=\) slide \\
\hline \(\begin{aligned} \text { CER } & =\text { ceramic } \\ \text { CMO } & =\text { cabinet mount only }\end{aligned}\) & LH & \(=\) left hand & P & \(=\) peak & SPG
SPL & \(=\) spring
\(=\) special \\
\hline COEF \(=\) coefficient & LIN & \(=\) linear taper & PC & \(=\) printed circuit & SST & = stainless steel \\
\hline COM \(=\) common & LK WASH & = lock washer & PF & \(=\) picofarads \(=10\) & SR & \(=\) split ring \\
\hline COMP \(=\) composition & LOG & \(=\) logarithmic taper & & farads & STL & \[
=\text { steel }
\] \\
\hline COMPL \(=\) complete & LPF & \(=\) low pass filter & PH BRZ & \(=\) phosphor bronze & TA & = tantalum \\
\hline \(\begin{array}{ll}\text { CONN } & =\text { connector } \\ \text { CP } & =\text { cadmium plate }\end{array}\) & M & \(=\mathrm{milli}=10^{-3}\) & PHL & \(=\) Phillips & TD & = time delay \\
\hline CRT \(=\) cathode-ray tube & MEG & \(=\mathrm{meg}=10^{6}\) & PIV
PNP & \(=\) peak inverse voltage
\(=\) positive-negative- & TGL & \(=\) toggle \\
\hline CW \(=\) clockwise & MET FLM
MET OX & \(=\) metal flim & PNP & \(=\) positive-negative- & THD & \(=\) thread \\
\hline DEPC = deposited carbon & MET OX & \(=\) metallic oxide
\(=\) manufacturer & P/O & \(=\) part of & TI & \(=\) titanium
\(=\) tolerance \\
\hline DR = drive & MINAT & \(=\) miniature & POLY & = polystyrene & TRIM & \(=\) trimmer \\
\hline ELECT = electrolytic & MOM & \(=\) momentary & PORC
POS & \(=\) porcelain
\(=\) position(s) & TWT & \(=\) traveling wave tube \\
\hline ENCAP \(=\) encapsulated & MTG & = mounting & POT & \(=\) potentiometer & & \\
\hline EXT \(=\) external & MY & \(=\) "mylar" & PP & \(=\) peak-to-peak & U & \(=\) micro \(=10^{-6}\) \\
\hline \(\mathrm{F} \quad=\mathrm{farads}\) & N & \(=\) nano (\(10^{-8}\)) & PT & \(=\) point & VAR & \(=\) varlable \\
\hline FH \(=\) flat head & N/C & - normally closed & PWV & \(=\) peak working voltage & VDCW & \(=\mathrm{dc}\) working volts \\
\hline FIL H \(=\) fillister head & NE & \(=\) neon & & & W/ & \(=\) with \\
\hline FXD \(=\) fixed & NI PL & = nickel plate & RECT & \(=\) rectifier & W & \(=\) watts \\
\hline & N/O & = normally open & RF & \(=\) radio frequency & WTV & \(=\) working inverse \\
\hline GE = germanium & NPO & \(=\) negative positive zero & RH & \(=\) round head or & & voltage \\
\hline GL = glass & & (zero temperature & & right hand & Ww & \(=\) wirewound \\
\hline GRD = ground(ed) & & coeffictent) & RMO & \(=\) rack mount only & W/O & \(=\) without \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A1 & 04342-7020 & OSCILLATOR ASS' \({ }^{\text {Y }}\) & \\
\hline A1A1 & \[
\begin{aligned}
& 04342-7751 \\
& 04342-8751
\end{aligned}
\] & OSCILLATOR BOARD ASS' Y BOARD:BLANK PC & \\
\hline A1A1C1 & 0121-0236 & C:VAR CER CYLINDER 0.8-8.5pF & \\
\hline A1A1C2* & 0160-2248 & C:FXD CER 4. \(3 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C3 & 0121-0236 & C:VAR CER CYLINDER 0.8-8.5pF & \\
\hline A1A1C4* & 0150-2243 & C:FXD CER 2. \(7 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C5 & 0121-0236 & C:VAR CER CYLINDER \(0.8-8.5 \mathrm{pF}\) & \\
\hline A1A1C6* & 0160-2240 & C:FXD CER 2.0pF \(\pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C7 & 0121-0236 & C:VAR CER CYLINDER 0.8-8.5pF' & \\
\hline A1A1C8* & 0160-2247 & C:FXD CER 3.9pF \(\pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C9 & 0121-0236 & C:VAR CER CYLINDER 0.8-8.5pF & \\
\hline A1A1C10* & 0160-2253 & C:FXD CER 6. \(8 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C11 & 0121-0236 & C:VAR CER CYLINDER \(0.8-8.5 \mathrm{pF}\) & \\
\hline A1A1C12* & 0160-2256 & C:FXD CER \(9.1 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C13 & 0121-0236 & C:VAR CER CYLINDER 0.8-8.5pF & \\
\hline A1A1C14* & 0160-2241 & C:FXD CER 2. \(2 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline A1A1C15 & & NOT ASSIGNED & \\
\hline A1A1C16 & & NOT ASSIGNED & \\
\hline A1A1C17 & 0180-1743 & C:FXD TA \(0.1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C18 & 0160-2264 & C:FXD CER \(20 \mathrm{pF} 5 \% 500 \mathrm{VDCW}\) & \\
\hline A1A1C19 & 0160-0417 & C:FXD CER 150pF 10\% 500VDCW & \\
\hline A1A1C20 & 0121-0232 & C:VAR AIR 12-460pF & \\
\hline A1A1C21 & 0160-2238 & C:FXD CER 1.5pF 500VDCW & \\
\hline A1A1C22 & 0180-0291 & C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C23* & 0160-2251 & C:FXD CER 5.6pF 500VDCW & \\
\hline A1A1C24 & 0180-0116 & C:FXD TA 6. \(8 \mu \mathrm{~F}\) 10\% 35VDCW & \\
\hline A1A1C25 & & NOT ASSIGNED & \\
\hline A1A1C26 & 0180-0291 & C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C27 & 0180-0116 & C:FXD TA 6. \(8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C28 & 0160-2266 & C:FXD CER \(24 \mathrm{pF} 5 \% 500 \mathrm{VDCW}\) & \\
\hline A1A1C29 & 0160-2266 & C:FXD CER \(24 \mathrm{pF} 5 \% 500 \mathrm{VDCW}\) & \\
\hline A1A1C30 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C31 & 0150-0093 & C:FXD CER \(0.01 \mu \mathrm{~F}-20 \%+80 \% 100 \mathrm{VDCW}\) & \\
\hline A1A1L1 & 04342-8603 & COIL:VAR 39-58mH & \\
\hline A1A1L2 & 04342-8604 & COIL:VAR 9-14mH & \\
\hline A1A1L3 & 04342-8605 & COIL:VAR \(1-1.6 \mathrm{mH}\) & \\
\hline A1A1L4 & 04342-8606 & COIL:VAR \(102-150 \mu \mathrm{H}\) & \\
\hline A1A1L5 & 04342-8607 & COIL:VAR \(11-15 \mu \mathrm{H}\) & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A1A1L6 & 04342-8608 & COIL:VAR \(1-1.3 \mu \mathrm{H}\) & \\
\hline A1A1L7 & 04342-8609 & COIL:VAR 0. \(09-0.1 \mu \mathrm{H}\) & \\
\hline A1A1L8 & 9170-0029 & MAGNETIC CORE:BEAD FERRITE & \\
\hline A1A1L9 & 9170-0029 & MAGNETIC CORE : BEAD FERRITE & \\
\hline A1A1L10 & 9170-0029 & MAGNETIC CORE: BEAD FERRITE & \\
\hline A1A1Q1 & 1854-0071 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q2 & 1854-0092 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q3 & 1855-0022 & TRANSISTOR:FIELD EFFECT N-CHANNEL & \\
\hline A1A1Q4 & 1853-0034 & TRANSISTOR:PNP SILICON & \\
\hline A1A1Q5 & 1854-0019 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q6 & 1854-0019 & TRANSISTOR:NPN SILICON & \\
\hline A1A1R1* & 0757-1094 & R:FXD MET FLM \(1.47 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R2* & 0757-0417 & R:FXD MET FLM \(562 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R3* & 0757-0411 & R:FXD MET FLM \(332 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R4* & 0698-3488 & R:FXD MET FLM \(442 \Omega 1 \% 1 / 8 W\) & \\
\hline A1A1R5* & 0698-3446 & R:FXD MET FLM \(383 \Omega 1 \% 1 / 8 W\) & \\
\hline A1A1R6* & 0698-6324 & R:FXD MET FLM \(187 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R7* & 0698-3243 & R:FXD MET FLM \(178 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R8 & 0698-0085 & R:FXD MET FLM \(2.61 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R9 & 0698-3359 & R:FXD MET FLM \(12.7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R10 & 0757-0279 & R:FXD MET FLM \(3.16 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R11 & 0698-3156 & R:FXD MET FLM 14. \(7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R12 & 0683-2265 & R:FXD COMP \(22 \mathrm{M} \Omega 5 \% 1 / 4 \mathrm{~W}\) & \\
\hline A1A1R13 & 0757-0123 & R :FXD MET FLM \(34.8 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R14 & 0757-0442 & R:FXD MET FLM \(10 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R15 & 0698-3156 & R:FXD MET FLM 14.7k \(21 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R16 & 0698-3153 & R:FXD MET FLM \(3.83 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R17 & 0698-3151 & R:FXD MET FLM \(2.87 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R18 & 0698-4453 & R:FXD MET FLM \(402 \Omega 1 \% 1 / 8 W\) & \\
\hline A1A1R19 & 0698-4125 & R:FXD MET FLM \(953 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R20* & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 W\) & \\
\hline A1A1R21 & 0757-0821 & R:FXD MET FLM \(1.21 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A1A1R22 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\). & \\
\hline A1A1R23 & 0757-0453 & R:FXD MET FLM \(30.1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1S1 & 3101-0260 & SWITCH:PUSH BUTTON 7-RANGE & \\
\hline A1A1XA1A2 & 1251-0478 & CONNECTOR:PRINTED CIRCUIT 12-CONTACT & \\
\hline & \[
\begin{aligned}
& 04342-1026 \\
& 04342-3022
\end{aligned}
\] & \begin{tabular}{l}
MISCELLANEOUS \\
PLATE:ANGLE \\
NUT:HEX FOR FERRITE CORE 7 REQ'D
\end{tabular} & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & Part No. & Description & Note \\
\hline A1A2 & \[
\begin{aligned}
& 04342-7702 \\
& 04342-8702
\end{aligned}
\] & RF POWER AMPLIFIER ASS'Y BOARD:BLANK PC & \\
\hline A1A2C1 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A2C2 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A2C3 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A2C4 & 0180-0197 & C:FXD TA \(2.2 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A1A2C5 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A2C6 & 0160-2203 & C:FXD MICA \(91 \mathrm{pF} 5 \% 300 \mathrm{VDCW}\) & \\
\hline A1A2C7 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A2J1 & 1250-0257 & CONNECTOR:RF FEMALE & \\
\hline A1A2L1 & 9140-0158 & COIL:FXD RF \(1 \mu \mathrm{H} 10 \%\) & \\
\hline A1A2L2 & 9140-0098 & COIL:FXD RF \(2.2 \mu \mathrm{H} 10 \%\) & \\
\hline A1A2L3 & 9170-0029 & MAGNETIC CORE: BEAD FERRITE & \\
\hline A1A2L4 & 9170-0029 & MAGNETIC CORE:BEAD FERRITE & \\
\hline A1A2Q1 & 1854-0091 & TRANSISTOR:NPN SILICON & \\
\hline A1A2Q2 & 1854-0091 & TRANSISTOR:NPN SILICON & \\
\hline A1A2Q3 & 1854-0091 & TRANSISTOR:NPN SILICON & \\
\hline A1A2Q4 & 1854-0332 & TRANSISTOR:NPN SILICON & \\
\hline A1A2R1 & 0757-0395 & R:FXD MET FLM \(56.2 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R2 & 0698-0085 & R:FXD MET FLM \(2.61 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R3 & 0698-4422 & R:FXD MET FLM 1. \(27 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R4 & 0757-0424 & R:FXD MET FLM 1. \(1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R5 & 0757-0394 & R:FXD MET FLM \(51.1 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R6 & 0698-4418 & R:FXD MET FLM \(205 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R7 & 0757-0294 & R:FXD MET FLM \(17.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R8 & 0757-0294 & R:FXD MET FLM \(17.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R9 & 0698-3439 & R:FXD MET FLM \(178 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R10 & 0698-3438 & R:FXD MET FLM \(147 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R11 & 0698-3430 & R:FXD MET FLM \(21.5 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A2R12 & 0757-0159 & R:FXD MET FLM 1000 \(1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A1A2R13 & 0698-3628 & R:FXD MET OX \(220 \Omega 5 \% 2 \mathrm{~W}\) & \\
\hline & \[
\begin{aligned}
& 1205-0007 \\
& 1205-0008
\end{aligned}
\] & MISCELLANEOUS HEAT DISSIPATOR NUT HEAT DISSIPATOR BODY & \\
\hline A1A3 & 04342-8709 & BOARD :WIRING & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A3 & \[
\begin{aligned}
& 04342-7703 \\
& 04342-8703
\end{aligned}
\] & Q RANGE ATTENUATOR ASS'Y BOARD:BLANK PC & \\
\hline A3C1 & 0160-2145 & C:FXD CER \(0.005 \mu \mathrm{~F}-20 \%+80 \%\) & \\
\hline A3CR1 & 1901-0347 & SEMICON DEVICE:DIODE HOT CARRIER & \\
\hline \begin{tabular}{l}
A3J1 \\
A3J2 \\
A3J3 \\
A3J4 \\
A355
\end{tabular} & \[
\begin{aligned}
& 1250-0257 \\
& 1250-0257
\end{aligned}
\] & \begin{tabular}{l}
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED CONNECTOR:RF FEMALE CONNECTOR:RF FEMALE
\end{tabular} & \\
\hline \begin{tabular}{l}
A3R1 \\
A3R2 \\
A3R3 \\
A3R4
\end{tabular} & \[
\begin{aligned}
& 0757-0482 \\
& 0698-2041 \\
& 0698-2040 \\
& 0698-2041
\end{aligned}
\] & \begin{tabular}{l}
R:FXD MET FLM \(511 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) \\
R:FXD MET FLM \(10.4 \mathrm{~dB} \pm 0.1 \mathrm{~dB}\) \\
R:FXD MET FLM \(9.6 \mathrm{~dB} \pm 0.1 \mathrm{~dB}\) \\
R:FXD MET FLM 10. \(4 \mathrm{~dB} \pm 0.1 \mathrm{~dB}\)
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { A3S1 } \\
& \text { A3S2 }
\end{aligned}
\] & \[
\begin{aligned}
& 3101-0262 \\
& 3101-0261
\end{aligned}
\] & SWITCH:PUSH BUTTON 4-RANGE SWITCH:PUSH BUTTON 1-RANGE & \\
\hline & \[
\begin{aligned}
& 04342-1047 \\
& 04342-1055
\end{aligned}
\] & \begin{tabular}{l}
MISCELLANEOUS \\
PLATE:SHIELD MOUNTED ON PC BOARD BRACKET:SHIELD MOUNTED ON PC BOARD See Figure 6-3.
\end{tabular} & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A4 & \[
\begin{aligned}
& 04342-7704 \\
& 04342-8704
\end{aligned}
\] & IMPEDANCE CONVERTER ASS'Y BOARD•BLANK PC & \\
\hline \[
\begin{aligned}
& \mathrm{A} 4 \mathrm{C} 1 \\
& \mathrm{~A} 4 \mathrm{C} 2 \\
& \mathrm{~A} 4 \mathrm{C} 3
\end{aligned}
\] & \[
\begin{aligned}
& 0180-0291 \\
& 0150-0121 \\
& 0180-0228
\end{aligned}
\] & C:FXD TA \(1 \mu \mathrm{~F}+10 \% 35 \mathrm{VDCW}\) C:FXD CEK \(0.1 \mu \mathbf{F}-20 \%+80 \% 50 \mathrm{VDCW}\) C:FXD TA \(22 \mu \mathrm{~F} 10 \% 15 \mathrm{VDCW}\) & \\
\hline \begin{tabular}{l}
A4J1 \\
A4J2 \\
A4J3 \\
A4J4 \\
A4J5
\end{tabular} & & \begin{tabular}{l}
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED
\end{tabular} & \\
\hline A4J6 & 1250-0257 & CONNECTOR:RF FEMALE & \\
\hline \[
\begin{aligned}
& \text { A4L1 } \\
& \text { A4L2 }
\end{aligned}
\] & \[
\begin{aligned}
& 9170-0029 \\
& 9140-0098
\end{aligned}
\] & MAGNETIC CORE:BEAD FERRITE COIL:FXD RF \(2.2 \mu \mathrm{H} 10 \%\) & \\
\hline \[
\begin{aligned}
& \text { A4Q1 } \\
& \text { A4Q2 }
\end{aligned}
\] & \[
\begin{aligned}
& 1854-0091 \\
& 1854-0332
\end{aligned}
\] & TRANSISTOR:NPN SILICON TRANSISTOR:NPN SILICON & \\
\hline \begin{tabular}{l}
A4R1 \\
A4R2 \\
A4R3 \\
A4R4 \\
A4R5
\end{tabular} & \[
\begin{aligned}
& 0757-0395 \\
& 0757-0417 \\
& 0698-4431 \\
& 0757-0159 \\
& 0698-3628
\end{aligned}
\] & R:FXD MET FLM \(56.2 \Omega 1 \% 1 / 8 \mathrm{~W}\) R:FXD MET FLM \(562 \Omega 1 \% 1 / 8 W\) R:FXD MET FLM \(2.05 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) R:FXD MET OX \(220 \Omega 5 \% 2 W\) & \\
\hline & \[
\begin{aligned}
& 1205-0007 \\
& 1205-0008 \\
& 04342-1223
\end{aligned}
\] & \begin{tabular}{l}
MISCELLANEOUS \\
HEAT DISSIPATOR NUT 1 REQ'D HEAT DISSIPATOR BODY 1 REQ'D PLATE
\end{tabular} & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A5 & \[
\begin{aligned}
& 04342-7705 \\
& 04342-8705
\end{aligned}
\] & IMPEDANCE CONVERTER \& RF AMPLIFIER ASS' Y BOARD:BLANK PC & \\
\hline A5C1 & 0160-2244 & C:FXD CER \(3 \mathrm{pF} \pm 0.25 \mathrm{pF}\) & \\
\hline A5C2 & 0180-1735 & C:FXD TA \(0.22 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C3 & 0180-0376 & \(\mathrm{C}: \mathrm{FXD}\) TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C4 & 0160-2259 & C:FXD CER 12pF 5\% & \\
\hline A5C5 & 0180-1745 & C:FXD TA \(1.5 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A5C6 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C7 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C8 & 0160-0128 & C:FXD CER 2. \(2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C9 & 0160-0155 & C:FXD MY \(0.0033 \mu \mathrm{~F} 10 \% 200 \mathrm{VDCW}\) & \\
\hline A5C10 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C11 & 0160-0174 & C:FXD CER \(0.47 \mu \mathrm{~F}-20 \%+80 \% 25 \mathrm{VDCW}\) & \\
\hline A5C12 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C13 & 0140-0192 & C:FXD MICA 68pF \(5 \% 300 \mathrm{VDCW}\) & \\
\hline A5C14 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C15 & 0160-2150 & C:FXD MICA 33pF \(5 \% 300 \mathrm{VDCW}\) & \\
\hline A5C16 & 0121-0147 & C:VAR AIR 2.0-19.3pF & \\
\hline A5C17 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C18 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C19 & 0160-0174 & C :FXD CER \(0.47 \mu \mathrm{~F}-20 \%+80 \% 25 \mathrm{VDCW}\) & \\
\hline A5C20 & 0150-0121 & C:FXD CER \(0.1 \mu \mathrm{~F}-20 \%+80 \% 50 \mathrm{VDCW}\) & \\
\hline A5C21 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C22 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C23 & 0180-0291 & C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5CR1 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A5CR2 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR3 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR4 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR5 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR6 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5L1 & & NOT ASSIGNED & \\
\hline A5L2 & 9140-0179 & COIL:FXD RF \(22 \mu \mathrm{H} 10 \%\) & \\
\hline A5Q1 & 1855-0022 & TRANSISTOR:FIELD EFFECT N-CHANNEL & \\
\hline A5Q2 & 1853-0015 & TRANSISTOR:PNP SILICON 2N3640 & \\
\hline A5Q3 & 1854-0023 & TRANSISTOR:NPN SILICON & \\
\hline A5Q4 & 1854-0092 & TRANSISTOR:NPN SILICON 2N3563 & \\
\hline A5Q5 & 1854-0296 & TRANSISTOR:NPN SILICON MPS6543 & \\
\hline A5Q6 & 1854-0092 & TRANSISTOR:NPN STLICON 2N3563 & \\
\hline A5Q7 & 1853-0015 & TRANSISTOR:PNP SILICON 2N3640 & \\
\hline A5Q8 & 1854-0233 & TRANSISTOR:NPN SILICON 2N3866 & \\
\hline A5Q9 & 1854-0091 & TRANSISTOR:NPN SILICON & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A5R1 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R2 & 0698-3151 & R:FXD MET FLM \(2.87 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R3 & 0757-0465 & R:FXD MET FLM \(100 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R4 & 0757-0465 & R:FXD MET FLM 100k \(\Omega\) 1\% 1/8W & \\
\hline A5R5 & 0698-2335 & R:FXD C FLM \(28.1 \mathrm{M} \Omega 0.5 \% 1 \mathrm{~W}\) & \\
\hline A5R6 & 0698-0085 & R:FXD MET FLM \(2.61 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R7 & 0698-3155 & R:FXD MET FLM \(4.64 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R8 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 W\) & \\
\hline A5R9 & 0757-0441 & R:FXD MET FLM \(8.25 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R10 & 0698-3150 & R:FXD MET FLM \(2.37 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R11 & 0698-3439 & R:FXD MET FLM \(178 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R12 & 0698-0089 & R:FXD MET FLM 1. \(78 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R13 & 0698-3430 & R:FXD MET FLM \(21.5 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R14 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R15 & 0698-3152 & R:FXD MET FLM \(3.48 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R16 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R17 & 0757-0440 & R:FXD MET FLM \(7.5 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R18 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R19 & 0757-0422 & R:FXD MET FLM \(909 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R20 & 0757-0398 & R:FXD MET FLM \(75 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R21 & 0757-0294 & R:FXD MET FLM \(17.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R22 & 0698-4422 & R:FXD MET FLM \(1.27 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R23 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R24 & 0757-0405 & R:FXD MET FLM \(162 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R25 & 0698-3409 & \(\mathrm{R}: \mathrm{FXD}\) MET FLM \(2.37 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R26 & 0757-0439 & R:FXD MET FLM \(6.81 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R27 & 0757-0290 & R:FXD MET FLM \(6.19 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R28 & 0757-0274 & R:FXD MET FLM \(1.21 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R29 & 0698-3434 & R:FXD MET FLM \(34.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R30 & 0757-0419 & R:FXD MET FLM \(681 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R31 & 0757-0394 & R:FXD MET FLM \(51.1 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R32 & 2100-1986 & R:VAR MET FLM \(1 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R33 & 0698-3430 & R:FXD MET FLM \(21.5 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R34 & 0698-3700 & R:FXD MET FLM \(715 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R35 & 0757-0814 & R:FXD MET FLM \(511 \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R36 & 0757-0379 & R:FXD MET FLM \(12.1 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R37 & 0757-1092 & R:FXD MET FLM \(287 \Omega 1\) 1\% 1/2W & \\
\hline A5R38 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R39 & 0757-0159 & R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R40 & 0698-3152 & R:FXD MET FLM \(3.48 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R41 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R43 & 2100-0558 & R:VAR CERMET \(20 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R44 & 0698-3429 & R:FXD MET FLM \(19.6 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R45 & 0698-3429 & R:FXD MET FLM \(19.6 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline & \[
\begin{aligned}
& 0340-0008 \\
& 9170-0029 \\
& \hline
\end{aligned}
\] & MTSCELLANEOUS INSULATOR-STAND OFF 2 REQ'D BEAD FERRITE & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A6 & \[
\begin{aligned}
& 04342-7706 \\
& 04342-8706
\end{aligned}
\] & DC AMPLIFIER ASS' \(Y\) BOARD:BLANK PC & \\
\hline A6C1 & 0160-0127 & C:FXD CER \(1 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A6C2 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A6C3 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A6C4 & 0180-0197 & C:FXD TA \(2.2 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A6C5 & 0180-0197 & C:FXD TA \(2.2 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A6CR1 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A6CR2 & 1902-3097 & SEMICON DEVICE:DIODE BREAKDOWN 5. \(23 \mathrm{~V} 2 \% 400 \mathrm{~mW}\) & \\
\hline A6CR3 & 1902-3097 & SEMICON DEVICE:DIODE BREAKDOWN \(5.23 \mathrm{~V} 2 \% 400 \mathrm{~mW}\) & \\
\hline A6L1 & 9140-0179 & COIL :FXD RF \(22 \mu \mathrm{H} 10 \%\) & \\
\hline A6L2 & 9140-0179 & COIL:FXD RF \(22 \mu \mathrm{H} 10 \%\) & \\
\hline A6Q1 & 1855-0081 & TRANSISTOR :FIELD EFFECT N-CHA NNEL & \\
\hline A6Q2 & 1855-0049 & TRANSISTOR:FIELD EFFECT N-CHANNEL DUAL & \\
\hline A6Q3 & 1853-0010 & TRANSISTOR:PNP SILICON & \\
\hline A6Q4 & 1854-0023 & TRANSISTOR:NPN SILICON & \\
\hline A6Q5 & 1853-0010 & TRANSISTOR:PNP SILICON & \\
\hline A6R1 & 0757-0442 & R:FXD MET FLM 10k \(\Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R2 & 2100-3356 & R:VAR CERMET \(200 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A6R3 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R4 & 2100-3351 & R:VAR CERMET \(500 \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A6R5 & 0757-0439 & R:FXD MET FLM \(6.81 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R6 & 2100-3352 & R :VAR CERMET \(1 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A6R7 & 0698-3151 & R:FXD MET FLM \(2.87 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R8 & 0757-0416 & R:FXD MET FLM \(511 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline 46R9 & 0757-0482 & R:FXD MET FLM \(511 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R10 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R11 & 0757-0462 & R:FXD MET FLM \(75 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R12 & 0757-0442 & R:FXD MET FLM \(10 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R13 & 0757-0280 & R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R14 & 0757-0439 & R:FXD MET FLM \(6.81 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R15 & 0757-0419 & R:FXD MET FLM \(681 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R16 & 0698-3136 & R:FXD MET FLM \(17.8 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R17 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R18 & 0757-0419 & R:FXD MET FLM \(681 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R19 & 0757-0442 & R:FXD MET FIM \(10 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A6R20 & 0698-4037 & R:FXD MET FLM \(46.4 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2, Reference Designation Index (Cont'd)

Table 6-2
Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A7 & \[
\begin{aligned}
& 04342-7707 \\
& 04342-8707
\end{aligned}
\] & Q-LIMIT' SELECTOR ASS'Y BOARD:BLANK PC & \\
\hline A7C1 & 0160-2964 & C:FXD CER \(0.01 \mu \mathrm{~F}-20 \%+80 \%\) & \\
\hline A7C2 & 0150-0121 & C:FXD CER \(0.1 \mu \mathrm{~F}-20 \%+80 \%\) & \\
\hline A7C3 & 0160-0155 & C:FXD MY \(0.0033 \mu \mathrm{~F} 10 \% 200 \mathrm{VDCW}\) & \\
\hline A7C4 & 0180-0373 & C:FXD TA \(0.68 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A7C5 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A7C6 & 0160-0128 & C:FXD CER \(2.2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A7C7 & 0160-0155 & C:FXD MY \(0.0033 \mu \mathrm{~F} 10 \% 200 \mathrm{VDCW}\) & \\
\hline A7C8 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A7CR1 & 1902-3059 & SEMICON DEVICE:DIODE BREAKDOWN \(3.83 \mathrm{~V} 5 \% 400 \mathrm{~mW}\) & \\
\hline A7CR2 & 1902-3234 & SEMICON DEVICE:DIODE BREAKDOWN 19.6V \(5 \% 400 \mathrm{~mW}\) & \\
\hline A7CR3 & 1910-0016 & SE'MICON DEVICE: DIODE GERMANIUM & \\
\hline A7CR4 & 1902-3149 & SEMICON DEVICE:DIODE BREAKDOWN 9.09V \(5 \% 400 \mathrm{~mW}\) & \\
\hline A7CR5 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A7CR6 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A7K1 & 0490-0214 & RELAY REED:DPST 8.7 - 22VDCW 0.5A, 15VA SRG-13A & \\
\hline A7L1 & 9140-0210 & COIL :FXD RF \(100 \mu \mathrm{H} 5 \%\) & \\
\hline A7L2 & 9140-0210 & COIL :FXD RF \(100 \mu \mathrm{H} 5 \%\) & \\
\hline A7Q1 & 1855-0081 & TRANSISTOR:FIEI.D FFFFFCT N-CHANNFI, & \\
\hline A7Q2 & 1855-0081 & TRANSISTOR:FIELD EFFECT N-CHANNEL & \\
\hline A7Q3 & 1854-0071 & TRANSISTOR :NPN SILICON 2N3391 & \\
\hline A7Q4 & 1854-0071 & TRANSISTOR:NPN SILICON 2N3391 & \\
\hline A7Q5 & 1854-0071 & TRANSISTOR:NPN SILICON 2N3391 & \\
\hline A7Q6 & 1854-0071 & TRANSISTOR :NPN STLICON 2N3391 & \\
\hline A7Q7 & 1854-0298 & TRANSISTOR:NPN SILICON & \\
\hline A7Q8 & 1854-0071 & TRANSISTOR:NPN SILICON 2N3391 & \\
\hline A 7 Q9 & 1854-0071 & TRANSISTOR :NPN SILICON 2N3391 & \\
\hline A7R1 & 0757-1094 & R:FXD MET FLM \(1.47 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R2 & 0757-0280 & R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R3 & 2100-3353 & R:VAR CERMET \(20 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A 7 R 4 & 0698-3157 & R:FXD MET FLM \(19.6 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A 7R5 & 0757-0199 & R:FXD MET FLM 21. \(5 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R6 & 0698-3245 & R:FXD MET FLM \(20.5 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R7 & 2100-3356 & R:VAR CERMET \(200 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A7R8 & 0698-3445 & R:FXD MET FLM \(348 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R9 & 0698-3429 & R:FXD MET FLM \(19.6 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R10 & 0757-0458 & R:FXD MET FLM \(51.1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A7R11 & 0698-4207 & R:FXD MET FLM \(44.2 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R12 & 0757-0443 & R:FXD MET FLM \(11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R13 & 0757-1094 & R:FXD MET FLM \(1.47 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R14 & 0757-0409 & R:FXD MET FLM \(274 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R15 & 0757-0440 & R:FXD MET FLM \(7.5 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R16 & 0698-3136 & R:FXD MET FLM \(17.8 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R17 & 0757-0433 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R18 & 0757-0441 & R:FXD MET FLM 8. \(25 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R19 & 0757-0289 & R:FXD MET FLM \(13.3 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R20 & 0698-3460 & R:FXD MET FLM \(422 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R21 & 0698-3158 & R:FXD MET FLM \(23.7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R22 & 0757-0433 & R:FXD MET FLM \(3.32 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R23 & 0757-0279 & R:FXD MET FLM \(3.16 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R24 & 0690-6811 & R:FXD COMP 680 \(10 \% 1 \mathrm{~W}\) & \\
\hline A7R25 & 0698-3158 & R :FXD MET FLM \(23.7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R26 & 0698-3160 & R:FXD MET FLM 31. \(6 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R27 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R28 & 0698-3160 & R:FXD MET FLM \(31.6 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R29 & 0757-0416 & R:FXD MET FLM \(511 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R30 & 0698-3136 & R:FXD MET FLM \(17.8 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A7R31 & 0698-3400 & R:FXD MET OX \(147 \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline & 5040-5118 & MISCELLANEOUS EXTRACTOR:VIOLET 2 REQ'D & \\
\hline
\end{tabular}

Table 6-2
Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A8 & \[
\begin{aligned}
& 04342-7708 \\
& 04342-8708
\end{aligned}
\] & POWER SUPPLY \& ALC AMPLIFIER ASS' Y BOARD:BLANK PC & \\
\hline A8C1 & 0150-0121 & C:FXD CER \(0.1 \mu \mathrm{~F}-20 \%+80 \% 50 \mathrm{VDCW}\) & \\
\hline A8C2 & 0180-0291 & C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8C3 & 0180-0097 & C:FXD TA \(47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8C4 & 0150-0121 & C:FXD CER \(0.1 \mu \mathrm{~F}-20 \%+80 \% 50 \mathrm{VDCW}\) & \\
\hline A8C5 & 0180-0291 & \(\mathrm{C}: \mathrm{FXD}\) TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8C6 & 0180-0097 & \(\mathrm{C}: \mathrm{FXD}\) TA \(47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8C7 & 0180-0982 & C:FXD ELECT \(1 \mu \mathrm{~F}-10 \%+100 \% 250 \mathrm{VDCW}\) & \\
\hline A8C8 & 0180-0982 & C:FXD ELECT \(1 \mu \mathrm{~F}-10 \%+100 \% 250 \mathrm{VDCW}\) & \\
\hline A8C9 & 0180-1735 & C:FXD TA \(0.22 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8C10 & 0180-1735 & C:FXD TA \(0.22 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A8CR1 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR2 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR3 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR4 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR5 & 1902-0041 & SEMICON DEVICE:DIODE BREAKDOWN \(5.11 \mathrm{~V} 5 \% 400 \mathrm{~mW}\) & \\
\hline A8CR6 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR7 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR8 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR9 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR10 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR11 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR12 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR13 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR14 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR15 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR16 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR17 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A8CR18 & 1902-0041 & SEMICON DEVICE:DIODE BREAKDOWN 5.11V 5\% 400mW & \\
\hline A8CR19 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR20 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR21 & 1901-0026 & SEMICON DEVICE:DIODE SILICON & \\
\hline A8CR22 & 1902-3182 & SEMICON DEVICE:DIODE BREAKDOWN 12.1V \(5 \% 400 \mathrm{~mW}\) & \\
\hline A8Q1 & 1854-0039 & TRANSISTOR:SILICON NPN 2N3053 & \\
\hline A8Q2 & 1854-0071 & TRANSISTOR:SILICON NPN 2N3391 & \\
\hline A8Q3 & 1854-0215 & TRANSISTOR :SILICON NPN 2N3904 & \\
\hline A8Q4 & 1854-0215 & TRANSISTOR:SILICON NPN 2N3904 & \\
\hline A8Q5 & 1854-0071 & TRANSISTOR:SILICON NPN 2N3391 & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)

Table 6-2, Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A8R36 & 0757-0280 & R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A8R37 & 0757-0200 & R:FXD MET FLM \(5.62 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A8R 38 & 0757-0453 & R:FXD MET FLM \(30.1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A8R 39 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A8R40 & 0698-3157 & R:FXD MET FLM 19.6k \(\Omega\) 1\% 1/8W & \\
\hline A8R41 & 0683-1055 & R:FXD COMP \(1 \mathrm{M} \Omega 5 \% 1 / 4 \mathrm{~W}\) & \\
\hline A8R42 & 0757-0482 & R:FXD MET FLM \(511 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A8R43 & 0757-0461 & R:FXD MET FLM \(68.1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline & 5040-4592 & MISCELLANEOUS EXTRACTOR:GRAY 2 REQ'D & \\
\hline A9 & & NOT ASSIGNED & \\
\hline A10 & \[
\begin{aligned}
& 04342-7710 \\
& 04342-8710
\end{aligned}
\] & \multicolumn{2}{|l|}{FREQUENCY MULTIPLIER AND OVER LIMIT INDICATOR ASS' Y BOARD:BLANK PC} \\
\hline A10DS1 & 2140-0037 & LAMP:INCD 28 V 0.04 A & \\
\hline A10DS2 & 2140-0037 & LAMP:INCD 28V 0.04A & \\
\hline A10DS3 & 2140-0037 & LAMP:INCD 28 V 0.04 A & \\
\hline A10DS 4 & 2140-0037 & LAMP:INCD 28 V 0.04 A & \\
\hline A10DS5 & 2140-0037 & LAMP:INCD 28 V 0.04 A & \\
\hline A10R1 & 0698-3402 & R:FXD MET FLM \(316 \Omega 1 \% 1 / 2 W\) & \\
\hline & 04342-5022 & MISCELLANEOUS SEPARATOR:LAMP & \\
\hline A11 & \[
04342-7711
\] & METER SCALE INDICATOR ASS'Y BOARD:BLANK PC & \\
\hline A11DS1 & 2140-0123 & LAMP:NEON & \\
\hline A11DS2 & 2140-0123 & LAMP:NEON & \\
\hline A11DS3 & 2140-0123 & LAMP:NEON & \\
\hline A11DS4 & 2140-0123 & LAMP:NEON & \\
\hline & 5040-3313 & MISCELLANEOUS HOLDER:LAMP & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline C1a & 0160-3202 & C:FXD CER 1800pF \(\pm 20 \% 3000 \mathrm{VDCW}\) & \\
\hline Clb & 0160-3202 & C:FXD CER \(1800 \mathrm{pF} \pm 20 \% 3000 \mathrm{VDCW}\) & \\
\hline C2 & 0180-0056 & C:FXD ELECT \(1000 \mu \mathrm{~F}-10 \%+100 \%\) 50VDCW & \\
\hline C3 & 0180-0056 & C:FXD ELECT \(1000 \mu \mathrm{~F}-10 \%+100 \% 50 \mathrm{VDCW}\) & \\
\hline DS1 & 2140-0037 & LAMP:INCD 28V 0.04A & \\
\hline DS2 & 2140-0037 & LAMP:INCD 28V 0.04A & \\
\hline F1 & \[
\begin{aligned}
& 2110-0339 \\
& 2110-0044
\end{aligned}
\] & FUSE:0.6A 250V SL.OW BLOW FUSE:0.3A 250V SLOW BLOW & \\
\hline J1 & 1250-0083 & CONNECTOR:BNC FEMALE & \\
\hline J2 & 1250-0083 & CONNECTOR:BNC FEMALE & \\
\hline J3 & 1251-2357 & CONNECTOR:POWER 3-PIN MALE & \\
\hline L1 & 9140-0136 & COIL:FXD \(22 \mu \mathrm{H} \pm 10 \%\) 1.33A & \\
\hline L2 & 9140-0136 & COIL:FXD \(22 \mu \mathrm{H} \pm 10 \% 1.33 \mathrm{~A}\) & \\
\hline M1 & 1120-0762 & METER:1mA SPEC & \\
\hline P1 & & NOT ASSIGNED & \\
\hline P2 & & NOT ASSIGNED & \\
\hline P3 & 1250-0052 & CONNECTOR:BNC MALE PART OF W1 & \\
\hline & 1250-0050 & NUT:RF CONNECTOR PART OF P3 & \\
\hline & 1250-0089 & CONTACT:RF CONNECTOR PART OF P3 & \\
\hline P4 & 1250-0872 & CONNECTOR:RF PART OF W1 & \\
\hline P5 & 1250-0872 & CONNECTOR:RF PART OF W2 & \\
\hline P6 & 1250-0872 & CONNECTOR:RF PART OF W2 & \\
\hline Q1 & 1854-0063 & TRANSISTOR:NPN SILICON & \\
\hline Q2 & 1854-0063 & TRANSISTOR:NPN SILICON & \\
\hline R1 & 0698-3400 & R:FXD MET FLM \(147 \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline R2 & 2100-0732 & R:VAR COMP \(500 \Omega 10 \% 2.25 \mathrm{~W}\) & \\
\hline R3 & 2100-1251 & R:VAR COMP \(200 \Omega 10 \%\) WITH R4 & \\
\hline R4 & & \begin{tabular}{l}
R:VAR COMP \(1 \mathrm{k} \Omega 10 \%\) \\
NOT SEPARATELY REPLACEABLE PART OF R3
\end{tabular} & \\
\hline R5 & 2100-0006 & R:VAR WW \(5 \mathrm{k} \Omega 10 \% 2 \mathrm{~W}\) & \\
\hline S1 & 3101-0011 & SWITCH:SLIDE DPDT & \\
\hline S2 & 3101-2216 & SWITCH:PUSH BUTTON & \\
\hline S3 & 3101-1234 & SWITCH:SLIDE DPDT & \\
\hline
\end{tabular}

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline T1 & 9100-0779 & TRANSF ORMER:POWER & \\
\hline \[
\begin{aligned}
& \text { W1 } \\
& \text { W2 } \\
& \text { W3 }
\end{aligned}
\] & \[
\begin{aligned}
& 04342-7602 \\
& 04342-7603 \\
& 8120-1348
\end{aligned}
\] & CABLE ASS'Y:COAXIAL INCLUDING P3 AND P4 CABLE ASS'Y:COAXIAL INCLUDING P5 AND P6 CABLE ASS'Y:POWER CORD & \\
\hline \[
\begin{aligned}
& \text { XA1 } \\
& \text { XA2 } \\
& \text { XA3 } \\
& \text { XA4 } \\
& \text { XA5 }
\end{aligned}
\] & & \begin{tabular}{l}
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED \\
NOT ASSIGNED
\end{tabular} & \\
\hline \[
\begin{aligned}
& \mathrm{XA} 6 \\
& \text { XA7 } \\
& \text { XA8 }
\end{aligned}
\] & \[
\begin{aligned}
& 1251-0135 \\
& 1251-0135 \\
& 1251-0159
\end{aligned}
\] & CONNECTOR:PRINTED CIRCUIT 15-CONTACT CONNECTOR:PRINTED CIRCUIT 15-CONTACT CONNECTOR:PRINTED CIRCUIT 30-CONTACT & \\
\hline XF1 & 1400-0084 & FUSE HOLDER:EXTRACTOR POST TYPE & \\
\hline \[
\begin{aligned}
& \mathrm{XQ1} \\
& \mathrm{XQ} 2
\end{aligned}
\] & \[
\begin{aligned}
& 1200-0041 \\
& 1200-0041
\end{aligned}
\] & \begin{tabular}{l}
SOCKET:TRANSISTOR \\
SOCKET:TRANSISTOR
\end{tabular} & \\
\hline & \begin{tabular}{l}
5060-4940 \\
5060-0651 \\
5060-4004 \\
04342-1149 \\
04342-1310 \\
04342-1311 \\
04342-1024 \\
04342-1128 \\
04342-1127 \\
5000-4167 \\
5000-4168 \\
0370-0134 \\
0370-0133 \\
0370-0290 \\
0370-1802 \\
04342-5020 \\
04342-3037 \\
5040-0447 \\
5060-0767 \\
7120-0480 \\
04342-3261
\end{tabular} & \begin{tabular}{l}
MISCELLANEOUS \\
EXTENDER:PC BOARD 30-CONTACT \\
EXTENDER:PC BOARD 12-CONTACT \\
FRAME:SIDE 2 REQ'D \\
PANEL ASS'Y:FRONT \\
PANEL:BLACK FREQUENCY DIAL \\
PANEL:BLACK CAPACITOR DIAL \\
PANEL:REAR \\
COVER ASS'Y:TOP \\
COVER:BOTTOM \\
COVER:SIDE A 2 REQ'D \\
COVER:SIDE B 2 REQ'D \\
KNOB:ROUND RED 1 ARROW \\
KNOB:SKIRTED BLACK 1 ARROW \\
KNOB:SKIRTED BLACK 1 ARROW CONCENTRIC \\
PUSHBUTTON \\
KNOB:THUMB WHEEL BLACK 3 REQ'D HANDLE ASS'Y \\
FOOT:REAR 4 REQ'D \\
FOOT ASS'Y:FULL MODULE 4 REQ'D \\
PLATE:SERIAL NUMBER \\
KNOB:ROUND BLACK 1 ARROW 7 REQ'D
\end{tabular} & \\
\hline
\end{tabular}

See list of abbreviations in introduction to this section

Table 6-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline & \begin{tabular}{l}
04342-1025 \\
04342-1030 \\
04342-1131 \\
04342-1132 \\
04342-1033 \\
04342-1034 \\
04342-1035 \\
04342-1036 \\
04342-1042 \\
04342-1043 \\
04342-1044 \\
04342-1051 \\
04342-1052 \\
04342-1053 \\
04342-1054 \\
04342-1064 \\
04342-00601 \\
04342-00602 \\
04342-1061 \\
04342-1062 \\
04342-3269 \\
04342-3033 \\
04342-3045 \\
04342-3052 \\
04342-3054 \\
04342-5023 \\
04342-5024 \\
04342-3270 \\
04342-3271 \\
04342-5027 \\
04342-5200 \\
04342-7021 \\
04342-7030 \\
04342-7031 \\
04342-7032 \\
04342-3020 \\
04342-8541 \\
04342-8542 \\
04342-8543 \\
04342-8544 \\
1520-0001 \\
5040-4528 \\
5040-5125 \\
5040-5126 \\
04342-8551 \\
04342-8552 \\
04342-8553 \\
04342-8554
\end{tabular} & \begin{tabular}{l}
BRACKET:FRONT PANEL 2 REQ'D \\
STOPPER:F.C. 2 REQ'D \\
BRACKET:HANDLE H1 \\
BRACKET:HANDLE H2 \\
BRACKET:HANDLE H3 \\
PLATE:HANDLE \\
BRACKET:A5 ASS'Y \\
SHIELD:A5 ASS'Y \\
BRACKET:METER RIGHT \\
BRACKET:METER LEFT \\
BRACKET:FREQUENCY SCALE INDICATOR \\
BELT:FREQUENCY DIAL \\
BELT:MAIN CAPACITOR DIAL \\
BELT:VERNIER CAPACITOR DIAL STOPPER:D \\
SCALE:FREQUENCY DIAL \\
SCALE:MAIN CAPACITOR DIAL \\
SCALE:VERNIER CAPACITOR DIAL \\
DECK:POWER SUPPLY \\
SHIELD:POWER SUPPLY \\
GLASS:CAPACITOR DIAL \\
BOARD:FREQUENCY SCALE INDICATOR \\
GUIDE: OSCILLATOR LEVER \\
SHAFT:FREQUENCY DIAL AND KNOB 2 REQ'D \\
SHAFT:CAPACITOR DIAL AND KNOB 2 REQ'D \\
HOUSE:LAMP FREQUENCY SCALE INDICATOR 2 REQ'D \\
BRACKET:LAMP HOUSE \\
PLATE:TERMINAL INDICATION \\
GUIDE:A5 ASS'Y ADJUSTMENT \\
BRACKET:POWER SWITCH \\
DECK:MAIN \\
LEVER ASS'Y:OSCILLATOR \\
DIAL ASS'Y:FREQUENCY \\
DIAL ASS'Y:MAIN CAPACITOR \\
DIAL ASS'Y:VERNIER CAPACITOR \\
GLASS:FREQUENCY DIAL \\
STRING:KNOB TO DIAL 3 REQ'D \\
STRING:FREQUENCY DIAL TO PULLEY \\
STRING:VERNIER CAPACITOR DIAL TO PULLEY \\
STRING:MAIN CAPACITOR DIAL TO PULLEY \\
PLATE:CAPACITOR MOUNTING 2 REQ'D \\
GUIDE:PC BOARD GRAY 6 REQ'D \\
GUIDE:PC BOARD BLUE \\
GUIDE: PC BOARD VIOLET \\
FTLM:FREQUENCY MULTIPLIER INDICATOR \\
FILM:FREQUENCY RANGE SWITCH \\
FILM:Q RANGE SWITCH \\
FILM:FREQUENCY RANGE SWITCH (Option 001)
\end{tabular} & \\
\hline
\end{tabular}

Figure 6-1. Exploded View of Oscillator Ass'y (sheet 1 of 2)
\begin{tabular}{|c|c|c|c|c|}
\hline Item No. & Part No. & Q'ty & Description & Note \\
\hline 1 & 2360-0115 & 5 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 2 & 04342-1070 & 1 & COVER:TOP & \\
\hline 3 & 04342-3092 & 1 & SHAFT:OSCILLATOR & \\
\hline 4 & 1410-0307 & 1 & BEARING & \\
\hline 5 & 0510-0045 & 2 & RING:RET EXT . 188 DIA & \\
\hline 6 & & & NOT ASSIGNED & \\
\hline 7 & & & NOT ASSIGNED & \\
\hline 8 & & & NOT ASSIGNED & \\
\hline 9 & & & NOT ASSIGNED & \\
\hline 10 & & & NOT ASSIGNED & \\
\hline 11 & & & NOT ASSIGNED & \\
\hline 12 & & & NOT ASSIGNED & \\
\hline 13 & 0121-0232 & 1 & CAPACITOR:AIR & \\
\hline 14 & 2360-0199 & 1 & SCREW:MACH SST 6-32 X . 438 PH & \\
\hline 15 & 3050-0066 & 1 & WASHER:BRASS . 147 ID & \\
\hline 16 & 1400-0325 & 1 & CLAMP:CABLE (NYLON) & \\
\hline 17 & 2360-0115 & 2 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 18 & 2740-0003 & 1 & NUT:HEX 10-32 X . 375 & \\
\hline 19 & 04342-1073 & 1 & PLATE & \\
\hline 20 & 2360-0115 & 2 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 21 & 2360-0119 & 2 & SCREW:MACH SST 6-32 X . 438 PH & \\
\hline 22 & 04342-7601 & 1 & CABLE ASS'Y & \\
\hline 23 & 2190-0047 & 4 & WASHER:LOCK CNTRSK NO. 6 & \\
\hline 24 & 0570-0237 & 4 & SCREW:MACH BRASS 3 mm & \\
\hline 25 & 0360-0032 & 1 & TERMINAL:LUG & \\
\hline 26 & 0160-2357 & 3 & C:FXD CER 1000pF & \\
\hline 27 & 2190-0008 & 1 & WASHER:LOCK EXT PHS . BRZ. 141 ID & \\
\hline 28 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 29 & 04342-7702 & 1 & PC BOARD:A1A2 ASS'Y & \\
\hline 30 & 2190-0102 & 1 & WASHER:LOCK BRZ. 475 ID & \\
\hline 31 & 2950-0035 & 1 & NUT HEX BRASS 15/32-32 & \\
\hline 32 & & & NOT ASSIGNED & \\
\hline 33 & & & NOT ASSIGNED & \\
\hline 34 & 04342-5001 & 1 & CASE:OSCILLATOR (CASTING) & \\
\hline 35 & 0400-0111 & 1 & GROMMET:SNAP IN & \\
\hline 36 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 37 & 04342-7731/41 & 1 & PC BOARD:A1A1 ASSEMBLY & \\
\hline 38 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 39 & 2360-0115 & 3 & SCREW:MACH SST 6-32 X. 312 & \\
\hline 40 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 41 & 04342-1071 & 1 & COVER BOTTOM & \\
\hline 42 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 43 & 2360-0115 & 3 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 44 & 2950-0035 & 1 & NUT:HEX BRASS 15/32-32 & \\
\hline 45 & 2190-0102 & 1 & WASHER:LOCK BRZ . 475 ID & \\
\hline 46 & 1250-0314 & 1 & CONNECTOR:BNC FEMALE & \\
\hline 47 & 2190-0012 & 1 & WASHER:LOCK EXT BRZ & \\
\hline 49 & 0510-0080 & 1 & RING:RET EXT . 500 DIA E TYPE & \\
\hline 50 & 04342-8524 & 1 & SPRING:COIL & \\
\hline 51 & 04342-5035 & 1 & PULLEY:MOLDED & \\
\hline 52 & 04342-5039 & 1 & COUPLER:FLEXIBLE & \\
\hline 53 & 3030-0007 & 4 & SCREW:SET \#4-40 x . 188LG & \\
\hline 54 & 04342-3097 & 3 & SPACER & \\
\hline 55 & 2950-0036 & 3 & NUT:BRASS . 25-28 x . 4375 & \\
\hline
\end{tabular}

Figure 6-1. Exploded View of Oscillator Ass'y (sheet 2 of 2)

Figure 6-2. Exploded View of Tuning Capacitor Ass'y (sheet 1 of 2)
\begin{tabular}{|c|c|c|c|c|}
\hline Item No. & Part No. & Q'ty & Description & Note \\
\hline 1 & 04342-3267 & 1 & CONNECTOR:HEXAGONAL GROUND LUG & \\
\hline 2 & 04342-3259 & 4 & CAP:BINDING POST & \\
\hline 3 & 04342-3256 & 1 & BOARD:TERMINAL PTFE & \\
\hline 4 & 04342-3267 & 1 & CONNECTOR:HEXAGONAL GROUND LUG & \\
\hline 5 & 2360-0185 & 2 & SCREW:MACH SST 6-32 X . 375 & \\
\hline 6 & 0520-0164 & 6 & SCREW:MACH SST 2-56 & \\
\hline 7 & * & 1 & CONNECTOR:BINDING POST BODY & \\
\hline 8 & * & 2 & CONNECTOR:BINDING POST BODY & \\
\hline 9 & * & 2 & INSULATOR:BOSS & \\
\hline 10 & 2360-0185 & 4 & SCREW:MACH SST 6-32 X. 375 & \\
\hline 11 & * & 1 & PLATE:TERMINAL & \\
\hline 12 & * & 1 & STATOR ASSEMBLY & \\
\hline 13 & 0510-0045 & 1 & RING:RET EXT . 188 DIA & \\
\hline 14 & 1410-0307 & 1 & BEARING & \\
\hline 15 & & 1 & PLATE & \\
\hline 16 & * & 1 & TRANSFORMER ASS'Y:INJECTION & \\
\hline 17 & * & 1 & NUT:HEX P \(=0.75 \mathrm{~mm}\) & \\
\hline 18 & * & 1 & SCREW:BRASS \(\mathrm{P}=0.75 \mathrm{~mm}\) & \\
\hline 19 & * & 1 & BALL:SST & \\
\hline 20 & 0510-0045 & 2 & RING:RET EXT . 188 DIA & \\
\hline 21 & 1410-0307 & 1 & BEARING & \\
\hline 22 & 04342-7503 & 2 & GFiAR ASS' Y & \\
\hline 23 & * & 1 & BRASH:PH BRZ CHEMICAL Au PLATED & \\
\hline 24 & * & 2 & NUT:HEX SST 6-32 THRD & \\
\hline 25 & 04342-5035 & 1 & PULLEY:MOLDED & \\
\hline 26 & 04342-8524 & 1 & SPRING:COIL & \\
\hline 27 & 0510-0080 & 1 & RING:RET EXT . 500 DIA E TYPE & \\
\hline 28 & 04342-3222 & 1 & SHAFT:MAIN CAPACITOR & \\
\hline 29 & 1410-0307 & 1 & BEARING & \\
\hline 30 & & 1 & BALL:SST & \\
\hline 31 & * & 1 & SCREW:BRASS P \(=0.75 \mathrm{~mm}\) & \\
\hline 32 & * & 1 & NUT:HEX P=0.75mm & \\
\hline 33 & 04342-5035 & 1 & PULLEY:MOLDED & \\
\hline 34 & 04342-8524 & 1 & SPRING:COIL & \\
\hline 35 & 0510-0080 & 1 & RING:RET EXT . 500 DIA E TYPE & \\
\hline 36 & 04342-3223 & 1 & SHAFT:VERNIER CAPACITOR & \\
\hline 37 & 1410-0307 & 1 & BEARING & \\
\hline 38 & * & 1 & DECK:CASTING & \\
\hline 39 & * & 1 & INSULATOR:DELRIN & \\
\hline 40 & * & 1 & GEAR ASS' Y & \\
\hline 41 & * & 1 & RING:RET EXT . 188 DIA E TYPE & \\
\hline 42 & * & 1 & VERNIER CAPACITOR ASS'Y & \\
\hline 43 & * & 2 & WASHER:FLAT PHS. BRS (SELECTED) & \\
\hline 44 & * & 1 & ROTOR ASS'Y & \\
\hline 45 & * & 1 & INSULATOR:DELRIN & \\
\hline 46 & * & 2 & SCREW:MACH SST 6-32 X . 500 & \\
\hline 47 & 04342-7205 & 1 & C DIVIDER ASS' \(Y\) & \\
\hline 48 & * & 2 & NUT:HEX 10-32 X . 375 & \\
\hline 49 & * & 1 & PIN & \\
\hline 50 & * & 2 & SCREW:SET & \\
\hline 51 & * & 1 & WASHER:FLAT BRASS & \\
\hline 52 & * & 1 & WASHER:WAVY & \\
\hline 53 & * & 1 & PLATE & \\
\hline 54 & * & 2 & WASHER:LOCK EXT & \\
\hline 55 & * & 2 & SCREW:MACH 6-32 X 3/8 & \\
\hline 56 & 3030-0033 & 1 & SCREW:SET 6-32 X. 188 LG HEX SKT . DR & \\
\hline
\end{tabular}

Figure 6-2. Exploded View of Tuning Capacitor Ass'y (sheet 2 of 2)

Section VI
Figure 6-3
\begin{tabular}{|c|l|l|l|l|}
\hline Item No. & Part No. & Q'ty & \multicolumn{1}{|c|}{ Description } & Note \\
\hline & & & & \\
1 & \(0400-0011\) & 2 & GROMMET:VINYL . 375 ID & \\
2 & \(04342-1046\) & 1 & COVER:SHIELD & \\
3 & \(2360-0115\) & 2 & SCREW:MACH SST 6-32 X . 312 & \\
4 & \(04342-7513\) & 1 & SWITCH ASS'Y:Q RANGE & \\
5 & \(04342-1045\) & 1 & CASE:SHIELD & \\
6 & \(0624-0077\) & 2 & SCREW:TAPPING 4-40 THD & \\
7 & \(2190-0008\) & 1 & WASHER:LOCK EXT PHS. BRZ & \\
8 & \(2360-0193\) & 1 & SCREW:MACH SST 6-32 X. 250 & \\
9 & \(3101-0262\) & 4 & SWITCH:PUSHBUTTON; Q RANGE & \\
10 & \(3101-0261\) & 1 & SWITCH:PUSHBUTTON; \(\triangle Q\) RANGE & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Item No. & Part No. & Q'ty & Description & Note \\
\hline \[
\begin{array}{r}
\mathbf{1} \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17 \\
18 \\
19 \\
20 \\
21
\end{array}
\] & \begin{tabular}{l}
04342-3020 \\
0361-0078 \\
2200-0166 \\
0460-0126 \\
0510-0741 \\
3050-0067 \\
2360-0113 \\
2190-0018 \\
3050-0016 \\
04342-7710 \\
04342-5022 \\
3050-0079 \\
2190-0223 \\
0520-0129 \\
0460-0126 \\
0610-0001 \\
2190-0223 \\
3050-0098 \\
04342-5023 \\
04342-5024 \\
0520-0183
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2 \\
& 1 \\
& 2 \\
& 2 \\
& 1 \\
& 2 \\
& 2 \\
& 2 \\
& 1 \\
& 1 \\
& 3 \\
& 3 \\
& 3 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 2 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
GLASS:FREQUENCY DIAL \\
RIVET:SEMITUB ALUM . 123 DIA \\
SCREW:MACH SST 4-40 X. 312 \\
TAPE:POLYESTER METALIZED \\
BRACKET 90 DEG ANGLE \\
WASHER:FLAT . 375 ID \\
SCREW:MACH SST 6-32 X 125 \\
WASHER:LOCK HELICAL \\
WASHER:BRASS . 147 ID \\
PC BOARD ASS' Y \\
SEPARATOR:LAMP P/O ITEM 10 \\
WASHER:NYLON . 0937 ID \\
WASHER:SPRING. 0937 \\
SCREW:MACH SST 2-56 X. 321 \\
TAPE:POL YESTER METALIZED \\
NUT:HEX 2-56. \(188 \mathrm{WD}, .063\) THK \\
WASHER:SPRING \\
WASHER:SST . 25 OD, 0313 THK \\
HOUSE:LAMP FREQUENCY SCALE INDICATOR \\
BRACKET:LAMP HOUSE \\
SCREW:MACH SST 2-56 X 1.25
\end{tabular} & \\
\hline & & (3) & & \\
\hline
\end{tabular}

Figure 6-4. Exploded View of Frequency Multiplier, Over Limit Indicator, and Frequency Scale Indicator
\begin{tabular}{|c|l|l|l|l|}
\hline Item No. & Part No. & Q'ty & \multicolumn{1}{|c|}{ Description } & Note \\
\hline & & & & \\
1 & \(04342-5032\) & 1 & PULLEY:MOLDED & \\
2 & \(04342-8522\) & 1 & SPRING:COIL & \\
3 & \(04342-5137\) & 1 & DRUM:MOLDED & \\
4 & \(3050-0016\) & 1 & WASHER:FLAT BRASS . 147 ID & \\
5 & \(2360-0121\) & 1 & SCREW:MACH SST 6-32 X.500 & \\
6 & \(2360-0121\) & 1 & SCREW:MACH SST 6-32 X.500 & \\
7 & \(3050-0016\) & 1 & WASHER:FLAT BRASS .147 ID & \\
8 & \(04342-5138\) & 1 & DRUM:MOLDED & \\
9 & \(04342-8523\) & 1 & SPRING:COIL & \\
10 & \(04342-5033\) & 1 & PULLEY:MOLDED & \\
& & & & \\
& & & & \\
\hline
\end{tabular}

Figure 6-5. Exploded View of Main and Vernier Capacitor Dial Ass'y

Figure 6-6. Exploded View of Oscillator Lever Ass'y

Section VI
Figure 6-7

Figure 6-7. Exploded View of Rear Panel (sheet 1 of 2)

Figure 6-7. Exploded View of Rear Panel (sheet 2 of 2)

Figure 6-8. Exploded View of Handle Section

\section*{SECTION VII \\ MANUAL CHANGES AND OPTIONS}

\section*{7-1. OPTIONS}

7-2. Options are standard modifications performed on HP instruments at the factory. Model 4342A Option 001 low frequency version covering a frequency range from 10 kHz to 32 MHz is available.

\section*{7-3. SPECIAL INSTRUMENTS}

7-4. 'Specials" are standard HP instruments that are modified according to customer specifications. A separate insert sheet is included with the manual for special instruments having electrical changes. Make the changes specified in addition to any other changes that are necessary.

\section*{7-5. MANUAL CHANGES}
\(7-6\). This manual applies directly to the Model 4342A with serial prefixed \(1212 \mathrm{~J}-00591\) and above. The following paragraphs explain how to adapt this manual to apply to later instruments with higher serial prefix, or earlier instruments with lower serial prefix. Technical corrections to this manual (if any) are called errata and are listed on a separate "Manual Changes" sheet supplied with this manual.

7-7. LATER INSTRUMENTS: If the serial prefix of your Model 4342 A is above 1212 J , refer to a separate "Manual Changes" sheet supplied with this manual. Locate the serial prefix of your instrument and make the indicated changes.

7-8. EARLIER INSTRUMENTS(Backdating Changes): If the serial prefix of your Model 4342A is \(1212 \mathrm{~J}-\) 00590 and below, refer to Table 7-1 for the changes necessary to adapt this manual to your particular instrument. Locate the serial prefix of your instrument in the table and make the indicated changes.

Note that instrument-component values that differ from those in this manual, yet are not listed in this backdating changes, should be replaced using the part number given in this manual.

7-9. OPTION 001 INSTRUMENTS: Information about Option 001 is given in Appendix.

Table 7-1. Backdating Changes.
\begin{tabular}{|c|c|}
\hline Instrument Serial Prefix or Number & Make Changes \\
\hline 941/942 & \(1,2,3,4,5,6,7,8,9,10,11\) \\
\hline \[
1005 / 1006 \mathrm{~J} 00115
\]
and below & \(2,3,4,5,6,7,8,9,10,11\) \\
\hline \begin{tabular}{l}
\[
1005 / 1006 \mathrm{~J} 00135
\] \\
and below
\end{tabular} & \(3,4,5,6,7,8,9,10,11\) \\
\hline 1018/1019 & \(4,5,6,7,8,9,10,11\) \\
\hline 1027/1028 & \(5,6,7,8,9,10,11\) \\
\hline 1035/1036J00240 and below & \(6,7,8,9,10,11\) \\
\hline 1035/1036J00290 and below & 7, 8, 9, 10, 11 \\
\hline 1035/1036J00315 and below & 8, 9, 10, 11 \\
\hline \begin{tabular}{l}
\[
1035 / 1036 \mathrm{~J} 00340
\] \\
and below
\end{tabular} & 9,10,11 \\
\hline \begin{tabular}{l}
\[
1211 / 1212 \mathrm{~J} 00570
\] \\
and below
\end{tabular} & 10,11 \\
\hline 1212J00590 and below & 11 \\
\hline
\end{tabular}

\section*{CHANGE 1}

Page 6-3 and 6-4, Table 6-2, Reference Designation Index Delete A1A1C31 and A1A1R22.

Page 8-5, Figure 8-3, Oscillator Ass'y A1
Delete A1A1C31 and A1A1R22 from circuit.
Page 6-10, Table 6-2, Reference Designation Index Delete A5CR1.

Page 8-9, Figure 8-5, Impedance Converter, RF Amplifier \& Detector Ass'y A5. Delete A5CR1 from circuit.

Page 6-14, Table 6-2, Reference Designation Index Change A7C2 to HP Part No. 0160-0128, C:FXD CER 2. \(2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\).

Page 8-11, Figure 8-6, Q-Limit Selector Ass'y A7 Change value of A 7 C 2 to \(2.2 \mu\).
Change circuit as shown in partial schematic Figure 7-1.

Figure 7-1. A7 04342-7707

Page 6-16, Table 6-2, Reference Designation Index
Change A8CR17 to HP Part No. 1910-0102, SEMICON DEVICE:DIODE GERMANIUM.
Page 6-18, Table 6-2, Reference Designation Index Delete A8R43.
Page 8-13, Figure 8-7, Power Supply \& ALC Amplifier Ass'y A8 Delete A8R43 from circuit.

Page 6-18, Table 6-2, Reference Designation Index Add A11R1, R2, HP Part No. 0757-0461, R:FXD MET FLM \(68.1 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\).
Page 8-7, and 8-9, Figure 8-4 and 8-5, Meter Scale Indicator Ass'y A11 Change circuit as shown in schematic Figure 7-2.

Figure 7-2. All 04342-7711

\section*{CHANGE 2}

Page 6-4, Table 6-2, Reference Designation Index
Change A1A1R8 to HP Part No. 0757-0438, R:FXD MET FLM 5.11k \(\Omega 1 \% 1 / 8 W\).
Change A1A1R20 to HP Part No. 0757-0346, R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\), and remove asterisk (*) from A1A1R20.
Delete A1A1R23.
Page 8-5, Figure 8-3, Oscillator Ass'y A1
Change value of A1A1R8 to \(5110 \Omega\).
Change value of A1A1R20 to \(10 \Omega\), and remove asterisk (*) from A1A1R20.
Delete A1A1R23 from circuit.

\section*{CHANGE 3}

Page 6-4, Table 6-2, Reference Designation Index Delete A1A1L9.

Page 8-5, Figure 8-3, Oscillator Ass'y A1
Delete A1AL9 from circuit.
Page 6-7, Table 6-2, Reference Designation Index, Miscellaneous
Change HP Part No. of PLATE: TERMINAL to 04342-3221.
Page 6-11, Table 6-2, Reference Designation Index
Change A5C 23 to HP Part No. 0180-0376, C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\).
Delcte A5R44 and R45.
Add A5L1 and L3 HP Part No. 9140-0179, COIL:FXD RF \(22 \mu \mathrm{H} 10 \%\).
Page 8-9, Figure 8-5, Impedance Converter, RF Amplifier \& Detector Ass'y A5
Change value of A 5 C 23 to \(0.47 \mu \mathrm{~F}\).
Replace A5R44 and R45 with A5L1 and L3, \(22 \mu \mathrm{H}\) respectively.

CHANGE 4

Page 6-3, Table 6-2, Reference Designation Index
Change HP Part No. of A1A1 to 04342-7701.
Change HP Part No. of A1A1 BLANK PC BOARD to 04342-8701.
Page 8-3, Figure 8-2, Functional Overall Block Diagram Change HP Part No. of A1A1 Oscillator Board to 04342-7701.
Page 8-5, Figure 8-3, Oscillator Ass'y A1
Change HP Part No. of A1A1 Oscillator Board Ass'y to 04342-7701
Page 6-4, Table 6-2, Reference Designation Index, Miscellaneous
Change HP Part No. of PLATE:ANGLE to 04342-1074
Page 6-8, Table 6-2, Reference Designation Index, Miscellaneous
Delete ANGLE: SHIELD HP Part No. 04342-1048.
Add SHIELD HP Part No. 04342-1055 and ANGLE (2 REQ'D) HP Part No. 04342-1056.
Page 6-12, Table 6-2, Reference Designation Index
Change A6CR2 and CR3 to HP Part No. 1902-0041, SEMICON DEVICE:DIODE BREAKDOWN 5.11V \(5 \% 400 \mathrm{~mW}\).

Page 8-9, Figure 8-5, DC Amplifier Ass'y A6
Change values of A5CR2 and CR3 to 5.11 V

Page 6-13, Table 6-2, Reference Designation Index Change A6R26 to HP Part No. 0698-4433, R:FXD MET FLM 2. \(26 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\). Change A6R29 to HP Part No. 0757-0433, R:FXD MET FLM \(3.32 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\).
Page 8-9, Figure 8-5, DC Amplifier Ass'y A6
Change value of A6R26 to \(2260 \Omega\).
Change value of A6R29 to \(3320 \Omega\).
Page 6-20, Table 6-2, Reference Designation Index Change HP Part No. of XA6 and XA7 to 1251-0160.
Change HP Part No. of FRONT PANEL ASS'Y to 04342-1021.
Change HP Part No. of BOTTOM COVER to 04342-1029.

\section*{CHANGE 5}

Page 6-14, Table 6-2, Reference Designation Index
Change A7CR1 to HP Part No. 1902-0041, SEMICON DEVICE:DIODE BREAKDOWN \(5.11 \mathrm{~V} 5 \% 400 \mathrm{~mW}\). Change A7R7 to HP Part No. 2100-1759, R:VAR WW \(2 \mathrm{k} \Omega 5 \% 1 W\).

Page 8-11, Figure 8-6, Q-Limit Selector Ass'y A7
Change value of A7CR1 to 5.11 V .
Change value of A7R7 to \(2000 \Omega\).

\section*{CHANGE 6}

Page 6-4, Table 6-2, Reference Designation Index
Delete A1A1L10.
Page 8-5, Figure 8-3, Oscillator Ass'y A1 Delete A1A1L10 from circuit.

CHANGE 7
Page 6-9, Table 6-2, Reference Designation Index Change A4C 3 to HP Part No. \(0180-0374, \mathrm{C}:\) FXD TA \(10 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\).
Page 8-7, Figure 8-4, Impedance Converter Ass'y A4 Change value of A 4 C 3 to \(10 \mu \mathrm{~F}\).

Page 6-19, Table 6-2, Reference Designation Index
Change C1a and C1b to HP Part No. 0150-0119, C:FXD CER \(2 \times 0.01 \mu \mathrm{~F} 20 \% 250 \mathrm{WVAC}\).
Page 8-13, Figure 8-7, Power Supply \& ALC Amplifier Ass'y A8
Change circuit as shown in partial schematic Figure 7-3.

\section*{CHANGE 8}

Page 6-14, Table 6-2, Reference Designation Index
Change A7R7 to HP Part No. 2100-1910, R:VAR MET FLM \(100 \mathrm{k} \Omega 2 \% 3 / 4 \mathrm{~W}\).
Page 8-11, Figure 8-6, Q Limit Selector Ass'y A7
Change value of A7R7 to \(100 \mathrm{k} \Omega\).

CHANGE 9
Page 6-10, Table 6-2, Reference Designation Index
Change A5C7 to HP Part No. 0180-1745, C;FXD TA \(1.5 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\).
Change A5C13 to HP Part No. 0160-2201, C:FXD MICA 51pF 5\% 300VDCW.
Change A5C15* to HP Part No. 0160-2266, C:FXD CER \(24 \mathrm{pF} 5 \% 500 \mathrm{VDCW}\).

Page 6-11, Table 6-2, Reference Designation Index
Change A5R33 to HP Part No. 0698-3433, R:FXD MET FLM \(28.7 \Omega 1 \% 1 / 8 W\).
Change A5R42 to HP Part No. 0757-0442, R:FXD MET FLM \(10 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\).
Page 8-9, Figure 8-5, Impedance Converter, RF Amplifier \& Detector Ass'y A5
Change value of A 5 C 7 to \(1.5 \mu \mathrm{~F}\).
Change value of A 5 C 13 to 51 pF .
Change value of \(\mathrm{A} 5 \mathrm{C} 15^{*}\) to 24 pF .
Change value of A5R33 to \(28.7 \Omega\)
Change value of \(A 5 R 42\) to \(10 \mathrm{k} \Omega\).

Figure 7-3. Partial Schematic of Power Supply

CHANGE 10
Page 6-3, Table 6-2, Reference Designation Index
Change HP Part No. of A1A1 to 04342-7731.
Change HP Part No. of Board Blank PC for A1A1 to 04342-8731.
Page A-3, Table A-1, Reference Designation Index
Change HP Part No. of A1A1 to 04342-7741.
Change HP Part No. of Board Blank PC for A1A1 to 04342-8741.
Page 8-5, Figure 8-3, A1, A3, A8 and A10 Ass'y
Change HP Part No. of A1A1 to 04342-7731.
Page A-7, Figure A-1, A1 (opt 001) and A10 Ass'y
Change HP Part No. of A1A1 to 04342-7741.

\section*{CHANGE 11}

Page 6-20, 6-21, Table 6-2, Reference Designation Index
Change HP Part No. of PANEL ASS'Y FRONT to 04342-1049.
Change HP Part No. of COVER ASS'Y TOP to 04342-1028.
Change HP Part No. of COVER BOTTOM to 04342-1027.
Change HP Part No. of BRACKET HANDLE H1 to 04342-1031.
Change HP Part No. of BRACKET HANDLE H2 to 04342-1032.
Page 6-22, Figure 6-1, Exploded View of OSC Ass'y (sheet 1 of 2).
Change partial illustrated parts identification of Figure 6-1 as shown below:

Page 6-23, Figure 6-1, Exploded View of OSC Ass'y (sheet 2 of 2) Change Parts List of Figure 6-1 as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Item No. & Part No. & Q'ty & Description & Note \\
\hline 1 & 2360-0115 & 5 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 2 & 04342-1070 & 1 & COVER:TOP & \\
\hline 3 & 04342-3092 & 1 & SHAFT:OSCILLATOR & \\
\hline 4 & 1410-0307 & 1 & BEARING & \\
\hline 5 & 0510-0045 & 2 & RING:RET EXT . 188 DIA & \\
\hline 6 & 1410-0307 & 1 & BEARING & \\
\hline 7 & 04342-3093 & 1 & BRACKET:SHAFT & \\
\hline 8 & 3030-0033 & 2 & SCREW:SET 6-32 X . 188 LG HEX SKT. DR & \\
\hline 9 & 1500-0005 & 1 & HUB:COUPLER (BRASS) & \\
\hline 10 & 1500-0004 & 1 & HUB:COUPLER (NYLON) & \\
\hline 11 & 3030-0033 & 2 & SCREW:SET 6-32 X . 188 LG HEX SKT . DR & \\
\hline 12 & 04342-3096 & 1 & HUB:COUPLER (BRASS) & \\
\hline 13 & 0121-0232 & 1 & CAPACITOR:AIR & \\
\hline 14 & 2360-0199 & 1 & SCREW:MACH SST 6-32 K. 438 PLI & \\
\hline 15 & 3050-0066 & 1 & WASHER:BRASS . 147 ID & \\
\hline 16 & 1400-0325 & 1 & CLAMP:CABLE (NYLON) & \\
\hline 17 & 2360-0115 & 2 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 18 & 2740-0003 & 1 & NUT :HEX 10-32 X . 375 & \\
\hline 19 & 04342-1073 & 1 & PLATE & \\
\hline 20 & 2360-0115 & 2 & SCREW:MACH SST 6-32 X. 312 & \\
\hline 21 & 2360-0119 & 2 & SCREW:MACH SST 6-32 X , 438 PH & \\
\hline 22 & 04342-7601 & 1 & CABLE ASS'Y & \\
\hline 23 & 2190-0047 & 4 & WASHER.LOCK CNTRSK NO. 6 & \\
\hline 24 & 0570-0237 & 4 & SCREW:MACH BRASS 3 mm & \\
\hline 25 & 0360-0032 & 1 & TERMINAL:LUG & \\
\hline 26 & 0160-2357 & 3 & C:FXD CER 1000 pF & \\
\hline 27 & 2190-0008 & 1 & WASHER:LOCK EXT PHS . BRZ . 141 ID & \\
\hline 28 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 29 & 04342-7702 & 1 & PC BOARD:A1A2 ASS' \(Y\) & \\
\hline 30 & 2190-0102 & 1 & WASHER:LOCK ERZ . 475 ID & \\
\hline 31 & 2950-0035 & 1 & NUT HEX BRASS 15/32-32 & \\
\hline 32 & 2360-0200 & 2 & SCREW:MACH SST 6-32 X. 500 & \\
\hline 33 & 2190-0047 & 2 & WASHER:LOCK CNTRSK NO. 6 & \\
\hline 34 & 04342-5001 & 1 & CASE:OSCILLATOR (CASTING) & \\
\hline 35 & 0400-0111 & 1 & GROMME T:SNAP IN & \\
\hline 36 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X. 312 & \\
\hline 37 & 04342-7731/41 & 1 & PC BOARD :A1A1 ASSEMBLY & \\
\hline 38 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X. 312 & \\
\hline 39 & 2360-0115 & 3 & SCREW:MACH SST 6-32 X 312 & \\
\hline 40 & 2360-0115 & 1 & SCREW MACH SST 6-32 X. 312 & \\
\hline 41 & 04342-1071 & 1 & COVER BOTTOM & \\
\hline 42 & 2360-0115 & 1 & SCREW:MACH SST 6-32 X. 312 & \\
\hline 43 & 2360-0115 & 3 & SCREW:MACH SST 6-32 X . 312 & \\
\hline 44 & 2950-0035 & 1 & NUT:HEX BRASS 15/32-32 & \\
\hline 45 & 2190-0102 & 1 & WASHER:LOCK BRZ. 475 ID & \\
\hline 46 & 1250-0314 & 1 & CONNECTOR:BNC FEMALE & \\
\hline 47 & 2190-0012 & 1 & WASHER:LOCK EXT BRZ & \\
\hline 48 & 3030-0033 & 1 & SCREW:SET 6-32 X. 188LG HEX SKT.DR & \\
\hline 49 & 0510-0080 & 1 & RING:RET EXT . 500 DIA E TYPE & \\
\hline 50 & 04342-8524 & 1 & SPRING:COIL & \\
\hline 51 & 04342-5035 & 1 & PULLEY:MOLDED & \\
\hline
\end{tabular}

Figure 6-1. Exploded View of Oscillator Ass'y (sheet 2 of 2)

\section*{SECTION VIII \\ CIRCUIT DIAGRAMS}

\section*{8-1. INTRODUCTION}

8-2. This section includes the following:
a. General Notes for schematic diagrams.
b. Functional Overall Block Diagram (Figure 8-2).
c. Schematic Diagrams and Parts Location Illustrations. Waveforms and voltages at indicated test points are also included.
\(8-3\). Circuit diagrams of Option 001 are given in APPENDIX. A1 and A5 Ass'y circuit diagrams are different from the Standard Model 4342A. For other assemblies, refer to this section.

\section*{8-4. GENERAL NOTES}
a. Unless otherwise indicated, resistance in ohms, capacitance in microfarads and inductance in microhenries.
b. Components assignedan asterisk (*) are factory selected, average values shown.
c. (9.4.7) indicates wire color code. Wire color code (MIL-STD-681) same as resistor color code. First number identifies ground color, second number identifies wide stripe, third number identifies narrow stripe, i.e. (9.4.7) denotes white ground, yellow wide stripe, violet narrow stripe.
d. The components mounted on chassis or mainframe parts are not assigned an assembly designation (i.e. R1, Q1, etc.).
e. Reference designations (R1, Q1, etc.) within assembly (A1, A2. . . etc.) use assembly designation as prefix to form complete designation. (i. e. R1 in A1 assembly is A1R1)

8-5. Additional notes are shown in Figure 8-1.

Figure 8-1. Schematic Diagram Notes

ASSEMBLY LOCATION

OSCILLATOR ASS'Y AI (TOP VIEW)
COMPONENT LOCATION

OSCILLATOR ASS'Y AI (BOTTON VIEW)
COMPONENT LOCATION
(04342-7020)

2 LIMIT SELECTOR (O4342-77O7)

RF POWER AMPLIFIER ASS'Y AIA2
COMPONENT LOCATION

Figure 8-2

POWER SUPPLY 8 ALC AMPLIFIER ASS'Y A8
COMPONENT LOCATION

\footnotetext{
FREQUENCY MULTIPLIER a OVER LIMIT INDICATOR ASS'Y AIO
COMPONENT LOCATION
}

Figure 8-2. Functional Overall Block Diagram

Q RANGE ATTENUATOR ASS'Y A3 COMPONENT LOCATION

IMPEDANCE CONVERTER ASS'Y A4 COMPONENT LOCATION

Figure 8-3
OSCILLATOR ASS'Y AI
O RANGE ATTENUATOR ASS'Y A3
POWER SUPPLY a ALC AMPLIFIER ASS'Y AB FREQUENCY MULTIPLIER Q OVER LIMIT INDICATOR ASS' Y AIO

COPYRIGHT 1970 EY YOKOGAWA-HEWLETT-PACKARU, LTO

Figure 8-3. Oscillator Ass'y A1
Q Range Attenuator Ass'y A3
Power Supply \& ALC Amplifier Ass'y A8
Frequency Multiplier \& Over Limit Indicator Ass'y A10

TUNING CAPACITOR ASS'Y A2
COMPONENT LOCATION

IMPEDANCE CONVERTER, RF AMPLIFIER \& DETECTOR ASS'Y AS
COMPONENT LOCATION

Figure 8-4
TUNING CAPACITOR ASS'Y AZ - RANGE ATTENUATOR ASS'Y A3 IMPEDANCE CONVERTER ASS'Y A4 MATER SCALE INDICATOR ASS'Y AII

Figure 8-4. Tuning Capacitor Ass'y A2 Q Range Attenuator Ass'y A3 Impedance Converter Ass'y A4 Meter Scale Indicator Ass'y A11

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { NO } \\
\text { PREFIX }
\end{gathered}
\] & A3 ASS'Y & A5 ASS' \(Y\) & A6 ASS'Y & All ASS') \\
\hline \[
\begin{aligned}
& \text { JI } \\
& \text { M1 } \\
& R 2-R 4 \\
& \times A 6
\end{aligned}
\] & S2 & \[
\begin{aligned}
& \mathrm{CI}-\mathrm{C} 23 \\
& \mathrm{CRI}-\mathrm{CR} 6 \\
& \mathrm{L2} \\
& \text { Q1-Q9 } \\
& \mathrm{RI}-\mathrm{R} 45
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CI}-\mathrm{C5} \\
& \mathrm{CRI}-\mathrm{CR} 3 \\
& \mathrm{LI}, \mathrm{~L} 2 \\
& \text { Q1-05 } \\
& \mathrm{RI}-\mathrm{R} 29
\end{aligned}
\] & DS1-0S4 \\
\hline
\end{tabular}

Figure 8-5
- RANGE ATTENUATOR ASS'Y A3

IMPEDANCE CONVERTER, RF AMPLIFIER G DETECTOR ASS'Y AS DC AMPLIFIER ASS'Y AG METER SCALE INDICATOR ASS'Y All

Figure 8-5. Q Range Attenuator Ass'y A3 Impedance Converter, RF Amplifier \& Detector Ass'y A5

DC Amplifier Ass'y A6
Meter Scale Indicator Ass'y A11

Q-LIMIT SELECTOR ASS'Y AT
COMPONENT LOCATION

Figure 8-6 - LIMIT SELECTOR ASS'Y AT FREQUENCY MULTIPLIER a OVER LIMIT INDICATOR ASS'Y AIO

Figure 8-6. Q-Limit Selector Ass'y A7

POWER SUPPLY a ALC AMPLIFIER ASS'Y AB COMPONENT LOCATION

Figure 8-7. Power Supply \& ALC Amplifier Ass'y A8

\section*{APPENDIX \\ OPTION 001}

This manual applies directly to the 4342A Standard Models. To adapt this manual to Option 001 instruments, refer to the followings.

\section*{I. REPLACEABLE PARTS}

Replace page 6-3 and 6-4, Table 6-2, Reference Designation Index for A1A1 Ass'y with Table A-1.

Replace page 6-11 and 6-12, Table 6-2, Reference Designation Index for A5 Ass'y with Table A-2.

Page 6-21, Table 6-2, Reference Designation Index Miscellaneous Change HP Part No. of SCALE:FREQUENCY DIAL to 04342-1060. Change HP Part No. of FILM:FREQUENCY RANGE SWITCH to 04342-8554.

\section*{II. MANUAL CHANGES}

Information in this Appendix applies directly to the 4342 A Option 001 instruments with serials \(1035 / 1036 \mathrm{~J} 00341\) and above. This information with the following changes also applies to the 4342A Option 001 having serials \(1035 / 1036 \mathrm{~J} 00340\) and below. For other changes except A1A1 and A5 Ass'y, see SECTION VII MANUAL CHANGES AND OPTIONS.
\begin{tabular}{cl}
Instrument Serial Prefix or Number & Change No. \\
\(1005 / 1006\) & \(1,2,3,4,5\), \\
\(1018 / 1019\) & \(2,3,4,5\), \\
\(1035 / 1036 \mathrm{~J} 00240\) and below & \(3,4,5\), \\
\(1035 / 1036 \mathrm{~J} 00340\) and below & 4,5, \\
\(1211 / 1212 \mathrm{~J} 02206\) and below & 5,
\end{tabular}

CHANGE 1
Page A-4, Table A-1, Reference Designation Index
Delete A1A1L9.
Change A1A1R1* to HP Part No. 0757-0422; R:FXD MET FLM \(909 \Omega 1 \% 1 / 8 \mathrm{~W}\).
Change A1A1R2* and R3* to HP Part No. 0698-3443; R:FXD MET FLM \(287 \Omega 1 \% 1 / 8 \mathrm{~W}\).
Page A-7, Figure A-1, Oscillator Ass'y (Option 001) A1
Delete A1A1L9 from circuit.
Change value of A1A1R1* to \(909 \Omega\).
Change values of A1A1R2* and R3* to \(287 \Omega\).

CHANGE 2
Page A-3, Table A-1, Reference Designation Index,
Change HP Part No. of A1A1 to 04342-7721.
Change HP Part No. of A1A1 BLANK PC BOARD to 04342-8721.
Page A-7, Figure A-1, Oscillator Ass'y (Option 001) A1
Change HP Part No. of A1A1 OSCILLATOR BOARD ASS' Y to 04342-7721.

CHANGE 3
Page A-3, Table A-1, Reference Designation Index Change A1A1C23* to HP Part No. 0160-2236; C:FXD CER 1pF 500VDCW.

Page A-4, Table A-1, Reference Designation Index Delete A1A1L10.
Change A1A1R1* to HP Part No. 0698-4398; R:FXD MET FLM \(8.66 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\). Change A1A1R3* to HP Part No. 0698-0083; R:FXD MET FLM 1. \(96 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\). Change A1A1R4* to HP Part No. 0698-4460; R:FXD MET FLM \(649 \Omega 1 \% 1 / 8 W\).
Page A-7, Figure A-1, Oscillator Ass'y (Option 001) A1
Change value of A1A1C23* to 1 pF .
Delete A1A1L10 from circuit.
Change value of A1A1R1* to \(8.66 \mathrm{k} \Omega\).
Change value of A1A1R3* to \(1.96 \mathrm{k} \Omega\).
Change value of A1A1R4* to \(649 \Omega\).
Page A-5, Table A-2, Reference Designation Index
Change A5C13 to HP Part No. 0140-0205; C:FXD MICA 62pF 5\%, and remove asterisk (*) from A5C13.
Change A5C15 to HP Part No. 0160-2262; C:FXD CER 16pF 5\%, and remove asterisk (*) from A5C15.
Change A5C16 to HP Part No. 0121-0146; C:VAR AIR 1.8-16.7pF.
Page A-9, Figure A-2, Impedance Converter, RF Amplifier and Detector Ass'y (Option 001) A5 Change value of A 5 C 13 to 62 pF , and remove asterisk (*) from A5C13. Change value of A 5 C 15 to 16 pF , and remove asterisk (*) from A5C15. Change value of A 5 C 16 to \(1.8-16.7 \mathrm{pF}\).

\section*{CHANGE 4}

Page A-5, Table A-2, Reference Designation Index
Change A5C13* to HP Part No. 0160-2202; C:FXD MICA 75pF \(5 \% 300 \mathrm{VDCW}\). Change A5C15* to HP Part No. 0140-0190; C:FXD MICA 39pF 5\% 300VDCW. Change A5R33 to HP Part No. 0698-3433; R:FXD MET FLM \(28.7 \Omega 1 \% 1 / 8 \mathrm{~W}\). Change A5R42 to HP Part No. 0757-0442; R:FXD MET FLM 10k \(\Omega 1 \% 1 / 8 W\).
Page A-9, Figure A-2, Impedance Converter\& RF Amplifier and Detector Ass'y (Option 001) A5 Change value of \(\mathrm{A} 5 \mathrm{C} 13^{*}\) to 75 pF . Change value of \(\mathrm{A} 5 \mathrm{C} 15^{*}\) to 39 pF . Change value of A5R33 to \(28.7 \Omega\). Change value of 45 R 42 to \(10 \mathrm{k} \Omega\).

CHANGE 5

Page A-6, Table A-2, Reference Designation Index Change the part number of A5R5 to 0730-0149.

\section*{III. CIRCUIT DIAGRAMS}

Circuit diagrams of Oscillator Ass'y (Option 001) A1 and Impedance Converter, RF Amplifier and Detector Ass'y (Option 001) A5 are given in Figure A-1 and A-2. For other assemblies, see SECTION VIII CIRCUIT DIAGRAMS.

Table A-1. Reference Designation Index
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A1 & \[
\begin{aligned}
& 04342-7120 \\
& 04342-5001 \\
& 04342-1070 \\
& 04342-1171
\end{aligned}
\] & ```
OSCILLATOR ASS'Y (OPTION 001)
CASE:OSCILLATOR
COVER:TOP
COVER:BOTTOM
``` & \\
\hline A1A1 & \[
\begin{aligned}
& 04342-7761 \\
& 04342-8761
\end{aligned}
\] & OSCILLATOR BOARD ASS'Y (OPTION 001) BOARD:BLANK PC & \\
\hline \[
\begin{aligned}
& \text { A1A1C1 } \\
& \text { A1A1C2* } \\
& \text { A1A1C3 } \\
& \text { A1A1C4* } \\
& \text { A1A1C5 }
\end{aligned}
\] & \[
\begin{aligned}
& 0121-0236 \\
& 0160-2244 \\
& 0121-0236 \\
& 0160-2250 \\
& 0121-0236
\end{aligned}
\] & C:VAR CER CYLINDER 0.8-8.5pF C:FXD CER \(3.0 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) C:VAR CER CYLINDER 0.8-8.5pF C:FXD CER \(5.1 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) C:VAR CER CYLINDER \(0.8-8.5 \mathrm{pF}\) & \\
\hline \[
\begin{aligned}
& \text { A1A1C6* } \\
& \text { A1A1C7 } \\
& \text { A1A1C8* } \\
& \text { A1A1C9 } \\
& \text { A1A1C10* }
\end{aligned}
\] & \[
\begin{aligned}
& 0160-2252 \\
& 0121-0236 \\
& 0160-2253 \\
& 0121-0236 \\
& 0160-2248
\end{aligned}
\] & C:FXD CER 6. \(2 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) C:VAR CER CYLINDER \(0.8-8.5 \mathrm{pF}\) C:FXD CER \(6.8 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) C:VAR CER CYLINDER 0.8-8.5pF C:FXD CER 4. \(3 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) & \\
\hline \begin{tabular}{l}
A1A1C11 \\
A1A1C12* \\
A1A1C13 \\
A1A1C14* \\
A1A1C15
\end{tabular} & \[
\begin{aligned}
& 0121-0236 \\
& 0160-2256 \\
& 0121-0236
\end{aligned}
\] & C:VAR CER CYLINDER 0.8-8.5pF C:FXD CER 9. \(1 \mathrm{pF} \pm 0.25 \mathrm{pF} 500 \mathrm{VDCW}\) C:VAR CER CYLINDER 0.8-8.5pF NORMALLY OPEN NOT ASSIGNED & \\
\hline \[
\begin{aligned}
& \text { A1A1C16 } \\
& \text { A1A1C17 }
\end{aligned}
\] & 0180-1743 & \begin{tabular}{l}
NOT ASSIGNED \\
C:FXD TA \(0.1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\)
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { A1A1C19 } \\
& \text { A1A1C20 }
\end{aligned}
\] & \[
\begin{aligned}
& 0160-0417 \\
& 0121-0232
\end{aligned}
\] & C:FXD CER 150pF 10\% 500VDCW C:VAR AIR \(12-460 \mathrm{pF}\) & \\
\hline A1A1C21 & 0160-2238 & C:FXD CER 1.5pF 500VDCW & \\
\hline A1A1C22 & 0180-0291 & C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A1A1C23* & 0150-0059 & C:FXD CER 3.3pF 500VDCW & \\
\hline \[
\begin{aligned}
& \text { A1A1C24 } \\
& \text { A1A1C25 }
\end{aligned}
\] & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) NOT ASSIGNED & \\
\hline A1A1C26 A1A1C27 A1A1C28 A1A1C29 A1A1C30 & \[
\begin{aligned}
& 0180-0291 \\
& 0180-0116 \\
& 0180-0116
\end{aligned}
\] & \begin{tabular}{l}
C:FXD TA \(1 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) \\
C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) \\
NOT ASSIGNED \\
NOT ASSIGNED \\
C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\)
\end{tabular} & \\
\hline A1A1C31 & 0150-0093 & C:FXD CER \(0.01 \mu \mathrm{~F}-20 \%+80 \% 100 \mathrm{VDCW}\) & \\
\hline \begin{tabular}{l}
A1A1L1 \\
A1A1L2 \\
A1A1L3 \\
A1A1L4 \\
A1A1L5
\end{tabular} & \[
\begin{aligned}
& 04342-8610 \\
& 04342-8611 \\
& 04342-8612 \\
& 04342-8613 \\
& 04342-8614
\end{aligned}
\] & \begin{tabular}{l}
COIL:VAR \(500-700 \mathrm{mH}\) \\
COIL:VAR \(51-78 \mathrm{mH}\) \\
COIL:VAR 4.7-7.2mH \\
COIL:VAR \(486-740 \mu \mathrm{H}\) \\
COIL:VAR \(49-71.3 \mu \mathrm{H}\)
\end{tabular} & \\
\hline
\end{tabular}

Table A-1. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A1A1L6 & 04342-8615 & COIL:VAR \(5-6 \mu \mathrm{H}\) & \\
\hline A1A1L7 & 04342-8620 & COIL:VAR 0. \(41-0.55 \mu \mathrm{H}\) & \\
\hline A1A1L9 & 9170-0029 & MAGNETIC CORE: BEAD FERRITE & \\
\hline A1A1L9 & 9170-0029 & MAGNETIC CORE: BEAD FERRITE & \\
\hline A1 A1L 10 & 9170-0029 & MAGNETIC CORE: BEAD FERRITE & \\
\hline A1A1Q1 & 1854-0071 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q2 & 1854-0092 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q3 & 1855-0022 & TRANSISTOR:FIELD EFFECT N-CHANNEL & \\
\hline A1A1Q4 & 1853-0034 & TRANSISTOR:PNP SILICON & \\
\hline A1A1Q5 & 1854-0019 & TRANSISTOR:NPN SILICON & \\
\hline A1A1Q6 & 1854-0019 & TRANSISTOR:NPN SILICON & \\
\hline A1A1R1* & 0757-0288 & R:FXD MET FLM \(9.09 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R2* & 0757-0273 & R:FXD MET FLM \(3.01 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R3* & 0698-4431 & R:FXD MET FLM \(2.05 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R4* & 0757-0419 & R:FXD MET FLM \(681 \Omega 1 \% 1 / 8 W\) & \\
\hline A1A1R5* & 0757-0317 & R:FXD MET FLM \(1.33 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R6* & 0698-3447 & R:FXD MET FLM \(422 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R7* & 0698-3243 & R:FXD MET FLM \(178 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R8* & 0757-0290 & R:FXD MET FLM \(6.19 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R9 & 0698-3359 & R:FXD MET FLM \(12.7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R10 & 0757-0279 & R:FXD MET FLM \(3.16 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R11 & 0698-3156 & R:FXD MET FLM \(14.7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R12 & 0683-2265 & R:FXD COMP 22MS 5\% 1/4W & \\
\hline A1A1R13 & 0757-0123 & R:FXD MET FLM \(34.8 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R14 & 0757-0442 & R:FXD MET FLM \(10 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R15 & 0698-3156 & R:FXD MET FLM 14. \(7 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R16 & 0698-3153 & R:FXD MET FLM \(3.83 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R17 & 0698-3151 & R:FXD MET FLM \(2.87 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R18 & 0698-4453 & R:FXD MET FLM \(402 \Omega 1 \%\) 1/8W & \\
\hline A1A1R19 & 0698-4125 & R:FXD MET FLM \(953 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R20* & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R21 & 0757-0821 & R:FXD MET FLM \(1.21 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A1A1R22 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1R30 & 0757-0284 & R:FXD MET FLM \(150 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A1A1S1 & 3101-0260 & SWITCH:PUSH BUTTON 7-RANGE & \\
\hline A1A1XA1A2 & 1251-0478 & CONNECTOR:PRINTED CIRCUIT 12-CONTACT & \\
\hline & \[
\begin{aligned}
& 04342-1074 \\
& 04342-3022
\end{aligned}
\] & \begin{tabular}{l}
MISCELLANEOUS \\
PLATE:ANGLE \\
NUT:HEX FOR FERRITE CORE
\end{tabular} & \\
\hline
\end{tabular}

Table A-2. Reference Designation Index
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A5 & \[
\begin{aligned}
& 04342-7725 \\
& 04342-8725
\end{aligned}
\] & IMPEDANCE CONVERTER \& RF AMPLIFIE BOARD:BLANK PC & \\
\hline A5C1 & 0160-2244 & C:FXD CER \(3 \mathrm{pF} \pm 0.25 \mathrm{pF}\) & \\
\hline A5C2 & 0180-1735 & C:FXD TA \(0.22 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C3 & 0180-0376 & C:FXD TA 0.47 \(\mu \mathrm{F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C4 & 0160-2259 & C:FXD CER 12pF 5\% & \\
\hline A5C5 & 0180-1745 & C:FXD TA \(1.5 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A5C6 & 0160-0128 & C:FXD CER 2. \(2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C7 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \%\) 35VDCW & \\
\hline A5C8 & 0180-1746 & C:FXD TA \(15 \mu \mathrm{~F} 10 \% 20 \mathrm{VDCW}\) & \\
\hline A5C9 & 0160-0155 & C:FXD MY \(0.0033 \mu \mathrm{~F} 10 \% 200 \mathrm{VDCW}\) & \\
\hline A5C10 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C11 & 0160-0174 & C:FXD CER \(0.47 \mu \mathrm{~F}-20 \%+80 \% 25 \mathrm{VDCW}\) & \\
\hline A5C12 & 0180-0116 & C:FXD TA \(6.8 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C13* & 0140-0192 & C:FXD MICA \(68 \mathrm{pF} 5 \% 300 \mathrm{VDCW}\) & \\
\hline A5C14 & 0160-0128 & C:FXD CER 2. \(2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C15* & 0160-2150 & C:FXD MICA \(33 \mathrm{pF} 5 \% 300 \mathrm{VDCW}\) & \\
\hline A5C16* & 0121-0147 & C:VAR AIR \(2.0-19.3 \mathrm{pF}\) & \\
\hline A5C17 & 0160-0128 & C:FXD CER 2. \(2 \mu \mathrm{~F} 20 \% 25 \mathrm{VDCW}\) & \\
\hline A5C18 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C19 & 0160-0174 & C:FXD CER \(0.47 \mu \mathrm{~F}-20 \%+80 \% 25 \mathrm{VDCW}\) & \\
\hline A5C20 & 0150-0121 & \(\mathrm{C}:\) FXD CER \(0.1 \mu \mathrm{~F}-20 \%+80 \% 50 \mathrm{VDCW}\) & \\
\hline A5C21 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C22 & 0180-0376 & C:FXD TA \(0.47 \mu \mathrm{~F} 10 \% 35 \mathrm{VDCW}\) & \\
\hline A5C23 & 0180-0291 & C:FXD TA \(1 \mu\) F \(10 \% 35 \mathrm{VDCW}\) & \\
\hline A5CR1 & 1901-0025 & SEMICON DEVICE:DIODE SILICON & \\
\hline A5CR2 & 1910-0016 & SEMICON DEVICE :DIODE GERMANIUM & \\
\hline A5CR3 & 1910-0016 & SFIMTCON DFVICE:DIODE GERMANIUM & \\
\hline A5CR4 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR5 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5CR6 & 1910-0016 & SEMICON DEVICE:DIODE GERMANIUM & \\
\hline A5L1 & 9140-0179 & COIL: FXD RF \(22 \mu \mathrm{H} 10 \%\) & \\
\hline A5L2 & 9140-0179 & COIL: FXD RF \(22 \mu \mathrm{H} 10 \%\) & \\
\hline A5L3 & 9140-0137 & COIL:FXD RF \(1000 \mu \mathrm{H} 10 \%\) & \\
\hline A5Q1 & 1855-0022 & TRANSISTOR:FIELD EFFECT N-CHANNEL & \\
\hline A5Q2 & 1853-0015 & TRANSISTOR:PNP SILICON 2N3640 & \\
\hline A5Q3 & 1854-0023 & TRANSISTOR:NPN SIIICON & \\
\hline A5Q4 & 1854-0092 & TRANSISTOR:NPN SILICON 2N3563 & \\
\hline A5Q5 & 1854-0296 & TRANSISTOR:NPN SILICON MPS6543 & \\
\hline A5Q6 & 1854-0092 & TRANSISTOR:NPN SILICON 2 N3563 & \\
\hline A5Q7 & 1853-0015 & TRANSISTOR:PNP SILICON 2N3640 & \\
\hline A5Q8 & 1854-0233 & TRANSISTOR:NPN SILICON 2N3866 & \\
\hline A5Q9 & 1854-0091 & TRANSISTOR:NPN SILICON & \\
\hline
\end{tabular}

Table A-2. Reference Designation Index (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline Reference Designation & Part No. & Description & Note \\
\hline A5R1 & 0757-0346 & R.FXD MET FLM \(10 \Omega 1 \%\) 1/8W & \\
\hline A5R2 & 0698-3151 & R:FXD MET FLM \(2.87 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R3 & 0757-0465 & R:FXD MET FLM \(100 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R4 & 0757-0465 & R:FXD MET FLM \(100 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R5 & 0730-2335 & R:FXD C FLM \(28.1 \mathrm{M} \Omega 0.5 \% 1 \mathrm{~W}\) & \\
\hline A5R6 & 0698-0085 & R:FXD MET FLM \(2.61 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R7 & 0698-3155 & R :FXD MET FLM \(4.64 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R8 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R9 & 0757-0441 & R:FXD MET FLM \(8.25 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R10 & 0698-3150 & R:FXD MET FLM \(2.37 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R11 & 0698-3439 & R:FXD MET FLM \(178 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R12 & 0698-0089 & R:FXD MET FLM \(1.78 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R13 & 0698-3430 & R:FXD MET FLM \(21.5 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R14 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R15 & 0698-3152 & R:FXD MET FLM \(3.48 \mathrm{k} \Omega 1 \% \mathrm{l} / 8 \mathrm{~W}\) & \\
\hline A5R16 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R17 & 0757-0440 & R:FXD MET FLM \(7.5 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R18 & 0757-0438 & R:FXD MET FLM \(5.11 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R19 & 0757-0422 & R :FXD MET FLM \(909 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R20 & 0757-0398 & R:FXD MET FLM \(75 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R21 & 0757-0294 & R:FXD MET FLM \(17.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R22 & 0698-4422 & R:FXD MET FLM \(1.27 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R23 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R24 & 0757-0405 & R:FXD MET FLM \(162 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R25 & 0698-3409 & R:FXD MET FLM \(2.37 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R26 & 0757-0439 & R:FXD MET FLM 6. \(81 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R27 & 0757-0290 & R:FXD MET FLM \(6.19 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R28 & 0757-0274 & R:FXD MET FLM \(1.21 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R29 & 0698-3434 & R :FXD MET FLM \(34.8 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R30 & 0757-0419 & R:FXD MET FLM \(681 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R31 & 0757-0394 & R:FXD MET FLM \(51.1 \Omega 1 \% 1 / 8 W\) & \\
\hline A5R32 & 2100-1986 & R:VAR MET FLM \(1 \mathrm{k} \Omega 10 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R33 & 0698-3430 & R:FXD MET FLM \(21.5 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R34 & 0698-3700 & R:FXD MET FLM \(715 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R35 & 0757-0814 & R:FXD MET FLM \(511 \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R36 & 0757-0379 & R:FXD MET FLM \(12.1 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R37 & 0757-1092 & R:FXD MET FLM \(287 \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R38 & 0757-0346 & R:FXD MET FLM \(10 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R39 & 0757-0159 & R:FXD MET FLM \(1 \mathrm{k} \Omega 1 \% 1 / 2 \mathrm{~W}\) & \\
\hline A5R40 & 0698-3152 & R:FXD MET FLM \(3.48 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R41 & 0757-0401 & R:FXD MET FLM \(100 \Omega 1 \% 1 / 8 \mathrm{~W}\) & \\
\hline A5R43 & 2100-1777 & R:VAR WW \(20 \mathrm{k} \Omega 5 \% 1 \mathrm{~W}\) & \\
\hline & 0340-0008 & MISCELLANEOUS INSULATOR-STAND OFF 2 REQ'D & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline 'Y & AlA2 Ass'r & AIO ASS'Y \\
\hline &  & \[
\begin{aligned}
& \text { OSI-DS4 } \\
& \text { RI }
\end{aligned}
\] \\
\hline
\end{tabular}


Figure A-1. Oscillator Ass'y (Option 001) A1 Frequency Multiplier \& Over Limit Indicator Ass'y A10


\section*{ONVERTER, RF AMPLIFIER A DETECTOR ASS'Y}
5)




COPYRIGHT 1970 BY YOKOGAWA-HEWLETT-PACKARD, LTD.


DELETED;```


[^0]:    $\operatorname{Rs}=\frac{\Delta Q}{\omega C_{1} Q_{1} Q_{2}}(\Omega) \ldots \ldots$ (eq. 3-41)
    Where, $\omega=2 \pi f_{0}$.

[^1]:    * Correlation Factor x Indicated Q - Value on 513/ $518=4342 \mathrm{~A}$ Indicated Q-Value.

