Introductory Operating Guide for the HP 8505A RF Network Analyzer with the HP 9826A Desktop Computer (BASIC)

INTRODUCTION

This programming note is a guide to the remote operation of the HP 8505A RF Network Analyzer, the HP 8501A Storage Normalizer, and the HP 8503A S-Parameter Test Set using the HP 9826A Desktop Computer and the BASIC programming language. The 8505 A is a fully programmable $500 \mathrm{kHz}-1.3 \mathrm{GHz}$ vector network measurement test system with 100 dB dynamic range. Frequency, magnitude, phase, and group delay can be measured with resolutions up to $100 \mathrm{~Hz}, 0.01 \mathrm{~dB}, 0.1^{\circ}$, and 0.1 nsec respectively. For better frequency resolution and stability, the internal source has an optional phase lock capability for measuring difficult devices like crystal filters and SAW devices. When the HP 8660C Synthesized Signal Generator (with the appropriate 86600 Series Plug-in) is used for phase lock operation, one hertz center frequency resolution can be achieved. The 8501A Storage Normalizer enhances measurements with digital storage, normalization, signal averaging, CRT labeling, and graphics capability.

This measurement system is fully compatible with the Hewlett-Packard Interface Bus (HP-IB). The HP 9826A Desktop Computer is an ideal instrument controller fea-

turing two times the HP9825A's average execution speed, in BASIC language, with mini-disc mass storage, a twomode graphics display, built-in standard HP-IB interface, and expandable memory and interfacing. This note demonstrates the HP-IB control of the 8505A via the BASIC programming language.

Included in this guide are the system connections for remote operation, and a modular sample program that demonstrates the capabilities of the system and provides a starting point to those who want to create programs tailored to their specific measurement needs.

Reference Information

For further information on the HP Interface Bus, the following should prove helpful:

Tutorial Description of the Hewlett-Packard Interface Bus (HP Literature No. 5952-0156).
Complete reference information on the 8505 A , the 8501A, and the 8503A can be found in their respective Operating and Service (O / S) manuals. The HP part number for each is as follows:

O/S Manual 8505A: 08505-90002
O/S Manual 8501A: 08501-90022

O/S Manual 8503A: 08503-90001
8505A Programming Code Summary: HP Literature No. 5952-9293.
For information on operating the 9826A the following references are available:

9826A Operating Manual (HP Part No. 09826-90000).
BASIC Language Reference (HP Part No. 09826-90055). BASIC Programming Manual (HP Part No. 09826 90010).

BASIC I/O Manual (HP Part No. 09826-90020).

Equipment Required

To perform all the example programs described in this programming note, you will need the following equipment and accessories:

HP 8505A Network Analyzer with Option 007 (Labeling Interface)
HP 8501A Storage Normalizer
HP 8503A S-Parameter Test Set
HP 11857A Test Port Extension Cables
HP 85031A APC-7 Calibration Kit
HP 9826A Desktop Computer with Opt. 001 (or 701)-
BASIC programming language
A 200 MHz Band-pass Filter or an equivalent test device

For hard copy output:
A Thermal Graphics Printer which is compatible with the HP 9826A (HP 2673A)

For the phase lock option:
HP 8660C Synthesized Signal Generator
HP 11667A Power Splitter
HP 8491A Opt. 003 3dB Attenuator

Set-Up

Figure 1 shows the system connection. All that is required is to:

1. Connect the 24 -pin HP-IB connector of the built-in HPIB interface of the 9826A to the printer and the system consisting of 8501A, 8505A, and 8503A. Refer to O/S Manuals for more detail on interconnects.

CAUTION

Do not attempt to mate black metric threaded screws on one connector with silver English threaded nuts on another connector, or vice versa, as damage may result. A metric conversion kit which will convert one cable and one or two instruments to metric hardware is available by ordering HP Part No. 5060-0138.
2. Following the instructions in the BASIC Operating Manual for the HP 9826A, load the BASIC language system.
3. The HP-IB select code is assumed to be preset to 7 . This programming note assumes the following instrument HP-IB addresses:

Instrument	Address
8505A Source/Converter	19
8505A Processor/Display	16
8501A Storage-Normalizer	14
8503A Test Set	20
8660C Synth. Sig. Gen.	18
2673A Graphics Printer	01

Figure 1. System Connection

You may change the above numbers according to your instrument addresses．If there is a conflict，these ad－ dresses may be modified by removing instrument covers and manipulating appropriate slide switches or jumpers on various circuit cards．For detailed instructions，see Chapter E of the 8505A Operating and Service Manual．

Check－Out

If your computer has a soft－loaded operating system and power had been turned off，then follow instructions to re－ load the system．When the message＂BASIC READY＂ reappears，turn on the rest of the equipment．

To verify that the HP－IB connections and interface are functional execute the following program：

```
! I|EfinE in=trummEnt addreszE=
N心rmalizer=`14
Frogeszor=71e
SourEE=719
```



```
TEETEEt=720
!
! system"Check-out"
7!
GG FEMOTE FrGGEszor
90 IISF "FEM: Sig. Frg-S5G5"
100 FFUSE
110 FENOTE SOMrGE
120 IISF "FEM: SOUNCE-ESG5"
130 FHUSE
44 EEMOTE NONmElizer
15G IISF" "FEM: Stor. Narm.-ESE1"
1EG FH|SE
170 REMOTE TEStEet
180 DISF "FEM: TEEt SEt-E5GS"
190 EEEF
20@ FHUSE
```

Verify that the appropriate REMote light is lit according to the displayed messages before pressing CONTINUE to proceed．If the 9826A display indicates an error，check the program statement and the system connections and execute the program again．

Before programming the 8505 A system for different func－ tions，the user should be aware of the extent of remote control that can be used．The Remote Enable（＇REMOTE＇） command sets the instruments into remote control from the local（manual）mode．In remote，the instruments will perform only as their functions are programmed．Any controls not programmed will assume their＂front panel＂ state（as manually postioned）．

If the LOCAL buttons are pressed，the instruments will re－ turn to local control．To prevent this from occurring，the Local Lockout（＇LOCAL LOCKOUT＇）command disables all front panel controls，including the LOCAL key．The Go to Local（＇LOCAL＇）command will return the instruments to front panel control thereby removing it from the remote and local lockout modes．Note that the above remote and local commands are different from the general HP－IB local and remote commands（＇LOCAL 7＇
and＇REMOTE 7＇）．The program lines 210－300 exercise the functions＇LOCAL LOCKOUT＇and＇LOCAL＇：

```
216 LOEAL LDCKDUT ?
2G IISF "LGGEl LG世kGBt"
23G FAUSE
240 LOSRL FrGEES=OH
250 LOGHL SGurce
zED LOLAL NETmElizEr
27G LDLRL TEStEEt
2日日 IISF "Lomal"
296 EEEF
3@g FHUSE
```


Programming Code Conventions

The HP 8505A functions are programmed using a two－ character format：
1．The first letter of the control or switch name（for exam－ ple，＂R＂for Range），as marked on the front panel of the 8505A．
2．Plus a number indicating the position of the control be－ ginning with 1 at the left or full counter－clockwise posi－ tion．Thus the 130 MHz RANGE（the second position from the left）is programmed＂ $\mathrm{R} 2^{\prime}$ ．

Since the 8505A Processor has duplicate controls for each display，a prefix code is used to indicate what chan－ nel is being programmed．
＂ C 1 ＂is used for Channel 1.
＂C2＂is used for Channel 2.
＂C3＂is used for Electrical length controls．
＂ C 0 ＂is used for the CRT display bandwidth program－ ming．

The letter＂E＂is used to indicate the end of programming information and must be used when controls are pro－ grammed．Refer to Appendix 1 for a table of all 8505A commands．

PROGRAMMING FREQUENCY

There are three recommended ways to program the fre－ quency at which S－Parameter measurements are made： $\mathrm{CW} \pm \triangle \mathrm{F}$ mode，MARKER／SWEPT mode，and CW mode． Basically，the $\mathrm{CW} \pm \Delta \mathrm{F}(\Delta \mathrm{F}+0)$ mode is the most useful one．The MARKER／SWEPT mode is the fastest while the CW mode has the greatest resolution and potential accuracy．

NOTE

To prevent errors in the Start／Stop frequencies dis－ played，the WIDTH switch must be programmed in the Data String prior to the START and STOP FREQUENCY MHz registers．

NOTE

Changing the frequency of＂ FA^{\prime}＂or＂ FB ＂when in ＂W3＂（ALT Sweep）or entering a frequency >1300 MHz will cause errors in the frequency readout．

In general，when programming the frequency registers， the decimal point is not accepted．Its position is assumed and changes with the frequency range switch setting：

Range $1(0.5-13 \mathrm{MHz})$－dd．dd MHz
Range $2(0.5-130 \mathrm{MHz})$－ddd．d MHz
Range 3 （ $0.5-1300 \mathrm{MHz}$ ）－dddd MHz

For example，＂FA1000＂programs 10 MHz on Range 1， while＂FA0010＂programs 10 MHz on Range 3.

Fast CW Mode

For most automatic applications，the $C W \pm \Delta F$ mode with ΔF set to zero is recommended．In this mode（and all swept modes）the wait to settle within 0.1% of fre－ quency step is 130 ms as compared to 1500 ms in CW mode（see Table 1）．

```
310:TG:&t 1113 MHz in "faミt CH"
311!
g2g OUTFUT SOUrCE;"ESMSN4FEGE"
350 F=1113
34日 IMALE "FA",K,"E"
350 OUTFUT Sourte USING 340;F
360 WAIT . 13
370 IISF "FrEq. Eet To 1113 MHz"
3E0 EEEF
390 FAISE
```

In the above＇IMAGE＇statement，＂K＂specifies that the corresponding data item is to be output with no leading or trailing blanks．This format is required when pro－ gramming the 8505 A ．Typically，a program would be structured so that line 320 is executed only once．To pro－ gram 10.14 MHz ，the code would be changed to＂R1M3＂ in line 320 and＂$F=1014$＂in line 330．The＇WAIT＇time required in line 360 is explained in Table 1.

CW Mode

This mode is programmed as shown in line 450 ．The ac－ tual frequency is programmed by＂FAdddd＂where dddd is the coarse frequency．

To achieve greater resolution in CW，you may use ＂FAdddZFBdddd＂．＂FBdddd＂is essentially a vernier in CW where 1000 counts in FB equal 2 counts in the Z position of FA．The following example shows how various frequencies could be programmed using the ＂dddZFBdddd＂format．

```
40日 ! SEt freg= in "CN mgaE"
401!
4Q5 IISP "IHFUT FHN'FFEQUEHEY" "
410 IHFUT ": 5-130日 MHz,",Fr*G
415 盾 = Range
426 F=1+FFrEQ\13)+4Freq*130:
425 ! T = SGale Fa!品
430 T=10*& S-F)
435 ! F=Freq. for B505
440 F=Fr*G*T
44z M=INT&F
445 L=500%(F-INT(F))
4SG DUTFUT SOMrC=:"MSH5E"
4EE IMRGE "E", , "FA",K,"FE",K,"E"
470 DUTFUT EgurEE USIHIG 4-G;F,M,L
485 WHIT 1.5
```



```
4% I!SF "MHz ミ&t in CW MGde!!"
56g EEEF
515 FRUSE
```


Marker Swept Modes

Displaying the full sweep while taking data at a single fre－ quency is a powerful technique in automatic testing It allows you to actually＂see＂the data being taken．It is ac－ complished by first programming the instrument to either START／STOP 1，START／STOP 2，or CW $\pm \triangle F$ and then tak－ ing data by moving the frequency marker．Any swept mode is programmed by entering the frequency limits into the FA and FB registers．

```
F20 ! SwEE& betwたern 50 and 10日
521 ! MHz,STARTYSTOF, RAHIE 2
52 !
5z5 IMAGE "R2MSW2FASGGFBIGOGE"
5S IUTFUT SOUrEE IGING 52S
540 [HSF "STHETMSTOF:";
545 IISF "S0 TO L0E MHz IS SET!"
550 EEEF
SGG FHUSE
5ES ! SEt CEnter freq=1日 MHz witr
S5 ! JE1 F=0.5 MHz ir RHHGE I
571 !
5G6 IMAGE "F1MSN4FF100日FESEEE"
5&5 GUTF|T Source USINL 5S0
5g IISF "SuEEp: EM del F Mode!"
600 EEEP
E1G FHUSE
E15 SEt a 150-210 MHz displsy
520 with the marker at 198 MHz
E21!
G% IMAGE "ROMSN1FH1SGFE21GE"
ESO OUTFUT Sgurce USIHG E2S
E35 lMkr foosn = % of horiz a<iz
640 F=(19%-180)*150(-210-180)
ESD IMAGE "FO",K, "E"
GED GUTFUT SOUHEE USING ESQ;F
EG WHIT . 13
675 IISF "STHFT/STGF 1 & MHREEF";
GBG IISF "FrequEnGiEs EEt!"
G90 EEEF
70G FH|SE
715 DISF
```

Once a sweep has been programmed，the frequency marker is positioned on the display using＂FCdd＂，wheredd corresponds to screen position in percent of screen（ 1% be－ ing the far left， 99% the far right）．The data read will corres－ pond to the value at the frequency marker．

Table 1．Characteristics of Frequency Setting Modes

	CW	Fast CW	Marker Swept
Resolution 13 MHz 130 MHz 1300 MHz Wait time＊ Accuracy	0.02 kHz 0.2 kHz 2.0 kHz 1.5 s $* *$	0.01 MHz 0.1 MHz 1.0 MHz 130 ms 1% of range	130 ms 1% of range

＊Time to settle to 0.1% of frequency stepped．
＊＊Can be corrected to counter accuracy $\left(1 / 10^{5}\right)$ ．

EXAMPLE MEASUREMENT PROGRAM

In the following example，it is assumed that the instrument ＂addresses＂are defined，and that the source has been pro－ grammed to the desired START／STOP1，START／STOP 2，or $C W \pm \triangle F$ settings．The SCAN TIME should be set to the 100 ms position with the VERNIER turned fully clockwise．

The example program will read frequency on Frequency Counter，return loss on CHAN 1 marker，and phase on CHAN 2 marker at 49 points across the CRT．The data mea－ sured will then be used to calculate Rho，SWR，and com－ plex load impedance．The program will print out the re－ sults and draw plots of Return loss versus frequency and SWR versus frequency．The system printing device is speci－ fied by＂PRINTERIS1＂（the CRT）or＂PRINTER IS 701＂（HP 2673A）．The＂DUMP GRAPHICS＂statement copies the contents of the CRT graphics display to a printer specified．

```
720! Star"t "MEHSUEEMENT" Frogram
721!
7SQ OFTIDH EHSE I
```



```
P45 IIM FHAEEO50%,F゙んG(50%, Sut(50)
750 IIM EEBlazrtc50%,Imagpartag)
PEG IMHGE 1N,5H,EX,EH,5N,5H,7N, SH, SX, ЗH
PPG FRIHT UEIHE FEG: "FFEG", "FETLS.", "FHASE",
    "FHO", "EMF"
```


Set up a 180 to 210 MHz display with the frequency marker at 180 MHz ．

```
7G日 DUTFUT SOURGE:"MSM1T1S4E"
E日G OUTFUT SgUFにE; "FSFF1SQFE21日E"
S16 IMAGE "FL",K,"E"
820 DUTFUT SOUFCE USING S10;1
8Sg WHIT . S
835 IMHGE "C1M2I4H2geMSI4T2E"
840 OUTFUT Frocessor IEIMIG ess
```

The device under test（DUT）for this example was a 200 MHz band－pass filter．You may change the frequency range according to your specific DUT．The SCAN time ＂S4＂was chosen to give the desired Frequency Counter resolution．In this example，line 840 sets up the 8505 A so that CHAN 1 is used for return loss measurements，and CHAN 2 is used for phase measurements．

The following program lines will step the frequency marker through 49 points across the CRT display．

```
S50 !REa| FrEquEnGy, EHMN 1, CHAN 2
855 !marker at 49 points acrose
EgQ the CRT diEpliay.
es! !
870 FOF J=1 TO 9E STEF 2
88日 IMALE "FE",K,"E"
890 DUTFUT Sounce UEING ESQ;J
90G WHIT. . 
```

Channel 1 and 2 marker values are automatically mea－ sured on alternate sweeps．Because no delays are built into the 8505A，a WAIT statement for two sweeps plus a retrace should be programmed prior to requesting pro－ cessor readings．With both channels turned on，the WAIT time in milliseconds equals three times the SCANTIME．

```
910 H=1+CJ HIV 2)
920 EHTEF SOURGE;FR(H)
930 EHTER Froces=0r; REturnlosecN%,FHzEECH
```

The following calculations will reformat the measured data to give Rho，SWR，and complex load impedance．

```
940 ! Calculate RHO
941!
950 RhocN)=10*(Returmloss(N)<Q0%)
951!
952
960! Calculate SHR
9E1 !
970 IF Rho(H)=1 THEN
980 Sur<N\=1060
950 ELSE
```



```
1010 END IF
1011!
1012 !
1020 ! CalGulate Loag-Impedamce
1021 !
1056 20=5日 !Characteri=tiに Z
1040 DEG
```



```
1060 RE玉lpart (N)=ZG*(1-RHOCN)2) DEnQm
```



```
    yEnom
```

Print out the results to a specified printer：

```
10gu ! Frint formbtted gutput.
1081
```



```
    4%,4II.3I
```



```
1110 HENT J
1120 EEEF
1136 FRUSE
1140 FRIHT UGIHG "2%"
1141!
1142 !
115日 ! Frint Load-Impedamce
1151!
1160 FRINT CHFE<10%;"LOAI-IMFEI:"
11T日 FRIHT "(ZS=5日 Ohmi":"/"
1180 IMAGE 1%,9F, B%,9A
1190 FRIHT USIHG 11EQ;"REAL-FART","IMAG-FART"
120日 FOE I=1 T0 48
1210 IMAIGE S4II.4I,7%,54II.4II
12z@ FRINT USING 1210;REalpart (I),Imag&artaI)
12亏日 HEKT I
124日 FFIHT UEING "3/"
1256 EEEF
12Eg PRUSE
```

Initialize display for graphics：

```
1270 !Plot Ga*a
1271
12S0 ALFHA OFF
1290 GLLEAF
130日 GRHFHILS OH
1310 GINIT
```

The following program draws a plot of return loss versus frequency．You may have to change the values in＂WIN－ DOW＂and＂AXES＂statements according to the fre－ quency range chosen and return loss measurements．The ＂DUMP GRAPHICS \＃701＂statement may also have to be modified depending on your printer．

```
132a ! Flat Returmlass us. Freq.
1221!
1330}\mathrm{ WINDOW 175,22g,-4日,5
1340 HXES 5,5,175,0,1,1
1350 ! Latel ames
136日 DEG
137日 LIIF 日
13E日 MOYE 206,z
1390 LORG 5
1400 CSIZE 4
1410 LAEEL "FFEQUENC" (HHz)"
1420 LDIF 95
1430 MOWE 172,-20
1440 LAEEL "RETURN LDES <dE>"
1450 LORG 4
14E日 FOR I=1 TO 48 ETEF 4F
1476 MOVE FRGI`/1.E+E,S
14EG LAEEL INT<Fr(I)Y1.E+E)
1490 NEXT I
1505 LDIF 6
1510 LORG 5
1504 FOF I=5 TO S0 STEF 25
153日 MOWE 17%,-I
```

1540 LAEEL I
1550 HERT I
156日 ！Flat data
1570 LINE TYFE 4
1586 MOVE FrCi） $1 . E+E$ ，Fetumalosé 1 ）
$150 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} 4 \mathrm{E}$
1E0日 DRAW FrCI？1．E＋G，FeturnlosecI）
1616 HENT I
16こ0 DUMF GEAFHISS \＃701
1635 LIAE TYFE 1
1640 DUTFUT 7 TII USING＂G＂
1650 EEEF
1660 FAUSE

The following programs draws a plot of SWR versus fre－ quency．Again，you may have to change the values in ＂WINDOW＂and＂AXES＂statements according to the fre－ quency range chosen and SWR Measurements．In addi－ tion，the statement＂DUMP GRAPHICS \＃701＂may have to be changed according to the printer in use．

```
1G70 ! Flot SHF us.FrEquEn=y
1671!
168G GCLEFF
1690 WIHIOH 170, 220,-10,25
170日 AXES 5,5,175,0,1,1
1710 ! La&El #%E
1720 MOVE 200, -5
173Q LAEEL "FREQUEHEYCMHz;"
1740 LIIF 90
1750 NOYE 172.15
176g LAEEL "EHF"
17TE FIF I=1 TO 4S STEF 4?
1780 MOYE FrGI), 1.E+E,-4
1790 LHEEL IHT&FH&I`&1.E+E)
18GG HEXT I
1510 LIIF a
1S2日 LOEG 5
18S0 FQF I=5 TO 20 STEF 15
1840 MOWE 17S,I
1G5G LHEEL I
1860 NENT I
1日7日 ! Plot data
13O LINE TYFE 4
1856 MDUE Fr(1),1.E+E,Sureq
1905 FOF I=1 TG 48
191E IRAW Fr&I%/1.E+E,Swr|I%
1920 HEXT I
1930 LIHE TYFE 1
1940 LIIF 6
1950 IUMF GFHFHIES #SU1
19E6 EEEF
1970 FRUSE
1980 GOLEFF
```


PROGRAMMING THE 8503A

Use the following program format for addressing the test set and selecting the S－Paramter Select Switch to either FORWARD－＂ 11 ＂or REVERSE－＂ 2 ＂．

Testset $=720$
Output Testset；＂T1＂！Forward mode
Output Testset；＂T2＂！Reverse mode

PROGRAMMING THE 8501A

Graphics

Vector diagrams, lines of text, and rectilinear and polar plots can be displayed by transferring a sequence of display instructions and data from the controller to 8501A memory. The 8501A refreshes the CRT display every 10-20 milliseconds to present a flicker-free display. Memory is available for calculator-generated graphics without sacrificing any of the standard capabilities. Each memory word contains either a display instruction or data. The display instruction identifies how the 8501 A processor is to interpret the data which follows. The data consists of a coordinate value or an ASCII character. Refer to Appendix 2 for a table and summary of the HP-IB commands and mnemonics accepted by 8501A.

As shown in Figure 2, up to 22 lines of text, each line up to 54 characters long, can be displayed.

Rectilinear graphs, scaled from the 8505A Channel 1 or Channel 2 reference line, can be plotted on the CRT by writing the " $G R^{\prime}$ " display instruction followed by up to 500 values for y. When the 8501A processor encounters the " GR " instruction in memory, it draws a blank vector (beam off) to the following y value with $x=0$, then plots the remaining y values automatically incrementing the x value to provide the proper display.

The position of the $y=0$ point depends upon the Channel 1 reference line as set by the 8505A controls. The y values are integer values ranging from -512 to +512 but if the reference line is at center screen only values between -250 and +250 will be displayed (see Figure 3).

Figure 2. Text Mode Character Positions

Figure 3．GR Cartesian Graph Scaling

The following example shows how the text mode and rec－ tilinear plot can be utilized．

```
1985! |!=%lay 1atel;
```



```
1991!
20GG ALPHH OH
2010 FFINT USING "5,"
2020 IISF "L.zEE| Er GSGS GFT"
```



```
        FELEFEGTILIHEAR FLOTM-SIHE WAME"
2040 IMHGE W
```



```
20g EEEF
20%G FGUGE
2080 IEG
```



```
2095 !Graphiに= mG|E
z1bg DuTFUT NOrmalizer; "EFFEGF"
2110 FOF X=1 TO 506
2120 \because=256+5IH4360*Q500%
213@ DUTFUT Hormalizer;IHT&%
2140 HEYT X
2150 EEEF
210G FHUSE
```


High Speed Binary Transfer

The 9826A Desktop Computer can perform high speed block data transfer both to and from the 8501A memory． Using this capability，both traces（ $500 \mathrm{pts} /$ trace）can be transferred to a disk file in 3 seconds．

```
2170 ! High EFecg binarg tranzfer
2171!
21E日 FRINT ISING "5""
2190 DUTFUT Sourse:"MSW1T1S4E"
22日0 DUTFUT SOUHEE; "RGFA1EGFEE1GE"
2219 OUTFUT NOMmGlizEr;"ERPE"
22zG LOCAL NOHMalizer
22SQ INTEGEF A(153E)
224G INFUTT "FILE NRME%",FilE%
225g CREFTE EIIAT Fileq, 12
226日 DUTFUT Normalizer;"Fs,guz"
2276 IMAGE %,H
2080 ENTEF Normalizer |siNG gera;AC*
2290 HSEIGN IGITO Fileg
2560 DUTFUT QD;FO*)
```

```
2310 ASEIGN f0ITO T
2300 FEINTEF IS 1
2350 IISF
234g FRINT "High Eperg tolock data tramEfer
```



```
235日 FRINT CHR&(1G);"FrEsE EOHTIHUE tG
    retrigue the stored data!"
2उ㐁 FRIHT USINT "5,"
2370 EEEF
2300 FH|lSE
```

Array＂A＂is dimensioned to 1536 elements to read three 512 －word memory pages．Page 3 is addressed and the ＂ 02 ＂command selects the 8501 A binary output mode in which data is transferred from memory in a two－byte binary form with the most significant byte first．Then the array＂A＂is stored under the file name given by the user．

To retrieve data from disc and transfer it to the 8501 A memory，use the following sequence．

```
23%G HSSIGN GIG TO FIlE=
2406 ENTEF 目IFG**
241日 IMAGE W
2420 OUTFUT Normalizer;"ERFGIE"
243日 OUTFUT HormalizER USING 2416;AC*?
2440 OUTFU| Hormalizer USIHG "E";ize
2456 BEEF
2460 FAUSE
```

The file named by＂File\＄＂is loaded into memory，then 8501 A is initialized using＂ER＂，and Page 3 is addressed to receive data．The＂ $1 \mathrm{~B}^{\prime \prime}$ command selects the 8501 A binary input mode in which data is received in a two－byte binary format，most significant byte first．The statement 2440 sends 128 in a binary form，which returns the 8501A to ASCII mode．

PHASE LOCK OPTION SOFTWARE CONSIDERATION

The applications of phase lock can utilize two different methods of operating the stable source（synthesizer or generator）：

SWEPT OPERATION
The stable source is tuned to the center frequency of the device under test and deviated（up to 130 kHz ） via the $\triangle F$ control on the 8505 A ．Parameter mea－ surements（magnitude，phase，or group delay）are obtained by moving the FC marker across the screen．
CW OPERATION
The $\triangle F$ is set to zero on the 8505 A and the center fre－ quency of the synthesizer is stepped．The center fre－ quency of the 8505A Source is set initially，and as long as the synthesizer is within the capture range of the phase lock loop，the 8505A Source need not be retuned．

One can determine whether phase lock has been achieved by observing or reading the 8505A Frequency Counter. It should be identical to the synthesizer frequency setting.

For general description and operation instructions on phase lock, refer to 8505A - Option Supplement Chapter E (HP Supplement Part No. 08505-90070). (See Figure 4 for system connections.)

The following program assumes the 8505A Source has address 719 and the 8660 C Synthesizer address 718 Set up the Source for Range 3, LIN EXPAND, CW Mode with +10 dBm , and Phase Lock.

```
2465 ! Synthesizer programfing
2470 ! routine for
2480 ! HF E6E0G.
2481!
249G DUTFUT SGurGE;"RSM3M4E"
2495! +100Em F. Lack
25g6 DUTFUT Source;"OEv99H4E"
```

Set up a sweep range.

```
2510 INFUT "STAFT FREQ (MHz)",F1
2520 INFUT "STOF FREQ (MHz)",FZ
2530 IHPUT "STEF SIZE (MHz)",FS
2546 IMAGE "FA",K,"FE",K,"E"
2550 OUTFUT Source USIHE 2540;F1,0
2560 I =( (FQ-F1) (F3) +1
2570 F5=F1
```

Set the synthesizer center frequency to 200 MHz and the output level to +3 dBm .


```
2590 DISF "LF=200 MH2 HT +3dEm"
2EG@ NHIT 3
```

In order to satisfy the internal logic requirements of the 8660C, the least significant digits and the most significant digits of frequency setting must be exchanged. The function "FNInv" will do this arrangement quickly, efficiently, and automatically.

```
2610 FOR H=1 T0 I
2620 F=F5
2ESQ IMAGE "FA",K,"E"
2E4G DUTFUT SOURGE USING 2ESG;F
2656 F4=FHInv(F)
2EEG IMALE """,K,"&"
2670 OUTFUT Sunthesizer USING ze6g;F4
2680 WFIT . 5
269G IISF "FLEASE FRESS COHTINUE"
2760 F'HUSE
2710 IISF
27EG F5=F5+FS
2730 HEKT H
2T4G IIISF "FEEQ FRHIGE SWEFT:"
2750 EHD
2751 !
27eg !Inversion routine!
27E1 !
2770 IEF FHInO(FI)
2780 DIM H&[10], ES[10]
2790 OUTFUT F% USING "#,1日2";F1*1.E+G
2800 FOR I=1 TO 10
```



```
2820 NEKT I
2830 FETUEN UHL(E)
2840 FNEND
```

Data can now be taken as before with the frequency marker or via the high speed binary transfer routine with the 8501A.

Figure 4. Equipment Set-up for Phase-Lock Operation

APPENDIX 1

8505A Frequency Source

Function and Comment	HP-IB Code
START FREQUENCY and CW	FAdddd
STOP FREQUENCY and $\triangle F$	FBdddd
Leading zeros are ignored. Decimal position is not programmed. It is shown below to give implied position. The range of frequencies for Range and Mode settings are shown below.	
ddddRange Mode 1 Mode 2 \& 3 3 $1-1000 \mathrm{MHz}$ $1-1300 \mathrm{MHz}$ 2 $1-100.0 \mathrm{MHz}$ $.5-130.0 \mathrm{MHz}$ 1 $1-10.00 \mathrm{MHz} .5-13.00 \mathrm{MHz}$	
Vernier controls default to min (CCW) when Local Lockout is set. In an Option 005 instrument using MODE " M 4 ", the units for FB change to KHz .	
FREQUENCY COUNTER Only one marker available in remote. Set marker (dd) to percentage of sweep width between 00% and 99%.	FCdd

Function and Comment	HP-IB Code
OUTPUT LEVEL dBm 10 dB steps* VERNIER Local Lockout required to program. Setting not on Learn String. dd=99 ((V + 12)/12) V=Vernier in dB INPUT LEVEL dBm MAX*	Od
RANGE MHz* MODE (sweep)* M4 = PHASE LOCK mode for Option 005 instruments WIDTH*	Vdd
SCAN TIME SEC* VERNIER	
defaults to min Scan Time when	Id
Local Lockout is set	Md
TRIGGER*	Wd

APPENDIX 2
 8501A Mnemonics (1 of 2)

	Memory Mnemonics
MODE SELECTION*	

APPENDIX 2

8501A Mnemonics (2 of 2)

Input/Output

Px, n		Address memory to specify source or destination of data and select ASCII output format. $\mathrm{x}=$ page $=1-8, \mathrm{n}=$ word $=0-511$				
OL		Output Learn String, 24 characters				
OA		Output current memory address. Data output as: page no. comma word no. carriage return-line feed				
IB		Input binary format data. (2 byte, high byte first). Place following memory address. Reset to default ASCII mode using HP-IB Clear command or sending most significant bit of high byte line.				
01		Output ASCII format data (default). Each data value is: sign integer carriage return-line feed				
02		Output binary format data 2 byte, high byte first Place following Memory address.				
Front Panel						
$\begin{aligned} & \mathrm{S} 1 \\ & \mathrm{~S} 2 \\ & \mathrm{~S} 3 \\ & \mathrm{~L} 1 \\ & \mathrm{~L} \end{aligned}$	STORAGE OFF STORAGE ON STORAGE HOLD		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	CHANNEL 1 CHANNEL 2	$\begin{aligned} & \text { A1 } \\ & \text { A2 } \end{aligned}$	AVERAGING OFF AVERAGING ON
	LABELS OFF LABELS ON		11 12 13	INPUT OFF INPUT ON INPUT-MEM	F1 F2 F3	AVERAGING FACTOR 2 AVERAGING FACTOR 4 AVERAGING FACTOR is
$\begin{aligned} & \text { M1 } \\ & \mathrm{M} 2 \\ & \mathrm{M} 3 \\ & \mathrm{M} 4 \end{aligned}$	MAGNIFIER X1 MAGNIFIER X2 MAGNIFIER X5 MAGNIFIER X10		MS V0 V1	MEMORY STORE MEMORY VIEW OFF MEMORY VIEW ON	F4	AVERAGING FACTOR 16 AVERAGING FACTOR 32 AVERAGING FACTOR 64 AVERAGING FACTOR 128 AVERAGING FACTOR 256
ER ERASE						
Processor Commands						
$A B$		Stop processing data from 8505 A .				
EX		Restart processing data from 8505A.				
TSn,		Take n 8505A sweeps, 1 sweep/channel.				

Programming Code Summary for 8505A RF Network Analyzer

INTRODUCTION

This programming note contains a summary of the HP-IB codes used in the 8505A and their functions. It is intended for use by those familiar with both the 8505A and HP-IB programming. Refer to the 8505A Operating and Service manual for a complete explanation of the codes and functions.

ADDRESS TABLE

Instrument	Talk	Listen	Decimal
8505A Processor	P	0	16
8505A Source	S	3	19

The addresses may be changed by removing instrument covers and setting appropriate slide switches on the HP-IB circuit boards. For detailed instructions see Chapter A, Section II of the 8505A Operating and Service Manual, HP part No. 08505-90072.

DATA

The 8505A consists of two separately programmed instruments, Processor and Source.

8505A Instrument Conventions

1. Program letter codes must be uppercase, leading zeros and spaces are ignored.
2. Any controls not programmed will assume their front panel state as positioned before remote.
3. The switches are programmed using two character format.
a. The first character is a letter corresponding to switch name (example " R " for range).
b. The second character is a number corresponding to the position of the switch beginning with 1 at the left or CCW position.
c. Other controls have the same alpha-numeric sequence but may use a two letter code, a plus or minus sign, and up to a 5 digit number code.
Processor Programming Conventions
4. The Processor codes may be sent in any order except:
a. The duplicate controls for each display channel require that the following prefix codes be used.
"C1" for all CHANNEL 1 codes
"C2"' for all CHANNEL 2 codes
"C3" FOR ALL ELECTRICAL LENGTH codes
"C0" for the BandWidth code
b. Use the letter "E" to separate all "R", "O", and " D " program statements and to end the programming string.
5. The last digit programmed in REFerance OFFSET may not be displayed on the front panel LEDs.

Source Program Convention

1. The Source codes may be sent in any order except:
a. Range "R", Mode " M ", and Width "W' codes should precede "FA" and "FB" codes.
b. The letter " E " is used to end the programming string.
2. In Option 005 instruments when WIDTH is in CW $\pm \Delta F(W 4)$ and when Mode is in Phase Lock (M4), the $\Delta F(F B)$ range and delay resolution are reduced by a factor of 1000 .

Reading the 8505A

The Processor MARKER values may both be read by reading them into two variables. The units are the same as displayed on the front panel LEDs.
The Counter marker value is obtained by reading the source into a variable. The units are in Hz .
The current state of many of the 8505A controls may be output using the Learn Mode (program "L") then read on a properly dimensioned string.

Processor Learn String: 85 Characters

Source Learn String: 30 characters

PROCESSOR PROGRAMMING CODES

FUNCTION AND COMMENT	$\begin{aligned} & \text { HP.IB } \\ & \text { CODE } \end{aligned}$
IF and VIDEO filter selection*	COBd
CHANNEL code must precede the other codes used in the channel. C1 codes are the same as C2 codes. INPUT* MODE* SCALE/DIV* REFerence OFFSET STORED CALIBRATION The range of numbers for " R " and " O " is \pm 19999. The plus sign is implied and leading zeros ignored. Decimal position is not programmed. It is shown below to give implied position. DISPLAY* D3 when programmed clears only "R", to clear "O" enter O. Non-learned programming code.	C2 Id Md Sd $R \pm$ ddddd $\mathrm{O} \pm$ ddddd Dd
"The range for values of "d" are shown on corresponding control in illustration above.	

FUNCTION AND COMMENT	$\begin{aligned} & \text { HP.IB } \\ & \text { CODE } \end{aligned}$
ELECTRICAL LENGTH code must precede the other codes in C3. INPUT* MODE* ELECTRICAL LENGTH Stored Electrical Length The range of numbers for " R " and " O " is ± 199. The plus sign is implied and leading zeros ignored. Decimal position is not programmed. It is shown below to give implied position.	$\begin{aligned} & \mathrm{C} 3 \\ & \\ & \mathrm{Id} \\ & \mathrm{Md} \\ & \mathrm{R} \pm \mathrm{ddd} \\ & \mathrm{O} \pm \mathrm{ddd} \end{aligned}$
In C3M4 Mode the scale is in tens of degrees per scan with a range of ± 1700 deg. DISPLAY* D2 when programmed does not clear stored Length to clear this enter O 0 . Non-Learned programming code.	Dd
Mode of unselected input only on Learn string (characters 44 and 45). Non-Programmable. Terminator used to end and separate all ("R","O", and "D") program statements	Sd E

SOURCE PROGRAMMING CODES

FUNCTION AND COMMENT	$\begin{aligned} & \text { HP.IB } \\ & \text { CODE } \end{aligned}$
OUTPUT LEVEL dBm 10 dB steps* VERNIER Local Lockout required to program. Setting not on Learn String. $\mathrm{dd}=99(\mathrm{~V}+12) / 12)$ $\mathrm{V}=$ Vernier in dB INPUT LEVEL dBm MAX*	Od Vdd Id
RANGE MHz* MODE (sweep)* M4 = PHASE LOCK mode for Option 005 instruments WIDTH* SCAN TIME SEC* VERNIER defaults to min Scan Time when Local Lockout is set TRIGGER*	Rd Md Wd Sd Td
*The range of values for " d " are shown on corresponding control in illustration above.	

FUNCTION AND COMMENT	$\begin{aligned} & \text { HP-IB } \\ & \text { CODE } \end{aligned}$
START FREQUENCY and CW STOP FREQUENCY and $\triangle F$ Leading zeros are ignored. Decimal position is not programmed. It is shown below to give implied position. The range ${ }_{;}$of frequencies for Range and Mode settings are shown below. Vernier controls default to min (CCW) when Local Lockout is set. In an Option 005 instrument using MODE "M4", the units for FB change to KHz .	FAdddd FBdddd
FREQUENCY COUNTER Only one marker available in remote. Set marker (dd) to percentage of sweep width between 00% and 99%.	FCdd

OPERATION	DELAY REQUIRED
PROCESSOR settling times	
Processor Reading 1 channel	2 sweep times
C0B BandWidth 2 channels	3 sweep times 10 ms
10 kHz	25 ms
1 kHz	300 ms
Video Filter	
C1-C2 CHANNELs $1 \& 2$	
Any change affecting Reference Level (includes REF OFFSET,	
To 1% final value	1000 ms
To .01\% final value	3000 ms
ZRO (MKR \& REF mode), CLR, INPUT, MODE, and SCALEIDIV	At least 3 sweep times per channel + 3000 ms
C3 ELECTRICAL LENGTH	
Any change affecting LENGTH (includes LENGTH, CLR,	
switching).	3000 ms
ZRO, CLR, INPUT, AND MODE	20 ms
Read marker value and determine if auto-ranging occurs (resolution changes):	
Resolution constant	1 sweep/Channel + 25 ms
Autoranging	2 sweeps/Channel +100 ms
SOURCE settling times	
Counter Reading MAX SCAN-TIME SEC, TRIGGER, OUTPUT, INPUT LEVEL dBm	2 sweep times 20 ms
START/STOP, $\pm \Delta \mathrm{F}$	120 ms
CW (to 0.01\%)	1000 ms (first freq.) 360 ms (next freq.)

OTHER HP-IB COMMANDS

Trigger: The 8505A does not respond to a device Trigger.

Clear: The 8505A does not respond to a device Clear.

Remote: The Remote message will disable the 8505A front panel programmable controls. It will retain the pre-remote front panel settings until changed by program.

Local: The local message or switching the 8505A TRIGGER switch to LOCAL (only if local lockout is not enabled) will set the 8505A to manual front panel control.

Local Lockout: Disables local switch (TRIGGER) on 8505A front panel, "presets" Vernier controls as shown on following table, and enables FB to be used as a Vernier when 8505A is in CW Mode.

VERNIER CONTROL	"PRESET" POSITION
Output Level	-10 dBm
Scan time	Vernier Scan time min
Frequency (2)	OPosition MAX CCW
Electrical Length	0 Position MAX CCW

Serial Poll Enable: HP-IB, Octal 030.
Serial Poll Disable: HP-IB, Octal 031
Service Request: If the Serial Poll is enabled the Source will Service Request if loss of phase lock or RF input overload occurs. Bit 6 of the Status Byte will also refresh this. An initial Serial Poll after power on will enable the Service Request.

Pass Control: The 8505A does not have the ability to Pass Control or take Control.

Abort: The 8505A does not respond to the Abort message.

[^0]
DIGITALY REMASTERED

OUT OF PRINT

TEST EQUIPMENT MANUAL SCANS

By
 ArtekManuals

(formerly known as ArtekMedia and Artekmedia.com) 7102 VALRIE LANE, RIVERVIEW, FL 33569
 WWW.artekmanuals.com
 "High resolution scans of obsolete technical manuals"
 REMOVAL OF THIS DISCLAIMER IS IN VIOLATION ARTEKMANUALS DERIVATIVE COPYRIGHTS. DUPLICATION OR MODIFCATION OF THIS DIGITAL DOCUMENT WITHOUT PRIOR CONSENT IS NOT PERMITTED

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.ArtekManuals.com or drop us an email at Manuals@ArtekManuals.com

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details. This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 450 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi or Gray-scale @450dpi depending on the characteristics.
4) All manuals are text searchable and all manuals are fully bookmarked

All data is guaranteed for life (yours or mine ... which ever is shorter). If for ANY REASON your file becomes corrupted, deleted or lost, ArtekManuals will replace the file for the price of shipping, or free via FTP download.

Thanks

Founder and CEO
Artek Media
ArtekManuals
Outsource-Options

[^0]: For more information, call your local HP Sales Office or nearest Regional Office: Eastern (201) 265-5000; Midwestern (312) 255-9800; Southern (404) 955-1500; Western (213) 970.7500; Canadian (416) 678-9430. Ask the operator for instrument sales. Or write, Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94304 . In Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, P.0. Box, CH 1217 Meyrin 2, Geneva, Switzertand. In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21, Takaido-Higashi 3-chome, Suginami-ku, Tokyo 168.

